Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Self-assembly of Functional Nanostructures by Short Helical Peptide Building Blocks

Author(s): Santu Bera and Ehud Gazit*

Volume 26, Issue 2, 2019

Page: [88 - 97] Pages: 10

DOI: 10.2174/0929866525666180917163142

Abstract

The self-assembly of short peptide building blocks into well-ordered nanostructures is a key direction in bionanotechnology. The formation of β -sheet organizations by short peptides is well explored, leading to the development of a wide range of functional assemblies. Likewise, many natural proteinaceous materials, such as silk and amyloid fibrils, are based on β-sheet structures. In contrast, collagen, the most abundant protein in mammals, is based on helical arrangement. Similar to β-sheet structures, short helical peptides have been recently discovered to possess a diverse set of functionalities with the potential to fabricate artificial self-assembling materials. Here, we outline the functional roles of self-assembled nanostructures formed by short helical peptides and their potential as artificial materials. We focus on the association between self-assembled mesoscale structures and their material function and demonstrate the way by which this class of building blocks bears the potential for diverse applications, such as the future fabrication of smart devices.

Keywords: Self-assembly, short peptide, helical conformation, nanostructure, nanotechnology, β-sheet structure.

« Previous
Graphical Abstract
[1]
Raymond, D.M.; Nilsson, B.L. Multicomponent peptide assemblies. Chem. Soc. Rev., 2018, 47, 3659-3720.
[2]
Gazit, E. Self-assembled peptide nanostructures: The design of molecular building blocks and their technological utilization. Chem. Soc. Rev., 2007, 36, 1263-1269.
[3]
Knowles, T.P.J.; Mezzenga, R. Amyloid fibrils as building blocks for natural and artificial functional materials. Adv. Mater., 2016, 28, 6546-6561.
[4]
Zelzer, M.; Ulijn, R.V. Next-generation peptide nanomaterials: Molecular networks, interfaces and supramolecular functionality. Chem. Soc. Rev., 2010, 39, 3351-3357.
[5]
Konietzny, A. Bär, J.; Mikhaylova, M. Dendritic actin cytoskeleton: Structure, functions, and regulations. Front. Cell. Neurosci., 2017, 11, 147.
[6]
Stephens, R.E.; Edds, K.T. Microtubules: Structure, chemistry, and function. Physiol. Rev., 1976, 56, 709-777.
[7]
Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem., 2009, 78, 929-958.
[8]
Hauser, C.A.E.; Deng, R.; Mishra, A.; Loo, Y.; Khoe, U.; Zhuang, F.; Cheong, D.W.; Accardo, A.; Sullivan, M.B.; Riekel, C.; Ying, J.Y.; Hauser, U.A. Natural tri- to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proc. Natl. Acad. Sci. USA, 2011, 108, 1361-1366.
[9]
Sarkar, B.; O’Leary, L.E.R.; Hartgerink, J.D. Self-Assembly of fiber-forming collagen mimetic peptides controlled by triple-helical nucleation. J. Am. Chem. Soc., 2014, 136, 14417-14424.
[10]
Bera, S.; Maity, S.K.; Haldar, D. Photoelectrochemical properties of CdSe quantum dots doped disk-like tripeptide capsule. CrystEngComm, 2014, 16, 4834-4841.
[11]
Bera, S.; Ambast, D.K.S.; Pal, B.; Haldar, D. Assembly, growth and nonlinear thermo-optical properties of nitropeptides. Phys. Chem. Chem. Phys., 2015, 17, 16983-16990.
[12]
Knowles, T.P.J.; Vendruscolo, M.; Dobson, C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol., 2014, 15, 384-396.
[13]
Knowles, T.P.J.; Buehler, M.J. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol., 2011, 6, 469-479.
[14]
Cherny, I.; Gazit, E. Amyloids: Not only pathological agents but also ordered nanomaterials. Angew. Chem. Int. Ed., 2008, 47, 4062-4069.
[15]
Ulijn, R.V.; Smith, A.M. Designing peptide based nanomaterials. Chem. Soc. Rev., 2008, 37, 664-675.
[16]
Yu, Z.; Cai, Z.; Chen, Q.; Liu, M.; Ye, L.; Ren, J.; Liao, W.; Liu, S. Engineering β-sheet peptide assemblies for biomedical applications. Biomater. Sci., 2016, 4, 365-374.
[17]
Lima, Y-B.; Lee, M. Nanostructures of β-sheet peptides: Steps towards bioactive functional materials. J. Mater. Chem., 2008, 18, 723-727.
[18]
Burkhard, P.; Stetefeld, J.; Strelkov, S.V. Coiled coils: A highly versatile protein folding motif. Trends Cell Biol., 2001, 11, 82-88.
[19]
Moutevelis, E.; Woolfson, D.N. A periodic table of coiled-coil protein structures. J. Mol. Biol., 2009, 385, 726-732.
[20]
Di Lullo, G.A.; Sweeney, S.M.; Korkko, J.; Ala-Kokko, L.; San Antonio, J.D. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem., 2002, 277, 4223-4231.
[21]
Kadler, K.E.; Baldock, C.; Bella, J.; Boot-Handford, R.P. Collagens at a glance. J. Cell Sci., 2007, 120, 1955-1958.
[22]
Van Der Rest, M.; Garrone, R. Collagen family of proteins. FASEB J., 1991, 5, 2814-2823.
[23]
Amdursky, N. Electron transfer across helical peptides. ChemPlusChem, 2015, 80, 1075-1095.
[24]
Dong, H.; Paramonov, S.E.; Hartgerink, J.D. Self-assembly of α-helical coiled coil nanofibers. J. Am. Chem. Soc., 2008, 130, 13691-13695.
[25]
Ryadnov, M.G.; Woolfson, D.N. Nanobiotechnology II: More Concepts and Applications; Wiley, 2007, pp. 19-40.
[26]
Papapostolou, D.; Smith, A.M.; Atkins, E.D.T.; Oliver, S.J.; Ryadnov, M.G.; Serpell, L.C.; Woolfson, D.N. Engineering nanoscale order into a designed protein fiber. Proc. Natl. Acad. Sci. USA, 2007, 104, 10853-10858.
[27]
Ross, J.F.; Bridges, A.; Fletcher, J.M.; Shoemark, D.; Alibhai, D.; Bray, H.E.V.; Beesley, J.L.; Dawson, W.M.; Hodgson, L.R.; Mantell, J.; Verkade, P.; Edge, C.M.; Sessions, R.B.; Tew, D.; Woolfson, D.N. Decorating self-assembled peptide cages with proteins. ACS Nano, 2017, 11, 7901-7914.
[28]
Apostolovic, B.; Danial, M.; Klok, H-A. Coiled coils: Attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Chem. Soc. Rev., 2010, 39, 3541-3575.
[29]
Pechar, M.; Pola, R.; Laga, R.; Ulbrich, K.; Bednárová, L.; Maloń, P.; Sieglová, I.; Král, V.; Fábry, M.; Vanék, O. Coiled coil peptides as universal linkers for the attachment of recombinant proteins to polymer therapeutics. Biomacromolecules, 2011, 12, 3645-3655.
[30]
Jadhav, S.V.; Singh, S.K.; Reja, R.M.; Gopi, H.N. γ-Amino acid mutated α-coiled coils as mild thermal triggers for liposome delivery. Chem. Commun., 2013, 49, 11065-11067.
[31]
Reja, R.M.; Khan, M. Singh, S.K.; Misra, R.; Shiras, A.; Gopi, H.N. pH sensitive coiled coils: A strategy for enhanced liposomal drug delivery. Nanoscale, 2016, 8, 5139-5145.
[32]
Xu, C.; Liu, R.; Mehta, A.K.; Guerrero-Ferreira, R.C.; Wright, E.R.; Dunin-Horkawicz, S.; Morris, K.; Serpell, L.C.; Zuo, X.; Wall, J.S.; Conticello, V.P. Rational design of helical nanotubes from self-assembly of coiled-coil lock washers. J. Am. Chem. Soc., 2013, 135, 15565-15578.
[33]
Luo, T.; Kiick, K.L. Collagen-like peptide bioconjugates. Bioconjug. Chem., 2017, 28, 816-827.
[34]
Tanrikulu, I.C.; Raines, R.T. Optimal interstrand bridges for collagen-like biomaterials. J. Am. Chem. Soc., 2014, 136, 13490-13493.
[35]
Mondal, S.; Gazit, E. The self-assembly of helical peptide building blocks. ChemNanoMat, 2016, 2, 323-332.
[36]
Maity, S.; Jana, P.; Maity, S.K.; Haldar, D. Mesoporous vesicles from supramolecular helical peptide as drug carrier. Soft Matter, 2011, 7, 10174-10181.
[37]
Maity, S.K.; Maity, S.; Jana, P.; Haldar, D. Supramolecular double helix from capped γ-peptide. Chem. Commun., 2012, 48, 711-713.
[38]
Sarkar, R.; Debnath, M.; Maji, K.; Haldar, D. Solvent assisted structural diversity: Supramolecular sheet and double helix of a short aromatic γ-peptide. RSC Advances, 2015, 5, 76257-76262.
[39]
Mándity, I.M.; Monsignori, A.; Fülӧp, L.; Forró, E.; Fülӧp, F. Exploiting aromatic interactions for β-peptide foldamer helix stabilization: a significant design element. Chemistry, 2014, 20, 4591-4597.
[40]
Mándity, I.M.; Fülӧp, L.; Vass, E.; Tóth, G.K.; Martinek, T.A.; Fülӧp, F. Building β-Peptide H10/12 foldamer helices with six-membered cyclic side-chains: Fine-tuning of folding and self-assembly. Org. Lett., 2010, 12, 5584-5587.
[41]
Martinek, T.A.; Hetényi, A.; Fülӧp, L.; Mándity, I.M.; Tóth, G.K.; Dékány, I.; Fülӧp, F. Secondary structure dependent self-assembly of β-peptides into nanosized fibrils and membranes. Angew. Chem. Int. Ed., 2006, 45, 2396-2400.
[42]
Mondal, S.; Adler-Abramovich, L.; Lampel, A.; Bram, Y.; Lipstman, S.; Gazit, E. Formation of functional super-helical assemblies by constrained single heptad repeat. Nat. Commun., 2015, 6, 8615.
[43]
Lee, J.; Han, S.; Lee, J.; Choi, M.; Kim, C. Stimuli-responsive α-helical peptide gatekeepers for mesoporous silica nanocarriers. New J. Chem., 2017, 41, 6969-6972.
[44]
Hartgerink, J.D.; Granja, J.R.; Milligan, R.A.; Ghadiri, M.R. Self-assembling peptide nanotubes. J. Am. Chem. Soc., 1996, 118, 43-50.
[45]
Scanlon, S.; Aggeli, A. Self-assembling peptide nanotubes. Nano Today, 2008, 3, 22-30.
[46]
Seabraa, A.B.; Durán, N. Biological applications of peptides nanotubes: An overview. Peptides, 2013, 39, 47-54.
[47]
Hamley, I.W. Peptide nanotubes. Angew. Chem. Int. Ed., 2014, 53, 6866-6881.
[48]
Hamley, I.W. Peptide fibrillization. Angew. Chem. Int. Ed., 2007, 46, 8128-8147.
[49]
Jadhav, S.V.; Misra, R.; Gopi, H.N. Foldamers to nanotubes: Influence of amino acid side chains in the hierarchical assembly of α,γ4-hybrid peptide helices. Chemistry, 2014, 20, 16523-16528.
[50]
Guha, S.; Drew, M.G.B.; Banerjee, A. Construction of helical nanofibers from self-assembling pseudopeptide building blocks: Modulating the handedness and breaking the helicity. Small, 2008, 4, 1993-2005.
[51]
Mazzier, D.; Carraro, F.; Crisma, M.; Rancan, M.; Toniolo, C.; Moretto, A. A terminally protected dipeptide: From crystal structure and self-assembly, through co-assembly with carbon-based materials, to a ternary catalyst for reduction chemistry in water. Soft Matter, 2016, 12, 238-245.
[52]
Konar, A.D. The unique crystallographic signature of a β-turn mimic nucleated by N-methylated phenylalanine and Aib as corner residue: conformational and self-assembly studies. CrystEngComm, 2013, 15, 10569-10578.
[53]
Konda, M.; Kauffmann, B.; Rasalea, D.B.; Das, A.K. Structural and morphological diversity of self-assembled synthetic γ-amino acid containing peptides. Org. Biomol. Chem., 2016, 14, 4089-4102.
[54]
Banerjee, A.; Maji, S.K.; Drew, M.G.B.; Haldar, D.; Banerjee, A. Supramolecular peptide helix from a novel double turn forming peptide containing a β-amino acid. Tetrahedron Lett., 2003, 44, 699-702.
[55]
Podder, D.; Bera, S.; Debnath, M.; Das, T.; Haldar, D. Formation of toroids by self-assembly of an α–α corner mimetic: Supramolecular cyclization. J. Mater. Chem. B Mater. Biol. Med., 2017, 5, 7583-7590.
[56]
Chassaing, B.; Koren, O.; Goodrich, J.K.; Poole, A.C.; Srinivasan, S.; Ley, R.E.; Gewirtz, A.T. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature, 2015, 519, 92-96.
[57]
Bai, S.; Pappas, C.; Debnath, S.; Frederix, P.W.J.M.; Leckie, J.; Fleming, S.; Ulijn, R.V. Stable emulsions formed by self-assembly of interfacial networks of dipeptide derivatives. ACS Nano, 2014, 8, 7005-7013.
[58]
Scott, G.G.; McKnight, P.J.; Tuttle, T.; Ulijn, R.V. Tripeptide emulsifiers. Adv. Mater., 2016, 28, 1381-1386.
[59]
Dexter, A.F.; Malcolm, A.S.; Middelberg, A.P.J. Reversible active switching of the mechanical properties of a peptide film at a fluid-fluid interface. Nat. Mater., 2006, 5, 502-506.
[60]
Xue, Y.; He, L.; Middelberg, A.P.J.; Mark, A.E.; Poger, D. Determining the structure of interfacial peptide films: Comparing neutron reflectometry and molecular dynamics simulations. Langmuir, 2014, 30, 10080-10089.
[61]
Morikawa, M.; Yoshihara, M.; Endo, T.; Kimizuka, N. Alpha helical polypeptide microcapsules formed by emulsion-templated self-assembly. Chemistry, 2005, 11, 1574-1578.
[62]
Mondal, S.; Varenik, M.; Bloch, D.N.; Atsmon-Raz, Y.; Jacoby, G.; Adler-Abramovich, L.; Shimon, L.J.W.; Beck, R.; Miller, Y.; Regev, O.; Gazit, E. A minimal length rigid helical peptide motif allows rational design of modular surfactants. Nat. Commun., 2017, 8, 14018.
[63]
Tiwari, P.; Biswas, S.; Verma, R.; Sharma, A.; Konar, A.D. Porous biomaterials via side chain-side chain interactions of tyrosine analogue of pyridine carboxamides. Chem. Select., 2018, 3, 262-272.
[64]
Maity, S.; Jana, P.; Maity, S.K.; Kumar, P.; Haldar, D. Conformational heterogeneity, self-assembly, and gas adsorption studies of isomeric hybrid peptides. Cryst. Growth Des., 2012, 12, 422-428.
[65]
Jana, P.; Maity, S.; Maity, S.K.; Haldar, D. A new peptide motif in the formation of supramolecular double helices. Chem. Commun., 2011, 47, 2092-2094.
[66]
Lee, J.; Choe, I.R.; Kim, N-K.; Kim, W-J.; Jang, H-S.; Lee, Y-S.; Nam, K.T. Water-floating giant nanosheets from helical peptide pentamers. ACS Nano, 2016, 10, 8263-8270.
[67]
Malvankar, N.S.; Vargas, M.; Nevin, K.P.; Franks, A.E.; Leang, C.; Kim, B-C.; Inoue, K.; Mester, T.; Covalla, S.F.; Johnson, J.P.; Rotello, V.M.; Lovley, D.L. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol., 2011, 6, 573-579.
[68]
Creasey, R.C.G.; Shingaya, Y.; Nakayama, T. Improved electrical conductance through self-assembly of bioinspired peptides into nanoscale fibers. Mater. Chem. Phys., 2015, 158, 52-59.
[69]
Creasey, R.C.G.; Shingaya, Y.; Nakayama, T. Improved electrical conductance through self-assembly of bioinspired peptides into nanoscale fibers. Mater. Chem. Phys., 2015, 158, 52-59.
[70]
Ing, N.L.; Spencer, R.K.; Luong, S.H.; Nguyen, H.D.; Hochbaum, A.I. Electronic conductivity in biomimetic α-helical peptide nanofibers and gels. ACS Nano, 2018, 12, 2652-2661.

© 2024 Bentham Science Publishers | Privacy Policy