A Review for the Synthesis of Silk Fibroin Nanoparticles with Different Techniques and Their Ability to be Used for Drug Delivery

Author(s): Olga Gianak, George Z. Kyzas, Victoria F. Samanidou*, Eleni A. Deliyanni*.

Journal Name: Current Analytical Chemistry

Volume 15 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Silk fibroin is the main protein of silk, and it has recently been evaluated for drug delivery applications due to its excellent properties. Specifically, silk fibroin exhibits good biocompatibility, biodegradability and low immunogenicity. Fibroin nanoparticles have attracted attention due to their high binding ability to different drugs as well as their ability for controlled drug release. The improvement of the therapeutic efficiency of drug encapsulation is important and depends on the particle size, the chemical structure and the properties of the silk fibroin nanoparticles.

Methods: There is a variety of methods for the preparation of fibroin nanoparticles such as (i) electrospraying and desolvation method, (ii) supercritical fluid technologies, (iii) capillary-microdot technique, (iv) salting out etc. Furthermore, various techniques have been used for the characterization of nanoparticles such as SEM (scanning electron microscopy), TEM (transmission electron microscopy), DLS (dynamic light scattering), Zeta-potential and FTIR (Fourier transform infrared spectroscopy). Different drugs (paclitaxel, curcumin, 5-fluorouracil etc) have been encapsulated in fibroin nanoparticles.

Results: Each separated synthesis method has different advantages such as (i) high yield, (ii) avoid use of toxic solvents, (iii) low cost, (iv) controllable particle size, (v) no organic solvent residue, (vi) simplicity of operation, (vii) small particles size, (viii) homeliness of operation, (ix) restrainable particle size, (x) easy and safe to operate, (xi) no use of organic solvent. Moreover, some major drugs studied are Floxuridine, Fluorouracil, Curcumin, Doxorubicin, Metotrexate, Paclitaxel and Doxorubicin, Horseradish peroxidase. All the above combinations (preparation method-drug) are studied in detail.

Conclusion: Various drugs have been encapsulated successfully in silk fibroin and all of them exhibit a significant release rate. Finally, the encapsulation efficiency and release rate depend on the molecular weight of the drugs and it can be adjusted by controlling the crystallinity and concentration of silk fibroin.

Keywords: Drug delivery, electrospraying and desolvation method, fibroin, nanoparticles, protein of silk, supercritical fluid technologies.

[1]
Mottaghitalab, F.; Farokhi, M.; Shokrgozar, M.A.; Atyabi, F.; Hosseinkhani, H. Silk fibroin nanoparticle as a novel drug delivery system. J. Control. Release, 2015, 206, 161-176.
[2]
Rahimnejad, M.; Mokhtarian, N.; Ghasemi, M. Production of protein nanoparticles for food and drug delivery system. Afr. J. Biotechnol., 2009, 8, 4738-4743.
[3]
Wang, X.; Yucel, T.; Lu, Q.; Hu, X.; Kaplan, D.L. Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials, 2010, 31, 1025-1035.
[4]
Yan, H.B.; Zhang, Y.Q.; Ma, Y.L.; Zhou, L.X. Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. J. Nanopart. Res., 2009, 11, 1937-1946.
[5]
Numata, K.; Kaplan, D.L. Silk-based delivery systems of bioactive molecules. Adv. Drug Deliv. Rev., 2010, 62, 1497-1508.
[6]
Seib, F.P. Silk nanoparticles - an emerging anticancer nanomedicine. AIMS Bioeng., 2017, 4, 239-258.
[7]
Kundu, J.; Chung, Y.I.; Kim, Y.H.; Tae, G.; Kundu, S.C. Silk fibroin nanoparticles for cellular uptake and control release. Int. J. Pharm., 2010, 388, 242-250.
[8]
Xie, M.B.; Li, Y.; Zhao, Z.; Chen, A.Z.; Li, J.S.; Hu, J.Y.; Li, G.; Li, Z. Solubility enhancement of curcumin via supercritical CO2 based silk fibroin carrier. J. Supercrit. Fluids, 2015, 103, 1-9.
[9]
Jahanshahi, M.; Babaei, Z. Protein nanoparticle: A unique system as drug delivery vehicles. Afr. J. Biotechnol., 2008, 7, 4926-4934.
[10]
Hino, T.; Tanimoto, M.; Shimabayashi, S. Change in secondary structure of silk fibroin during preparation of its microspheres by spray-drying and exposure to humid atmosphere. J. Colloid Interface Sci., 2003, 266, 68-73.
[11]
Wang, X.; Wenk, E.; Matsumoto, A.; Meinel, L.; Li, C.; Kaplan, D.L. Silk microspheres for encapsulation and controlled release. J. Control. Release, 2007, 117, 360-370.
[12]
Matsumoto, A.; Chen, J.; Collette, A.L.; Kim, U.J.; Altman, G.H.; Cebe, P.; Kaplan, D.L. Mechanisms of silk fibroin sol-gel transitions. J. Phys. Chem. B, 2006, 110, 21630-21638.
[13]
Wang, X.; Kluge, J.A.; Leisk, G.G.; Kaplan, D.L. Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials, 2008, 29, 1054-1064.
[14]
Yucel, T.; Cebe, P.; Kaplan, D.L. Vortex-induced injectable silk fibroin hydrogels. Biophys. J., 2009, 97, 2044-2050.
[15]
Wang, X.; Kim, H.J.; Xu, P.; Matsumoto, A.; Kaplan, D.L. Biomaterial coatings by stepwise deposition of silk fibroin. Langmuir, 2005, 21, 11335-11341.
[16]
Wang, X.; Hu, X.; Daley, A.; Rabotyagova, O.; Cebe, P.; Kaplan, D.L. Nanolayer biomaterial coatings of silk fibroin for controlled release. J. Control. Release, 2007, 121, 190-199.
[17]
Wang, X.; Zhang, X.; Castellot, J.; Herman, I.; Iafrati, M.; Kaplan, D.L. Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses. Biomaterials, 2008, 29, 894-903.
[18]
Jin, H.J.; Fridrikh, S.V.; Rutledge, G.C.; Kaplan, D.L. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules, 2002, 3, 1233-1239.
[19]
Yu, S.; Yang, W.; Chen, S.; Chen, M.; Liu, Y.; Shao, Z.; Chen, X. Floxuridine-loaded silk fibroin nanospheres. RSC Advances, 2014, 4, 18171-18177.
[20]
Li, H.; Tian, J.; Wu, A.; Wang, J.; Ge, C.; Sun, Z. Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma. Int. J. Nanomedicine, 2016, 11, 4373-4380.
[21]
Wu, P.; Liu, Q.; Li, R.; Wang, J.; Zhen, X.; Yue, G.; Wang, H.; Cui, F.; Wu, F.; Yang, M.; Qian, X.; Yu, L.; Jiang, X.; Liu, B. Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery. ACS Appl. Mater. Interfaces, 2013, 5, 12638-12645.
[22]
Chen, M.; Shao, Z.; Chen, X. Paclitaxel-loaded silk fibroin nanospheres. J. Biomed. Mater. Res. A., 2012, 100 A, 203-210.
[23]
Shi, P.; Goh, J.C.H. Release and cellular acceptance of multiple drugs loaded silk fibroin particles. Int. J. Pharm., 2011, 420, 282-289.
[24]
Lammel, A.S.; Hu, X.; Park, S.H.; Kaplan, D.L.; Scheibel, T.R. Controlling silk fibroin particle features for drug delivery. Biomaterials, 2010, 31, 4583-4591.
[25]
Yan, H.B.; Zhang, Y.Q.; Ma, Y.L.; Zhou, L.X. Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. J. Nanopart. Res., 2009, 11, 1937-1946.
[26]
Tudora, M.R.; Zaharia, C.; Stancu, I.C.; Vasile, E.; Truşcǎ, R.; Cincu, C. Natural silk fibroin micro- and nanoparticles with potential uses in drug delivery systems. UPB Sci. Bull. B. Chem. Mater. Sci., 2013, 75, 43-52.
[27]
Myung, S.J.; Kim, H.S.; Kim, Y.; Chen, P.; Jin, H.J. Fluorescent silk fibroin nanoparticles prepared using a reverse microemulsion. Macromol. Res., 2008, 16, 604-608.
[28]
Subia, B.; Kundu, S.C. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers. Nanotechnology, 2013, 24035103
[29]
Subia, B.; Chandra, S.; Talukdar, S.; Kundu, S.C. Folate conjugated silk fibroin nanocarriers for targeted drug delivery. Integr. Biol., 2014, 6, 203-214.
[30]
Gupta, V.; Aseh, A.; Ríos, C.N.; Aggarwal, B.B.; Mathur, A.B. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int. J. Nanomedicine, 2009, 4, 115-122.
[31]
Tian, Y.; Jiang, X.; Chen, X.; Shao, Z.; Yang, W. Doxorubicin-Loaded Magnetic Silk Fibroin Nanoparticles for Targeted Therapy of Multidrug-Resistant Cancer. Adv. Mater., 2014, 26, 7393-7398.
[32]
Zhao, Z.; Li, Y.; Zhang, Y. Preparation and characterization of Paclitaxel loaded SF/PLLA-PEG-PLLA nanoparticles via solution-enhanced dispersion by supercritical CO2. J. Nanomater., 2015, 2015Article ID 913254
[33]
Cao, T-T.; Zhou, Z-Z.; Zhang, Y-Q. Processing of β-Glucosidase–Silk Fibroin Nanoparticle Bioconjugates and Their Characteristics. Appl. Biochem. Biotechnol., 2014, 173, 544-551.
[34]
Zhang, Y.Q.; Wang, Y.J.; Wang, H.Y.; Zhu, L.; Zhou, Z.Z. Highly efficient processing of silk fibroin nanoparticle-l-asparaginase bioconjugates and their characterization as a drug delivery system. Soft Matter, 2011, 7, 9728-9736.
[35]
Nitta, S.K.; Numata, K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci., 2013, 14, 1629-1654.
[36]
Nagal, A.; Singla, R.K. Applications of silk in drug delivery: Advancement in pharmaceutical dosage forms. Indo. Global J. Pharm. Sci., 2013, 3, 204-211.
[37]
Thirupathama, D.; Savithri, G.; Kavya, S.K. Silk for biomedical application. Res. J. Pharm. Biol. Chem. Sci., 2013, 4, 657-663.
[38]
Jastrzebska, K.; Kucharczyk, K.; Florczak, A.; Dondajewska, E.; Mackiewicz, A.; Kozlowska, D.H. Silk as an innovative biomaterial for cancer therapy. : Review. Rep. Practical Oncol. Radiother., 2014, 20, 87-98.
[39]
Guziewicz, N.; Best, A.; Perez-Ramirez, B.; Kaplan, D.L. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials, 2011, 32, 2642-2650.
[40]
Pritchard, E.M.; Szybala, C.; Boison, D.; Kaplan, D.L. Silk fibroin encapsulated powder reservoirs for sustained release of adenosine. J. Control. Release, 2010, 144, 159-167.
[41]
Chemma, S.K.; Gobin, A.S.; Rhea, R.; Lopez, B.G.; Newman, R.A.; Mathur, A.B. Silk fibroin mediated delivery of liposomal emodin to breast cancer cells. Int. J. Pharm., 2007, 341, 221-229.
[42]
Jastrzebska, K.; Kucharczyk, K.; Florczak, A.; Dondajewska, E.; Mackiewicz, A.; Dams-Kozlowska, H. Silk as an innovative biomaterial for cancer therapy. Rep. Pract. Oncol. Radiother., 2015, 20, 87-98.
[43]
Seib, F.P.; Kaplan, D.L. Doxorubicin-loaded silk films: Drug-silk interactions and in vivo performance in human orthotopic breast cancer. Biomaterials, 2012, 33, 8442-8450.
[44]
Chiu, B.; Coburn, J.; Pilichowska, M.; Holcroft, C.; Seib, F.P.; Charest, A.; Kaplan, D.L. Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model. Br. J. Cancer, 2014, 111, 708-715.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 4
Year: 2019
Page: [339 - 348]
Pages: 10
DOI: 10.2174/1573411014666180917110650
Price: $58

Article Metrics

PDF: 50
HTML: 5