Immune-mediated Cerebellar Ataxias: Practical Guidelines and Therapeutic Challenges

Author(s): Hiroshi Mitoma*, Mario Manto, Christiane S. Hampe.

Journal Name: Current Neuropharmacology

Volume 17 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Immune-mediated cerebellar ataxias (IMCAs), a clinical entity reported for the first time in the 1980s, include gluten ataxia (GA), paraneoplastic cerebellar degenerations (PCDs), antiglutamate decarboxylase 65 (GAD) antibody-associated cerebellar ataxia, post-infectious cerebellitis, and opsoclonus myoclonus syndrome (OMS). These IMCAs share common features with regard to therapeutic approaches. When certain factors trigger immune processes, elimination of the antigen( s) becomes a priority: e.g., gluten-free diet in GA and surgical excision of the primary tumor in PCDs. Furthermore, various immunotherapeutic modalities (e.g., steroids, immunoglobulins, plasmapheresis, immunosuppressants, rituximab) should be considered alone or in combination to prevent the progression of the IMCAs. There is no evidence of significant differences in terms of response and prognosis among the various types of immunotherapies. Treatment introduced at an early stage, when CAs or cerebellar atrophy is mild, is associated with better prognosis. Preservation of the “cerebellar reserve” is necessary for the improvement of CAs and resilience of the cerebellar networks. In this regard, we emphasize the therapeutic principle of “Time is Cerebellum” in IMCAs.

Keywords: Cerebellar ataxias, immune-mediated cerebellar ataxias, prognosis, therapy, treatment, immunotherapy, gluten ataxia, paraneoplastic cerebellar degeneration, anti-GAD65Ab-associated cerebellar ataxia, post-infectious cerebellitis, opsoclonus myoclonus syndrome.

[1]
Hadjivassiliou, M. Immune-mediated acquired ataxias. Handb. Clin. Neurol., 2012, 103, 189-199. [http://dx.doi.org/10.1016/B978-0-444-51892-7.00011-5]. [PMID: 21827889].
[2]
Hadjivassiliou, M.; Grünewald, R.A.; Chattopadhyay, A.K.; Davies-Jones, G.A.; Gibson, A.; Jarratt, J.A.; Kandler, R.H.; Lobo, A.; Powell, T.; Smith, C.M. Clinical, radiological, neurophysiological, and neuropathological characteristics of gluten ataxia. Lancet, 1998, 352(9140), 1582-1585. [http://dx.doi.org/10.1016/S0140-6736(98)05342-2]. [PMID: 9843103].
[3]
Graus, F.; Delattre, J.Y.; Antoine, J.C.; Dalmau, J.; Giometto, B.; Grisold, W.; Honnorat, J.; Smitt, P.S.; Vedeler, Ch.; Verschuuren, J.J.; Vincent, A.; Voltz, R. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J. Neurol. Neurosurg. Psychiatry, 2004, 75(8), 1135-1140. [http://dx.doi.org/10.1136/jnnp. 2003.034447]. [PMID: 15258215].
[4]
Dalmau, J.; Rosenfeld, M.R. Paraneoplastic syndromes of the CNS. Lancet Neurol., 2008, 7(4), 327-340. [http://dx.doi.org/10.1016/ S1474-4422(08)70060-7]. [PMID: 18339348].
[5]
Ducray, F.; Demarquay, G.; Graus, F.; Decullier, E.; Antoine, J.C.; Giometto, B.; Psimaras, D.; Delattre, J.Y.; Carpentier, A.F.; Honnorat, J. Seronegative paraneoplastic cerebellar degeneration: the PNS Euronetwork experience. Eur. J. Neurol., 2014, 21(5), 731-735. [http://dx.doi.org/10.1111/ene.12368]. [PMID: 24471811].
[6]
Jarius, S.; Wildemann, B. Medusa-head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 1: Anti-mGluR1, anti-Homer-3, anti-Sj/ITPR1 and anti-CARP VII. J. Neuroinflammation, 2015.
[7]
Jarius, S.; Wildemann, B. Medusa-head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: Anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ ARHGAP26 and anti-VGCC. J. Neuroinflammation, 2015.
[8]
Jarius, S.; Wildemann, B. Medusa-head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook. J. Neuroinflammation, 2015.
[9]
Honnorat, J.; Saiz, A.; Giometto, B.; Vincent, A.; Brieva, L.; de Andres, C.; Maestre, J.; Fabien, N.; Vighetto, A.; Casamitjana, R.; Thivolet, C.; Tavolato, B.; Antoine, J.; Trouillas, P.; Graus, F. Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients. Arch. Neurol., 2001, 58(2), 225-230. [http:// dx.doi.org/10.1001/archneur.58.2.225]. [PMID: 11176960].
[10]
Mitoma, H.; Adhikari, K.; Aeschlimann, D.; Chattopadhyay, P.; Hadjivassiliou, M.; Hampe, C.S.; Honnorat, J.; Joubert, B.; Kakei, S.; Lee, J.; Manto, M.; Matsunaga, A.; Mizusawa, H.; Nanri, K.; Shanmugarajah, P.; Yoneda, M.; Yuki, N. Consensus Paper: Neuroimmune mechanisms of cerebellar ataxias. Cerebellum, 2016, 15(2), 213-232. [http://dx.doi.org/10.1007/s12311-015-0664-x]. [PMID: 25823827].
[11]
Mitoma, H.; Hadjivassiliou, M.; Honnorat, J. Guidelines for treatment of immune-mediated cerebellar ataxias. Cerebellum Ataxias, 2015, 2, 14. [http://dx.doi.org/10.1186/s40673-015-0034-y]. [PMID: 26561527].
[12]
Mitoma, H.; Manto, M. The physiological basis of therapies for cerebellar ataxias. Ther. Adv. Neurol. Disorder., 2016, 9(5), 396-413. [http://dx.doi.org/10.1177/1756285616648940]. [PMID: 27582895].
[13]
Mitoma, H.; Manto, M.; Hampe, C.S. Pathogenic roles of glutamic acid decarboxylase 65 autoantibodies in cerebellar ataxias. J. Immunol. Res., 2017, 2017, 2913297. [http://dx.doi.org/10.1155/2017/ 2913297]. [PMID: 28386570].
[14]
Mitoma, H.; Manto, M.; Hampe, C.S. Immune-mediated cerebellar ataxias: from bench to bedside. Cerebellum Ataxias, 2017, 4, 16. [http://dx.doi.org/10.1186/s40673-017-0073-7]. [PMID: 28944066].
[15]
Hadjivassiliou, M.; Martindale, J.; Shanmugarajah, P.; Grünewald, R.A.; Sarrigiannis, P.G.; Beauchamp, N.; Garrard, K.; Warburton, R.; Sanders, D.S.; Friend, D.; Duty, S.; Taylor, J.; Hoggard, N. Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients. J. Neurol. Neurosurg. Psychiatry, 2017, 88(4), 301-309. [http://dx.doi.org/10.1136/jnnp-2016-314863]. [PMID: 27965395].
[16]
Hadjivassiliou, M. Advances in therapies of cerebellar disorders: Immune-mediated ataxias. CNS Neurol. Disord. Drug Targets, 2017. [http://dx.doi.org/10.2174/1871527317666171221110548]. [PMID: 29268693].
[17]
Charcot, J.M. Séance du 14 mars. CR Soc. Biol. (Paris), 1868, 20, 13.
[18]
Brouwer, B. Beitrag zur Kenntnis der chronischen diffusen Kleinhirnerkrankungen. Neurol. Zentralbl., 1919, 38, 674-682.
[19]
Hadjivassiliou, M.; Boscolo, S.; Tongiorgi, E.; Grünewald, R.A.; Sharrack, B.; Sanders, D.S.; Woodroofe, N.; Davies-Jones, G.A. Cerebellar ataxia as a possible organ-specific autoimmune disease. Mov. Disord., 2008, 23(10), 1370-1377. [http://dx.doi.org/10.1002/ mds.22129]. [PMID: 18546342].
[20]
Shaw, P.J.; Walls, T.J.; Newman, P.K.; Cleland, P.G.; Cartlidge, N.E. Hashimoto’s encephalopathy: a steroid-responsive disorder associated with high anti-thyroid antibody titers--report of 5 cases. Neurology, 1991, 41(2 (Pt 1)), 228-233. [http://dx.doi.org/10.1212/ WNL.41.2_Part_1.228]. [PMID: 1992366].
[21]
Matsunaga, A.; Ikawa, M.; Fujii, A.; Nakamoto, Y.; Kuriyama, M.; Yoneda, M. Hashimoto’s encephalopathy as a treatable adult-onset cerebellar ataxia mimicking spinocerebellar degeneration. Eur. Neurol., 2013, 69(1), 14-20. [http://dx.doi.org/10.1159/000342217]. [PMID: 23128836].
[22]
Mitoma, H.; Yoneda, M.; Saitow, F.; Suzuki, H.; Matsunaga, A.; Ikawa, M.; Mizusawa, H. Presynaptic dysfunction caused by CSF from a patient with ataxic form of Hashimoto’s encephalopathy. Neurol. Clin. Neurosci., 2014. [http://dx.doi.org/10.1111/ ncn3.105].
[23]
Hilberath, J.M.; Schmidt, H.; Wolf, G.K. Steroid-responsive encephalopathy associated with autoimmune thyroiditis (SREAT): case report of reversible coma and status epilepticus in an adolescent patient and review of the literature. Eur. J. Pediatr., 2014, 173(10), 1263-1273. [http://dx.doi.org/10.1007/s00431-014-2391-6]. [PMID: 25084973].
[24]
Melzer, N.; Golombeck, K.S.; Gross, C.C.; Meuth, S.G.; Wiendl, H. Cytotoxic CD8+ T cells and CD138+ plasma cells prevail in cerebrospinal fluid in non-paraneoplastic cerebellar ataxia with contactin-associated protein-2 antibodies. J. Neuroinflammation, 2012, 9, 160. [http://dx.doi.org/10.1186/1742-2094-9-160]. [PMID: 22759321].
[25]
Miske, R.; Gross, C.C.; Scharf, M.; Golombeck, K.S.; Hartwig, M.; Bhatia, U. Neurochondrin is a neural target antigen in autoimmune cerebellar degeneration. Neurol. Neuroimmunol. Neuroinflamm., 2016, 3, e255. [http://dx.doi.org/10.1212/NXI.0000000000000255]. [PMID: 27458598].
[26]
Rostami, A.; Ciric, B. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J. Neurol. Sci., 2013, 333(1-2), 76-87. [http://dx.doi.org/10.1016/j.jns.2013.03.002]. [PMID: 23578791].
[27]
Danikowski, K.M.; Jayaraman, S.; Prabhakar, B.S. Regulatory T cells in multiple sclerosis and myasthenia gravis. J. Neuroinflammation, 2017, 14(1), 117. [http://dx.doi.org/10.1186/s12974-017-0892-8]. [PMID: 28599652].
[28]
Friese, M.A.; Fugger, L. Pathogenic CD8(+) T cells in multiple sclerosis. Ann. Neurol., 2009, 66(2), 132-141. [http://dx.doi.org/ 10.1002/ana.21744]. [PMID: 19743458].
[29]
Costa, M.; Saiz, A.; Casamitjana, R.; Castañer, M.F.; Sanmartí, A.; Graus, F.; Jaraquemada, D. T-cell reactivity to glutamic acid decarboxylase in stiff-man syndrome and cerebellar ataxia associated with polyendocrine autoimmunity. Clin. Exp. Immunol., 2002, 129(3), 471-478. [http://dx.doi.org/10.1046/j.1365-2249.2002.01931. x]. [PMID: 12197888].
[30]
Iorio, R.; Damato, V.; Evoli, A.; Gessi, M.; Gaudino, S.; Di Lazzaro, V.; Spagni, G.; Sluijs, J.A.; Hol, E.M. Clinical and immunological characteristics of the spectrum of GFAP autoimmunity: a case series of 22 patients. J. Neurol. Neurosurg. Psychiatry, 2018, 89(2), 138-146. [http://dx.doi.org/10.1136/jnnp-2017-316583]. [PMID: 28951498].
[31]
Vojdani, A. A Potential Link between Environmental Triggers and Autoimmunity. Autoimmune Dis., 2014, 2014, 437231. [http://dx. doi.org/10.1155/2014/437231]. [PMID: 24688790].
[32]
Zaenker, P.; Gray, E.S.; Ziman, M.R. Autoantibody Production in Cancer--The Humoral Immune Response toward Autologous Antigens in Cancer Patients. Autoimmun. Rev., 2016, 15(5), 477-483. [http://dx.doi.org/10.1016/j.autrev.2016.01.017]. [PMID: 26827909].
[33]
Bei, R.; Masuelli, L.; Palumbo, C.; Modesti, M.; Modesti, A. A common repertoire of autoantibodies is shared by cancer and autoimmune disease patients: Inflammation in their induction and impact on tumor growth. Cancer Lett., 2009, 281(1), 8-23. [http:// dx.doi.org/10.1016/j.canlet.2008.11.009]. [PMID: 19091462].
[34]
Matzinger, P. The danger model: a renewed sense of self. Science, 2002, 296(5566), 301-305. [http://dx.doi.org/10.1126/science. 1071059]. [PMID: 11951032].
[35]
de Vlam, K.; De Keyser, F.; Verbruggen, G.; Vandenbossche, M.; Vanneuville, B.; D’Haese, D.; Veys, E.M. Detection and identification of antinuclear autoantibodies in the serum of normal blood donors. Clin. Exp. Rheumatol., 1993, 11(4), 393-397. [PMID: 8403584].
[36]
Satoh, M.; Chan, E.K.; Ho, L.A.; Rose, K.M.; Parks, C.G.; Cohn, R.D.; Jusko, T.A.; Walker, N.J.; Germolec, D.R.; Whitt, I.Z.; Crockett, P.W.; Pauley, B.A.; Chan, J.Y.; Ross, S.J.; Birnbaum, L.S.; Zeldin, D.C.; Miller, F.W. Prevalence and sociodemographic correlates of antinuclear antibodies in the United States. Arthritis Rheum., 2012, 64(7), 2319-2327. [http://dx.doi.org/10.1002/art. 34380]. [PMID: 22237992].
[37]
Sørgjerd, E.P.; Thorsby, P.M.; Torjesen, P.A.; Skorpen, F.; Kvaløy, K.; Grill, V. Presence of anti-GAD in a non-diabetic population of adults; time dynamics and clinical influence: results from the HUNT study. BMJ Open Diabetes Res. Care, 2015, 3(1), e000076. [http://dx.doi.org/10.1136/bmjdrc-2014-000076]. [PMID: 26157582].
[38]
Caglar, E.; Ugurlu, S.; Ozenoglu, A.; Can, G.; Kadioglu, P.; Dobrucali, A. Autoantibody frequency in celiac disease. Clinics (São Paulo), 2009, 64(12), 1195-1200. [http://dx.doi.org/10.1590/S1807-59322009001200009]. [PMID: 20037707].
[39]
Hampe, C.S.; Maitland, M.E.; Gilliam, L.K.; Phan, T.H.; Sweet, I.R.; Radtke, J.R.; Bota, V.; Ransom, B.R.; Hirsch, I.B. High titers of autoantibodies to glutamate decarboxylase in type 1 diabetes patients: epitope analysis and inhibition of enzyme activity. Endocr. Pract., 2013, 19(4), 663-668. [http://dx.doi.org/10.4158/EP12318. OR]. [PMID: 23512385].
[40]
Chéramy, M.; Hampe, C.S.; Ludvigsson, J.; Casas, R. Characteristics of in-vitro phenotypes of glutamic acid decarboxylase 65 autoantibodies in high-titre individuals. Clin. Exp. Immunol., 2013, 171(3), 247-254. [http://dx.doi.org/10.1111/cei.12026]. [PMID: 23379430].
[41]
Nakamura, Y.; Nakajima, H.; Hosokawa, T.; Yamane, K.; Ishida, S.; Kimura, F. Acute cerebellar ataxia associated with anti-glutamic acid decarboxylase antibodies mimicking miller fisher syndrome. Intern. Med., 2018, 57(2), 269-271. [http://dx.doi.org/10.2169/ internalmedicine.9190-17]. [PMID: 29093402].
[42]
Saiz, A.; Blanco, Y.; Sabater, L.; González, F.; Bataller, L.; Casamitjana, R.; Ramió-Torrentà, L.; Graus, F. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain, 2008, 131(Pt 10), 2553-2563. [http://dx.doi.org/10.1093/brain/awn183]. [PMID: 18687732].
[43]
Takenoshita, H.; Shizuka-Ikeda, M.; Mitoma, H.; Song, S.; Harigaya, Y.; Igeta, Y.; Yaguchi, M.; Ishida, K.; Shoji, M.; Tanaka, M.; Mizusawa, H.; Okamoto, K. Presynaptic inhibition of cerebellar GABAergic transmission by glutamate decarboxylase autoantibodies in progressive cerebellar ataxia. J. Neurol. Neurosurg. Psychiatry, 2001, 70(3), 386-389. [http://dx.doi.org/10.1136/jnnp.70.3.386]. [PMID: 11181864].
[44]
Manto, M.U.; Hampe, C.S.; Rogemond, V.; Honnorat, J. Respective implications of glutamate decarboxylase antibodies in stiff person syndrome and cerebellar ataxia. Orphanet J. Rare Dis., 2011, 6, 3. [http://dx.doi.org/10.1186/1750-1172-6-3]. [PMID: 21294897].
[45]
Hill, K.E.; Clawson, S.A.; Rose, J.W.; Carlson, N.G.; Greenlee, J.E. Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics. J. Neuroinflammation, 2009, 6, 31. [http://dx.doi.org/10.1186/1742-2094-6-31]. [PMID: 19874605].
[46]
Alarcon-Segovia, D.; Ruiz-Argüelles, A.; Llorente, L. Broken dogma: penetration of autoantibodies into living cells. Immunol. Today, 1996, 17(4), 163-164. [PMID: 8871346].
[47]
Greenlee, J.E.; Clawson, S.A.; Hill, K.E.; Wood, B.L.; Tsunoda, I.; Carlson, N.G. Purkinje cell death after uptake of anti-Yo antibodies in cerebellar slice cultures. J. Neuropathol. Exp. Neurol., 2010, 69(10), 997-1007. [http://dx.doi.org/10.1097/NEN.0b013e3181 f0c82b]. [PMID: 20838245].
[48]
Greenlee, J.E.; Clawson, S.A.; Hill, K.E.; Wood, B.; Clardy, S.L.; Tsunoda, I.; Carlson, N.G. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers. PLoS One, 2015, 10(4), e0123446. [http://dx.doi.org/10. 1371/journal.pone.0123446]. [PMID: 25885452].
[49]
Greenlee, J.E.; Burns, J.B.; Rose, J.W.; Jaeckle, K.A.; Clawson, S. Uptake of systemically administered human anticerebellar antibody by rat Purkinje cells following blood-brain barrier disruption. Acta Neuropathol., 1995, 89(4), 341-345. [http://dx.doi.org/10.1007/ BF00309627]. [PMID: 7610765].
[50]
Borges, L.F.; Busis, N.A. Intraneuronal accumulation of myeloma proteins. Arch. Neurol., 1985, 42(7), 690-694. [http://dx.doi.org/ 10.1001/archneur.1985.04060070084021]. [PMID: 3925934].
[51]
Fabian, R.H.; Ritchie, T.C. Intraneuronal IgG in the central nervous system. J. Neurol. Sci., 1986, 73(3), 257-267. [http://dx.doi.org/10. 1016/0022-510X(86)90150-4]. [PMID: 3522806].
[52]
Fishman, P.S.; Farrand, D.A.; Kristt, D.A. Internalization of plasma proteins by cerebellar Purkinje cells. J. Neurol. Sci., 1990, 100(1-2), 43-49. [http://dx.doi.org/10.1016/0022-510X(90)90011-B]. [PMID: 1708409].
[53]
Graus, F.; Illa, I.; Agusti, M.; Ribalta, T.; Cruz-Sanchez, F.; Juarez, C. Effect of intraventricular injection of an anti-Purkinje cell antibody (anti-Yo) in a guinea pig model. J. Neurol. Sci., 1991, 106(1), 82-87. [http://dx.doi.org/10.1016/0022-510X(91)90198-G]. [PMID: 1779243].
[54]
Hampe, C.S.; Petrosini, L.; De Bartolo, P.; Caporali, P.; Cutuli, D.; Laricchiuta, D.; Foti, F.; Radtke, J.R.; Vidova, V.; Honnorat, J.; Manto, M. Monoclonal antibodies to 65kDa glutamate decarboxylase induce epitope specific effects on motor and cognitive functions in rats. Orphanet J. Rare Dis., 2013, 8, 82. [http://dx.doi. org/10.1186/1750-1172-8-82]. [PMID: 23738610].
[55]
Vega-Flores, G.; Rubio, S.E.; Jurado-Parras, M.T.; Gómez-Climent, M.Á.; Hampe, C.S.; Manto, M.; Soriano, E.; Pascual, M.; Gruart, A.; Delgado-García, J.M. The GABAergic septohippocampal pathway is directly involved in internal processes related to operant reward learning. Cereb. Cortex, 2014, 24(8), 2093-2107. [http://dx.doi.org/10.1093/cercor/bht060]. [PMID: 23479403].
[56]
Manto, M.; Honnorat, J.; Hampe, C.S.; Guerra-Narbona, R.; López-Ramos, J.C.; Delgado-García, J.M.; Saitow, F.; Suzuki, H.; Yanagawa, Y.; Mizusawa, H.; Mitoma, H. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions. Front. Behav. Neurosci., 2015, 9, 78. [http:// dx.doi.org/10.3389/fnbeh.2015.00078]. [PMID: 25870548].
[57]
Hadjivassiliou, M.; Davies-Jones, G.A.B.; Sanders, D.S.; Grünewald, R.A. Dietary treatment of gluten ataxia. J. Neurol. Neurosurg. Psychiatry, 2003, 74(9), 1221-1224. [http://dx.doi.org/ 10.1136/jnnp.74.9.1221]. [PMID: 12933922].
[58]
Souayah, N.; Chin, R.L.; Brannagan, T.H.; Latov, N.; Green, P.H.R.; Kokoszka, A.; Sander, H.W. Effect of intravenous immunoglobulin on cerebellar ataxia and neuropathic pain associated with celiac disease. Eur. J. Neurol., 2008, 15(12), 1300-1303. [http://dx.doi.org/10.1111/j.1468-1331.2008.02305.x]. [PMID: 19049545].
[59]
Hadjivassiliou, M.; Grünewald, R.A.; Davies-Jones, G.A.B. Gluten sensitivity as a neurological illness. J. Neurol. Neurosurg. Psychiatry, 2002, 72(5), 560-563. [http://dx.doi.org/10.1136/jnnp.72.5.560]. [PMID: 11971034].
[60]
Hadjivassiliou, M.; Sanders, D.S.; Woodroofe, N.; Williamson, C.; Grünewald, R.A. Gluten ataxia. Cerebellum, 2008, 7(3), 494-498. [http://dx.doi.org/10.1007/s12311-008-0052-x]. [PMID: 18787912].
[61]
Hadjivassiliou, M.; Grünewald, R.A.; Sanders, D.S.; Shanmugarajah, P.; Hoggard, N. Effect of gluten-free diet on cerebellar MR spectroscopy in gluten ataxia. Neurology, 2017, 89(7), 705-709. [http://dx.doi.org/10.1212/WNL.0000000000004237]. [PMID: 28724585].
[62]
Sarrigiannis, P.G.; Hoggard, N.; Aeschlimann, D.; Sanders, D.S.; Grünewald, R.A.; Unwin, Z.C.; Hadjivassiliou, M. Myoclonus ataxia and refractory coeliac disease. Cerebellum Ataxias, 2014, 1, 11. [http://dx.doi.org/10.1186/2053-8871-1-11]. [PMID: 26331035].
[63]
Schuppan, D.; Junker, Y.; Barisani, D. Celiac disease: from pathogenesis to novel therapies. Gastroenterology, 2009, 137(6), 1912-1933. [http://dx.doi.org/10.1053/j.gastro.2009.09.008]. [PMID: 19766641].
[64]
Thomas, H.; Beck, K.; Adamczyk, M.; Aeschlimann, P.; Langley, M.; Oita, R.C.; Thiebach, L.; Hils, M.; Aeschlimann, D. Transglutaminase 6: a protein associated with central nervous system development and motor function. Amino Acids, 2013, 44(1), 161-177. [http://dx.doi.org/10.1007/s00726-011-1091-z]. [PMID: 21984379].
[65]
Cervio, E.; Volta, U.; Verri, M.; Boschi, F.; Pastoris, O.; Granito, A.; Barbara, G.; Parisi, C.; Felicani, C.; Tonini, M.; De Giorgio, R. Sera of patients with celiac disease and neurologic disorders evoke a mitochondrial-dependent apoptosis in vitro. Gastroenterology, 2007, 133(1), 195-206. [http://dx.doi.org/10.1053/j.gastro.2007. 04.070]. [PMID: 17631142].
[66]
Boscolo, S.; Lorenzon, A.; Sblattero, D.; Florian, F.; Stebel, M.; Marzari, R.; Not, T.; Aeschlimann, D.; Ventura, A.; Hadjivassiliou, M.; Tongiorgi, E. Anti transglutaminase antibodies cause ataxia in mice. PLoS One, 2010, 5(3), e9698. [http://dx.doi.org/10.1371/ journal.pone.0009698]. [PMID: 20300628].
[67]
Iversen, R.; Di Niro, R.; Stamnaes, J.; Lundin, K.E.; Wilson, P.C.; Sollid, L.M. Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on the surface of cells. J. Immunol., 2013, 190(12), 5981-5991. [http://dx.doi.org/10.4049/jimmunol.1300183]. [PMID: 23690478].
[68]
Ricotta, M.; Iannuzzi, M.; Vivo, G.D.; Gentile, V. Physio-pathological roles of transglutaminase-catalyzed reactions. World J. Biol. Chem., 2010, 1(5), 181-187. [http://dx.doi.org/10.4331/wjbc. v1.i5.181]. [PMID: 21541002].
[69]
Höftberger, R.; Rosenfeld, M.R.; Dalmau, J. Update on neurological paraneoplastic syndromes. Curr. Opin. Oncol., 2015, 27(6), 489-495. [http://dx.doi.org/10.1097/CCO.0000000000000222]. [PMID: 26335665].
[70]
Demarquay, G.; Honnorat, J. Clinical presentation of immune-mediated cerebellar ataxia. Rev. Neurol. (Paris), 2011, 167(5), 408-417. [http://dx.doi.org/10.1016/j.neurol.2010.07.032]. [PMID: 21055784].
[71]
Voltz, R. Paraneoplastic neurological syndromes: an update on diagnosis, pathogenesis, and therapy. Lancet Neurol., 2002, 1(5), 294-305. [http://dx.doi.org/10.1016/S1474-4422(02)00135-7]. [PMID: 12849427].
[72]
Peterson, K.; Rosenblum, M.K.; Kotanides, H.; Posner, J.B. Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology, 1992, 42(10), 1931-1937. [http://dx.doi.org/10.1212/WNL.42.10.1931]. [PMID: 1407575].
[73]
Rojas, I.; Graus, F.; Keime-Guibert, F.; Reñé, R.; Delattre, J.Y.; Ramón, J.M.; Dalmau, J.; Posner, J.B. Long-term clinical outcome of paraneoplastic cerebellar degeneration and anti-Yo antibodies. Neurology, 2000, 55(5), 713-715. [http://dx.doi.org/10.1212/WNL. 55.5.713]. [PMID: 10980743].
[74]
Candler, P.M.; Hart, P.E.; Barnett, M.; Weil, R.; Rees, J.H. A follow up study of patients with paraneoplastic neurological disease in the United Kingdom. J. Neurol. Neurosurg. Psychiatry, 2004, 75(10), 1411-1415. [http://dx.doi.org/10.1136/jnnp.2003.025171]. [PMID: 15377687].
[75]
Keime-Guibert, F.; Graus, F.; Fleury, A.; René, R.; Honnorat, J.; Broet, P.; Delattre, J.Y. Treatment of paraneoplastic neurological syndromes with antineuronal antibodies (Anti-Hu, anti-Yo) with a combination of immunoglobulins, cyclophosphamide, and methylprednisolone. J. Neurol. Neurosurg. Psychiatry, 2000, 68(4), 479-482. [http://dx.doi.org/10.1136/jnnp.68.4.479]. [PMID: 10727484].
[76]
Shams’ili, S.; Grefkens, J.; de Leeuw, B.; van den Bent, M.; Hooijkaas, H.; van der Holt, B.; Vecht, C.; Sillevis Smitt, P. Paraneoplastic cerebellar degeneration associated with antineuronal antibodies: analysis of 50 patients. Brain, 2003, 126(Pt 6), 1409-1418. [http://dx.doi.org/10.1093/brain/awg133]. [PMID: 12764061].
[77]
Moll, J.W.B.; Henzen-Logmans, S.C.; Van der Meché, F.G.; Vecht, C.H. Early diagnosis and intravenous immune globulin therapy in paraneoplastic cerebellar degeneration. J. Neurol. Neurosurg. Psychiatry, 1993, 56(1), 112. [http://dx.doi.org/10.1136/ jnnp.56.1.112]. [PMID: 8429313].
[78]
Stark, E.; Wurster, U.; Patzold, U.; Sailer, M.; Haas, J. Immunological and clinical response to immunosuppressive treatment in paraneoplastic cerebellar degeneration. Arch. Neurol., 1995, 52(8), 814-818. [http://dx.doi.org/10.1001/archneur.1995.00540320098016]. [PMID: 7639633].
[79]
David, Y.B.; Warner, E.; Levitan, M.; Sutton, D.M.; Malkin, M.G.; Dalmau, J.O. Autoimmune paraneoplastic cerebellar degeneration in ovarian carcinoma patients treated with plasmapheresis and immunoglobulin. A case report. Cancer, 1996, 78(10), 2153-2156. [http://dx.doi.org/10.1002/(SICI)1097-0142(19961115)78:10<2153:AID-CNCR16>3.0.CO;2-Y]. [PMID: 8918408].
[80]
Blaes, F.; Strittmatter, M.; Merkelbach, S.; Jost, V.; Klotz, M.; Schimrigk, K.; Hamann, G.F. Intravenous immunoglobulins in the therapy of paraneoplastic neurological disorders. J. Neurol., 1999, 246(4), 299-303. [http://dx.doi.org/10.1007/s004150050350]. [PMID: 10367699].
[81]
Batocchi, A.P.; De Rosa, G.; Evoli, A.; Tonali, P.; Greggi, S.; Scambia, G.; Salerno, G.; Tonali, P. Positive response to therapy in a patient with a seropositive paraneoplastic cerebellar degeneration and an endometrioid carcinoma of the vesicovaginal septum. J. Neurol. Neurosurg. Psychiatry, 1999, 67(3), 412-413. [http://dx. doi.org/10.1136/jnnp.67.3.412]. [PMID: 10577031].
[82]
Mowzoon, N.; Bradley, W.G. Successful immunosuppressant therapy of severe progressive cerebellar degeneration and sensory neuropathy: a case report. J. Neurol. Sci., 2000, 178(1), 63-65. [http:// dx.doi.org/10.1016/S0022-510X(00)00353-1]. [PMID: 11018251].
[83]
Shams’ili, S.; de Beukelaar, J.; Gratama, J.W.; Hooijkaas, H.; van den Bent, M.; van ’t Veer, M.; Sillevis Smitt, P. An uncontrolled trial of rituximab for antibody associated paraneoplastic neurological syndromes. J. Neurol., 2006, 253(1), 16-20. [http://dx.doi.org/ 10.1007/s00415-005-0882-0]. [PMID: 16444604].
[84]
Taniguchi, Y.; Tanji, C.; Kawai, T.; Saito, H.; Marubayashi, S.; Yorioka, N. A case report of plasmapheresis in paraneoplastic cerebellar ataxia associated with anti-Tr antibody. Ther. Apher. Dial., 2006, 10(1), 90-93. [http://dx.doi.org/10.1111/j.1744-9987. 2006.00348.x]. [PMID: 16556143].
[85]
Geromin, A.; Candoni, A.; Marcon, G.; Ferrari, S.; Sperotto, A.; De Luca, S.; Fanin, R. Paraneoplastic cerebellar degeneration associated with anti-neuronal anti-Tr antibodies in a patient with Hodgkin’s disease. Leuk. Lymphoma, 2006, 47(9), 1960-1963. [http:// dx.doi.org/10.1080/10428190600678082]. [PMID: 17065013].
[86]
Phuphanich, S.; Brock, C. Neurologic improvement after high-dose intravenous immunoglobulin therapy in patients with paraneoplastic cerebellar degeneration associated with anti-Purkinje cell antibody. J. Neurooncol., 2007, 81(1), 67-69. [http://dx.doi.org/10. 1007/s11060-006-9198-x]. [PMID: 16773214].
[87]
Thöne, J.; Hohaus, A.; Lamprecht, S.; Bickel, A.; Erbguth, F. Effective immunosuppressant therapy with cyclophosphamide and corticosteroids in paraneoplastic cerebellar degeneration. J. Neurol. Sci., 2008, 272(1-2), 171-173. [http://dx.doi.org/10.1016/j.jns.2008. 04.020]. [PMID: 18632117].
[88]
Esposito, M.; Penza, P.; Orefice, G.; Pagano, A.; Parente, E.; Abbadessa, A.; Bonavita, V. Successful treatment of paraneoplastic cerebellar degeneration with Rituximab. J. Neurooncol., 2008, 86(3), 363-364. [http://dx.doi.org/10.1007/s11060-007-9479-z]. [PMID: 17924058].
[89]
Schessl, J.; Schuberth, M.; Reilich, P.; Schneiderat, P.; Strigl-Pill, N.; Walter, M.C.; Schlotter-Weigel, B.; Schoser, B. Long-term efficiency of intravenously administered immunoglobulin in anti-Yo syndrome with paraneoplastic cerebellar degeneration. J. Neurol., 2011, 258(5), 946-947. [http://dx.doi.org/10.1007/s00415-010-5859-y]. [PMID: 21174114].
[90]
Shimazu, Y.; Minakawa, E.N.; Nishikori, M.; Ihara, M.; Hashi, Y.; Matsuyama, H.; Hishizawa, M.; Yoshida, S.; Kitano, T.; Kondo, T.; Ishikawa, T.; Takahashi, R.; Takaori-Kondo, A. A case of follicular lymphoma associated with paraneoplastic cerebellar degeneration. Intern. Med., 2012, 51(11), 1387-1392. [http://dx.doi.org/ 10.2169/internalmedicine.51.7019]. [PMID: 22687848].
[91]
Yeo, K.K.; Walter, A.W.; Miller, R.E.; Dalmau, J. Rituximab as potential therapy for paraneoplastic cerebellar degeneration in pediatric Hodgkin disease. Pediatr. Blood Cancer, 2012, 58(6), 986-987. [http://dx.doi.org/10.1002/pbc.23314]. [PMID: 22532986].
[92]
Lakshmaiah, K.C.; Viveka, B.K.; Anil, K.N.; Saini, M.L.; Sinha, S.; Saini, K.S. Gastric diffuse large B cell lymphoma presenting as paraneoplastic cerebellar degeneration: case report and review of literature. J. Egypt. Natl. Canc. Inst., 2013, 25(4), 231-235. [http://dx.doi.org/10.1016/j.jnci.2013.07.001]. [PMID: 24207096].
[93]
Bhargava, A.; Bhushan, B.; Kasundra, G.M.; Shubhakaran, K.; Pujar, G.S.; Banakar, B. Response to abdominal hysterectomy with bilateral salpingo-oophorectomy in postmenopausal woman with anti-yo antibody mediated paraneoplastic cerebellar degeneration. Ann. Indian Acad. Neurol., 2014, 17(3), 355-357. [http://dx.doi.org/ 10.4103/0972-2327.138528]. [PMID: 25221413].
[94]
Mitchell, A.N.; Bakhos, C.T.; Zimmerman, E.A. Anti-Ri-associated paraneoplastic brainstem cerebellar syndrome with coexisting limbic encephalitis in a patient with mixed large cell neuroendocrine lung carcinoma. J. Clin. Neurosci., 2015, 22(2), 421-423. [http://dx.doi.org/10.1016/j.jocn.2014.06.103]. [PMID: 25443085].
[95]
Zhu, Y.; Chen, S.; Chen, S.; Song, J.; Chen, F.; Guo, H.; Shang, Z.; Wang, Y.; Zhou, C.; Shi, B. An uncommon manifestation of paraneoplastic cerebellar degeneration in a patient with high grade urothelial, carcinoma with squamous differentiation: A case report and literature review. BMC Cancer, 2016, 16, 324. [http://dx. doi.org/10.1186/s12885-016-2349-3]. [PMID: 27209351].
[96]
Gungor, S.; Kilic, B.; Arslan, M.; Ozgen, U.; Dalmau, J. Hodgkin’s lymphoma associated with paraneoplastic cerebellar degeneration in children: a case report and review of the literature. Childs Nerv. Syst., 2017, 33(3), 509-512. [http://dx.doi.org/10.1007/s00381-016-3284-y]. [PMID: 27796550].
[97]
Berzero, G.; Karantoni, E.; Dehais, C.; Ducray, F.; Thomas, L.; Picard, G. Early intravenous immunoglobulin treatment in paraneoplastic neurological syndromes with onconeural antibodies, J. Neurol. Neurosurg. Psychiatry, 2017. pii: jnnp-2017-316904
[98]
Lancaster, E.; Dalmau, J. Neuronal autoantigens--pathogenesis, associated disorders and antibody testing. Nat. Rev. Neurol., 2012, 8(7), 380-390. [http://dx.doi.org/10.1038/nrneurol.2012.99]. [PMID: 22710628].
[99]
Tanaka, K.; Tanaka, M.; Igarashi, S.; Onodera, O.; Miyatake, T.; Tsuji, S. Trial to establish an animal model of paraneoplastic cerebellar degeneration with anti-Yo antibody. 2. Passive transfer of murine mononuclear cells activated with recombinant Yo protein to paraneoplastic cerebellar degeneration lymphocytes in severe combined immunodeficiency mice. Clin. Neurol. Neurosurg., 1995, 97(1), 101-105. [http://dx.doi.org/10.1016/0303-8467(95)00006-6]. [PMID: 7788964].
[100]
Sillevis Smitt, P.A.; Manley, G.T.; Posner, J.B. Immunization with the paraneoplastic encephalomyelitis antigen HuD does not cause neurologic disease in mice. Neurology, 1995, 45(10), 1873-1878. [http://dx.doi.org/10.1212/WNL.45.10.1873]. [PMID: 7477985].
[101]
Carpentier, A.F.; Rosenfeld, M.R.; Delattre, J.Y.; Whalen, R.G.; Posner, J.B.; Dalmau, J. DNA vaccination with HuD inhibits growth of a neuroblastoma in mice. Clin. Cancer Res., 1998, 4(11), 2819-2824. [PMID: 9829748].
[102]
Albert, M.L.; Austin, L.M.; Darnell, R.B. Detection and treatment of activated T cells in the cerebrospinal fluid of patients with paraneoplastic cerebellar degeneration. Ann. Neurol., 2000, 47(1), 9-17. [http://dx.doi.org/10.1002/1531-8249(200001)47:1<9:AID-ANA5 >3.0.CO;2-I]. [PMID: 10632096].
[103]
Benyahia, B.; Liblau, R.; Merle-Béral, H.; Tourani, J.M.; Dalmau, J.; Delattre, J.Y. Cell-mediated autoimmunity in paraneoplastic neurological syndromes with anti-Hu antibodies. Ann. Neurol., 1999, 45(2), 162-167. [http://dx.doi.org/10.1002/1531-8249(199902) 45:2<162:AID-ANA5>3.0.CO;2-R]. [PMID: 9989617].
[104]
Rousseau, A.; Benyahia, B.; Dalmau, J.; Connan, F.; Guillet, J.G.; Delattre, J.Y.; Choppin, J. T cell response to Hu-D peptides in patients with anti-Hu syndrome. J. Neurooncol., 2005, 71(3), 231-236. [http://dx.doi.org/10.1007/s11060-004-1723-1]. [PMID: 15735910].
[105]
Venkatraman, A.; Opal, P. Paraneoplastic cerebellar degeneration with anti-Yo antibodies - a review. Ann. Clin. Transl. Neurol., 2016, 3(8), 655-663. [http://dx.doi.org/10.1002/acn3.328]. [PMID: 27606347].
[106]
Gebauer, C.; Pignolet, B.; Yshii, L.; Mauré, E.; Bauer, J.; Liblau, R. CD4+ and CD8+ T cells are both needed to induce paraneoplastic neurological disease in a mouse model. OncoImmunology, 2016, 6(2), e1260212. [http://dx.doi.org/10.1080/2162402X.2016.1260212]. [PMID: 28344867].
[107]
Okano, H.J.; Park, W.Y.; Corradi, J.P.; Darnell, R.B. The cytoplasmic Purkinje onconeural antigen cdr2 down-regulates c-Myc function: implications for neuronal and tumor cell survival. Genes Dev., 1999, 13(16), 2087-2097. [http://dx.doi.org/10.1101/gad.13. 16.2087]. [PMID: 10465786].
[108]
Sakai, K.; Kitagawa, Y.; Saiki, S.; Saiki, M.; Hirose, G. Effect of a paraneoplastic cerebellar degeneration-associated neural protein on B-myb promoter activity. Neurobiol. Dis., 2004, 15(3), 529-533. [http://dx.doi.org/10.1016/j.nbd.2003.11.003]. [PMID: 15056460].
[109]
Fukuda, T.; Motomura, M.; Nakao, Y.; Shiraishi, H.; Yoshimura, T.; Iwanaga, K.; Tsujihata, M.; Eguchi, K. Reduction of P/Q-type calcium channels in the postmortem cerebellum of paraneoplastic cerebellar degeneration with Lambert-Eaton myasthenic syndrome. Ann. Neurol., 2003, 53(1), 21-28. [http://dx.doi.org/10.1002/ana.10392]. [PMID: 12509844].
[110]
Liao, Y.J.; Safa, P.; Chen, Y.R.; Sobel, R.A.; Boyden, E.S.; Tsien, R.W. Anti-Ca2+ channel antibody attenuates Ca2+ currents and mimics cerebellar ataxia in vivo. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2705-2710. [http://dx.doi.org/10.1073/pnas.0710771105]. [PMID: 18272482].
[111]
Ariño, H.; Gresa-Arribas, N.; Blanco, Y.; Martínez-Hernández, E.; Sabater, L.; Petit-Pedrol, M.; Rouco, I.; Bataller, L.; Dalmau, J.O.; Saiz, A.; Graus, F. Cerebellar ataxia and glutamic acid decarboxylase antibodies: immunologic profile and long-term effect of immunotherapy. JAMA Neurol., 2014, 71(8), 1009-1016. [http://dx. doi.org/10.1001/jamaneurol.2014.1011]. [PMID: 24934144].
[112]
Ishida, K.; Mitoma, H.; Song, S.Y.; Uchihara, T.; Inaba, A.; Eguchi, S.; Kobayashi, T.; Mizusawa, H. Selective suppression of cerebellar GABAergic transmission by an autoantibody to glutamic acid decarboxylase. Ann. Neurol., 1999, 46(2), 263-267. [http://dx. doi.org/10.1002/1531-8249(199908)46:2<263:AID-ANA19>3.0.CO;2-0]. [PMID: 10443895].
[113]
Abele, M.; Weller, M.; Mescheriakov, S.; Bürk, K.; Dichgans, J.; Klockgether, T. Cerebellar ataxia with glutamic acid decarboxylase autoantibodies. Neurology, 1999, 52(4), 857-859. [http://dx.doi. org/10.1212/WNL.52.4.857]. [PMID: 10078741].
[114]
Kono, S.; Miyajima, H.; Sugimoto, M.; Suzuki, Y.; Takahashi, Y.; Hishida, A. Stiff-person syndrome associated with cerebellar ataxia and high glutamic acid decarboxylase antibody titer. Intern. Med., 2001, 40(9), 968-971. [http://dx.doi.org/10.2169/internalmedicine. 40.968]. [PMID: 11579968].
[115]
Rüegg, S.; Stahl, M.; Bühlmann, M.; Dupont, A.; Lyrer, P.A.; Humbel, R.L.; Steck, A.J. Cerebellar degeneration and polyglandular autoimmune syndrome with anti-glutamic acid decarboxylase antibodies. J. Neurol., 2002, 249(3), 348-350. [http://dx.doi.org/10. 1007/s004150200019]. [PMID: 11993540].
[116]
Matsumoto, S.; Kusuhara, T.; Nakajima, M.; Ouma, S.; Takahashi, M.; Yamada, T. Acute attacks and brain stem signs in a patient with glutamic acid decarboxylase autoantibodies. J. Neurol. Neurosurg. Psychiatry, 2002, 73(3), 345-346. [http://dx.doi.org/10.1136/ jnnp.73.3.345]. [PMID: 12185181].
[117]
Lauria, G.; Pareyson, D.; Pitzolu, M.G.; Bazzigaluppi, E. Excellent response to steroid treatment in anti-GAD cerebellar ataxia. Lancet Neurol., 2003, 2(10), 634-635. [http://dx.doi.org/10.1016/S1474-4422(03)00534-9]. [PMID: 14505586].
[118]
Birand, B.; Cabre, P.; Bonnan, M.; Olindo, S.; Smadja, D. [A new case of cerebellar ataxia with anti-GAD antibodies treated with corticosteroids and initially seronegative]. Rev. Med. Interne, 2006, 27(8), 616-619. [http://dx.doi.org/10.1016/j.revmed.2006.04.006]. [PMID: 16797794].
[119]
McFarland, N.R.; Login, I.S.; Vernon, S.; Burns, T.M. Improvement with corticosteroids and azathioprine in GAD65-associated cerebellar ataxia. Neurology, 2006, 67(7), 1308-1309. [http://dx. doi.org/10.1212/01.wnl.0000238389.83574.be]. [PMID: 17030779].
[120]
Kim, J.Y.; Chung, E.J.; Kim, J.H.; Jung, K.Y.; Lee, W.Y. Response to steroid treatment in anti-glutamic acid decarboxylase antibody-associated cerebellar ataxia, stiff person syndrome and polyendocrinopathy. Mov. Disord., 2006, 21(12), 2263-2264. [http://dx.doi. org/10.1002/mds.21041]. [PMID: 17013903].
[121]
Rakocevic, G.; Raju, R.; Semino-Mora, C.; Dalakas, M.C. Stiff person syndrome with cerebellar disease and high-titer anti-GAD antibodies. Neurology, 2006, 67(6), 1068-1070. [http://dx.doi.org/ 10.1212/01.wnl.0000237558.83349.d0]. [PMID: 17000981].
[122]
Vulliemoz, S.; Vanini, G.; Truffert, A.; Chizzolini, C.; Seeck, M. Epilepsy and cerebellar ataxia associated with anti-glutamic acid decarboxylase antibodies. J. Neurol. Neurosurg. Psychiatry, 2007, 78(2), 187-189. [http://dx.doi.org/10.1136/jnnp.2006.089268]. [PMID: 17229747].
[123]
Chang, C.C.; Eggers, S.D.; Johnson, J.K.; Haman, A.; Miller, B.L.; Geschwind, M.D. Anti-GAD antibody cerebellar ataxia mimicking Creutzfeldt-Jakob disease. Clin. Neurol. Neurosurg., 2007, 109(1), 54-57. [http://dx.doi.org/10.1016/j.clineuro.2006.01.009]. [PMID: 16621241].
[124]
Bonnan, M.; Cabre, P.; Olindo, S.; Signate, A.; Saint-Vil, M.; Smadja, D. [Steroid treatment in four cases of anti-GAD cerebellar ataxia]. Rev. Neurol. (Paris), 2008, 164(5), 427-433 [http://dx.doi. org/10.1016/j.neurol.2008.02.032]. [PMID: 18555874].
[125]
Georgieva, Z.; Parton, M. Cerebellar ataxia and epilepsy with anti-GAD antibodies: treatment with IVIG and plasmapheresis. BMJ Case Rep., 2014, 2014, bcr2013202314. [http://dx.doi.org/10.1136/ bcr-2013-202314]. [PMID: 24419643].
[126]
Planche, V.; Marques, A.; Ulla, M.; Ruivard, M.; Durif, F. Intravenous immunoglobulin and rituximab for cerebellar ataxia with glutamic acid decarboxylase autoantibodies. Cerebellum, 2014, 13(3), 318-322. [http://dx.doi.org/10.1007/s12311-013-0534-3]. [PMID: 24218114].
[127]
Kuchling, J.; Shababi-Klein, J.; Nümann, A.; Gerischer, L.M.; Harms, L.; Prüss, H. GAD antibody-associated late-onset cerebellar ataxia in two female siblings. Case Rep. Neurol., 2014, 6(3), 264-270. [http://dx.doi.org/10.1159/000369784]. [PMID: 25566057].
[128]
Fouka, P.; Alexopoulos, H.; Akrivou, S.; Trohatou, O.; Politis, P.K.; Dalakas, M.C. GAD65 epitope mapping and search for novel autoantibodies in GAD-associated neurological disorders. J. Neuroimmunol., 2015, 281, 73-77. [http://dx.doi.org/10.1016/j.jneuroim. 2015.03.009]. [PMID: 25867471].
[129]
Ishida, K.; Mitoma, H.; Wada, Y.; Oka, T.; Shibahara, J.; Saito, Y.; Murayama, S.; Mizusawa, H. Selective loss of Purkinje cells in a patient with anti-glutamic acid decarboxylase antibody-associated cerebellar ataxia. J. Neurol. Neurosurg. Psychiatry, 2007, 78(2), 190-192. [http://dx.doi.org/10.1136/jnnp.2006.091116]. [PMID: 17119008].
[130]
Mitoma, H.; Song, S.Y.; Ishida, K.; Yamakuni, T.; Kobayashi, T.; Mizusawa, H. Presynaptic impairment of cerebellar inhibitory synapses by an autoantibody to glutamate decarboxylase. J. Neurol. Sci., 2000, 175(1), 40-44. [http://dx.doi.org/10.1016/S0022-510X (00)00272-0]. [PMID: 10785255].
[131]
Mitoma, H.; Ishida, K.; Shizuka-Ikeda, M.; Mizusawa, H. Dual impairment of GABAA- and GABAB-receptor-mediated synaptic responses by autoantibodies to glutamic acid decarboxylase. J. Neurol. Sci., 2003, 208(1-2), 51-56. [http://dx.doi.org/10.1016/ S0022-510X(02)00423-9]. [PMID: 12639725].
[132]
Ishida, K.; Mitoma, H.; Mizusawa, H. Reversibility of cerebellar GABAergic synapse impairment induced by anti-glutamic acid decarboxylase autoantibodies. J. Neurol. Sci., 2008, 271(1-2), 186-190. [http://dx.doi.org/10.1016/j.jns.2008.04.019]. [PMID: 18534624].
[133]
Reetz, A.; Solimena, M.; Matteoli, M.; Folli, F.; Takei, K.; De Camilli, P. GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J., 1991, 10(5), 1275-1284. [http://dx.doi.org/10.1002/ j.1460-2075.1991.tb08069.x]. [PMID: 2022191].
[134]
Christgau, S.; Aanstoot, H.J.; Schierbeck, H.; Begley, K.; Tullin, S.; Hejnaes, K.; Baekkeskov, S. Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. J. Cell Biol., 1992, 118(2), 309-320. [http://dx.doi.org/10.1083/jcb.118.2.309]. [PMID: 1321158].
[135]
Ishikawa, T.; Tomatsu, S.; Tsunoda, Y.; Lee, J.; Hoffman, D.S.; Kakei, S. Releasing dentate nucleus cells from Purkinje cell inhibition generates output from the cerebrocerebellum. PLoS One, 2014, 9(10), e108774. [http://dx.doi.org/10.1371/journal.pone.0108774]. [PMID: 25279763].
[136]
Manto, M.U.; Laute, M.A.; Aguera, M.; Rogemond, V.; Pandolfo, M.; Honnorat, J. Effects of anti-glutamic acid decarboxylase antibodies associated with neurological diseases. Ann. Neurol., 2007, 61(6), 544-551. [http://dx.doi.org/10.1002/ana.21123]. [PMID: 17600364].
[137]
Rakocevic, G.; Floeter, M.K. Autoimmune stiff person syndrome and related myelopathies: understanding of electrophysiological and immunological processes. Muscle Nerve, 2012, 45(5), 623-634. [http://dx.doi.org/10.1002/mus.23234]. [PMID: 22499087].
[138]
Blumkin, L.; Pranzatelli, M.R. Acquired ataxias, infectious and para-infectious. Handb. Clin. Neurol., 2012, 103, 137-146. [http://dx.doi.org/10.1016/B978-0-444-51892-7.00007-3]. [PMID: 21827885].
[139]
Sivaswamy, L. Approach to acute ataxia in childhood: diagnosis and evaluation. Pediatr. Ann., 2014, 43(4), 153-159. [http://dx.doi. org/10.3928/00904481-20140325-13]. [PMID: 24716559].
[140]
Sawaishi, Y.; Takada, G. Acute cerebellitis. Cerebellum, 2002, 1(3), 223-228. [http://dx.doi.org/10.1080/14734220260418457]. [PMID: 12879984].
[141]
Klockgether, T.; Döller, G.; Wüllner, U.; Petersen, D.; Dichgans, J. Cerebellar encephalitis in adults. J. Neurol., 1993, 240(1), 17-20. [http://dx.doi.org/10.1007/BF00838440]. [PMID: 8380845].
[142]
Connolly, A.M.; Dodson, W.E.; Prensky, A.L.; Rust, R.S. Course and outcome of acute cerebellar ataxia. Ann. Neurol., 1994, 35(6), 673-679. [http://dx.doi.org/10.1002/ana.410350607]. [PMID: 8210223].
[143]
Hayashi, T.; Ichiyama, T.; Kobayashi, K. A case of acute cerebellar ataxia with an MRI abnormality. Brain Dev., 1994, 16, 488-490. [PMID: 7695002].
[144]
Ito, H.; Sayama, S.; Irie, S.; Kanazawa, N.; Saito, T.; Kowa, H.; Haga, S.; Ikeda, K. Antineuronal antibodies in acute cerebellar ataxia following Epstein-Barr virus infection. Neurology, 1994, 44(8), 1506-1507. [http://dx.doi.org/10.1212/WNL.44.8.1506]. [PMID: 8058157].
[145]
Armangué, T.; Sabater, L.; Torres-Vega, E.; Martínez-Hernández, E.; Ariño, H.; Petit-Pedrol, M.; Planagumà, J.; Bataller, L.; Dalmau, J.; Graus, F. Clinical and immunological features of opsoclonus-myoclonus syndrome in the era of neuronal cell surface antibodies. JAMA Neurol., 2016, 73(4), 417-424. [http://dx.doi.org/ 10.1001/jamaneurol.2015.4607]. [PMID: 26856612].
[146]
Klaas, J.P.; Ahlskog, J.E.; Pittock, S.J.; Matsumoto, J.Y.; Aksamit, A.J.; Bartleson, J.D.; Kumar, R.; McEvoy, K.F.; McKeon, A. Adult-onset opsoclonus-myoclonus syndrome. Arch. Neurol., 2012, 69(12), 1598-1607. [http://dx.doi.org/10.1001/archneurol.2012.1173]. [PMID: 22986354].
[147]
Bataller, L.; Graus, F.; Saiz, A.; Vilchez, J.J. Clinical outcome in adult onset idiopathic or paraneoplastic opsoclonus-myoclonus. Brain, 2001, 124(Pt 2), 437-443. [http://dx.doi.org/10.1093/brain/ 124.2.437]. [PMID: 11157570].
[148]
Pranzatelli, M.R.; Tate, E.D.; Swan, J.A.; Travelstead, A.L.; Colliver, J.A.; Verhulst, S.J.; Crosley, C.J.; Graf, W.D.; Joseph, S.A.; Kelfer, H.M.; Raju, G.P. B cell depletion therapy for new-onset opsoclonus-myoclonus. Mov. Disord., 2010, 25(2), 238-242. [http://dx.doi.org/10.1002/mds.22941]. [PMID: 20063398].
[149]
Pranzatelli, M.R.; Travelstead, A.L.; Tate, E.D.; Allison, T.J.; Moticka, E.J.; Franz, D.N.; Nigro, M.A.; Parke, J.T.; Stumpf, D.A.; Verhulst, S.J. B- and T-cell markers in opsoclonus-myoclonus syndrome: immunophenotyping of CSF lymphocytes. Neurology, 2004, 62(9), 1526-1532. [http://dx.doi.org/10.1212/WNL.62.9 1526]. [PMID: 15136676].
[150]
Young, C.A.; MacKenzie, J.M.; Chadwick, D.W.; Williams, I.R. Opsoclonus-myoclonus syndrome: an autopsy study of three cases. Eur. J. Med., 1993, 2(4), 239-241. [PMID: 8261078].
[151]
Mitoma, H.; Orimo, S.; Sodeyama, N.; Tamaki, M. Paraneoplastic opsoclonus-myoclonus syndrome and neurofibrosarcoma. Eur. Neurol., 1996, 36(5), 322. [PMID: 8864716].
[152]
Wong, A.M.F.; Musallam, S.; Tomlinson, R.D.; Shannon, P.; Sharpe, J.A. Opsoclonus in three dimensions: oculographic, neuropathologic and modelling correlates. J. Neurol. Sci., 2001, 189(1-2), 71-81. [http://dx.doi.org/10.1016/S0022-510X(01)00564-0]. [PMID: 11535236].
[153]
Chekroud, A.M.; Anand, G.; Yong, J.; Pike, M.; Bridge, H. Altered functional brain connectivity in children and young people with opsoclonus-myoclonus syndrome. Dev. Med. Child Neurol., 2017, 59(1), 98-104. [http://dx.doi.org/10.1111/dmcn.13262]. [PMID: 27658927].
[154]
Ugawa, Y.; Uesaka, Y.; Terao, Y.; Hanajima, R.; Kanazawa, I. Magnetic stimulation over the cerebellum in humans. Ann. Neurol., 1995, 37(6), 703-713. [http://dx.doi.org/10.1002/ana.410370603]. [PMID: 7778843].
[155]
Ferrucci, R.; Bocci, T.; Cortese, F.; Ruggiero, F.; Priori, A. Cerebellar transcranial direct current stimulation in neurological disease. Cerebellum Ataxias, 2016, 3(1), 16. [http://dx.doi.org/10. 1186/s40673-016-0054-2]. [PMID: 27595007].
[156]
Ito, M. Cerebellar circuitry as a neuronal machine. Prog. Neurobiol., 2006, 78(3-5), 272-303. [http://dx.doi.org/10.1016/j.pneurobio. 2006.02.006]. [PMID: 16759785].
[157]
Voogd, J.; Glickstein, M. The anatomy of the cerebellum. Trends Neurosci., 1988, 2, 305-371. [PMID: 9735944].
[158]
D’Angelo, E.; Casali, S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front. Neural Circuits, 2013, 6, 116. [http://dx.doi.org/10.3389/ fncir.2012.00116]. [PMID: 23335884].
[159]
Manto, M.; Bower, J.M.; Conforto, A.B.; Delgado-García, J.M.; da Guarda, S.N.; Gerwig, M.; Habas, C.; Hagura, N.; Ivry, R.B.; Mariën, P.; Molinari, M.; Naito, E.; Nowak, D.A.; Oulad Ben Taib, N.; Pelisson, D.; Tesche, C.D.; Tilikete, C.; Timmann, D. Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on cerebellar involvement in movement. Cerebellum, 2012, 11(2), 457-487. [http://dx.doi.org/10.1007/s12311-011-0331-9]. [PMID: 22161499].
[160]
Kawato, M.; Furukawa, K.; Suzuki, R. A hierarchical neural-network model for control and learning of voluntary movement. Biol. Cybern., 1987, 57(3), 169-185. [http://dx.doi.org/10.1007/ BF00364149]. [PMID: 3676355].
[161]
Schonewille, M.; Gao, Z.; Boele, H.J.; Veloz, M.F.; Amerika, W.E.; Simek, A.A.; De Jeu, M.T.; Steinberg, J.P.; Takamiya, K.; Hoebeek, F.E.; Linden, D.J.; Huganir, R.L.; De Zeeuw, C.I. Reevaluating the role of LTD in cerebellar motor learning. Neuron, 2011, 70(1), 43-50. [http://dx.doi.org/10.1016/j.neuron.2011.02.044]. [PMID: 21482355].
[162]
Wu, H.S.; Sugihara, I.; Shinoda, Y. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J. Comp. Neurol., 1999, 411(1), 97-118. [http://dx.doi.org/10.1002/(SICI)1096-9861(19990816)411:1 <97:AID-CNE8>3.0.CO;2-O]. [PMID: 10404110].
[163]
Ekerot, C.F.; Jörntell, H. Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre-specific. Eur. J. Neurosci., 2001, 13(7), 1303-1310. [http://dx.doi.org/10.1046/j.0953-816x.2001.01499.x]. [PMID: 11298790].
[164]
Colin, F.; Ris, L.; Godaux, E. Neuroanatomy of the cerebellum. The cerebellum and its disorders; Manto, M; Pandolfo, M., Ed.; Cambridge University Press: Cambridge, 2002, pp. 6-29.
[165]
Suzumura, A. Neuron-microglia interaction in neuroinflammation. Curr. Protein Pept. Sci., 2013, 14(1), 16-20. [http://dx.doi.org/10. 2174/1389203711314010004]. [PMID: 23544747].
[166]
Domercq, M.; Sánchez-Gómez, M.V.; Sherwin, C.; Etxebarria, E.; Fern, R.; Matute, C. System xc- and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes. J. Immunol., 2007, 178(10), 6549-6556. [http://dx.doi.org/10.4049/jimmunol. 178.10.6549]. [PMID: 17475885].
[167]
Mandolesi, G.; Musella, A.; Gentile, A.; Grasselli, G.; Haji, N.; Sepman, H.; Fresegna, D.; Bullitta, S.; De Vito, F.; Musumeci, G.; Di Sanza, C.; Strata, P.; Centonze, D. Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J. Neurosci., 2013, 33(29), 12105-12121. [http:// dx.doi.org/10.1523/JNEUROSCI.5369-12.2013]. [PMID: 23864696].
[168]
Olmos, G.; Lladó, J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm., 2014, 2014, 861231. [http://dx.doi.org/10.1155/2014/861231]. [PMID: 24966471].
[169]
Yuste, J.E.; Tarragon, E.; Campuzano, C.M.; Ros-Bernal, F. Implications of glial nitric oxide in neurodegenerative diseases. Front. Cell. Neurosci., 2015, 9, 322. [http://dx.doi.org/10.3389/fncel. 2015.00322]. [PMID: 26347610].
[170]
Fujikawa, D.G. The role of excitotoxic programmed necrosis in acute brain injury. Comput. Struct. Biotechnol. J., 2015, 13, 212-221. [http://dx.doi.org/10.1016/j.csbj.2015.03.004]. [PMID: 25893083].
[171]
Chopra, R.; Shakkottai, V.G. The role for alterations in neuronal activity in the pathogenesis of polyglutamine repeat disorders. Neurotherapeutics, 2014, 11(4), 751-763. [http://dx.doi.org/10.1007/ s13311-014-0289-7]. [PMID: 24986674].
[172]
Watson, L.M.; Wong, M.M.; Becker, E.B. Induced pluripotent stem cell technology for modelling and therapy of cerebellar ataxia. Open Biol., 2015, 5(7), 150056. [http://dx.doi.org/10.1098/rsob. 150056]. [PMID: 26136256].
[173]
Mitoma, H.; Manto, M.; Hampe, C.S. Time is cerebellum. Cerebellum, 2018, 17(4), 387-391. [http://dx.doi.org/10.1007/s12311-018-0925-6]. [PMID: 29460203].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 1
Year: 2019
Page: [33 - 58]
Pages: 26
DOI: 10.2174/1570159X16666180917105033
Price: $58

Article Metrics

PDF: 44
HTML: 4