Encapsulation of Reactive Nanoparticles of Aluminum, Magnesium, Zinc, Titanium, or Boron within Polymers for Energetic Applications

Author(s): Wenhui Zeng , Calvin O. Nyapete , Alexander H.H. Benziger , Paul A. Jelliss* , Steven W. Buckner* .

Journal Name: Current Applied Polymer Science

Volume 3 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: There is increasing academic and industrial interest in fabricating reactive metal and metalloid nanoparticles for a number of energetics applications.

Objective: Because of inherent thermodynamic instability, the greatest challenge for producing such metal nanoparticles is to kinetically stabilize their high surface areas toward reactive atmospheric constituents. Such stabilization can effectively produce nanocomposite materials that retain their high energy content or other useful properties with a respectable shelf-life. The primary focus is to summarize methods of synthesis and characterization of these energetically valuable nanoparticles.

Method and Results: A popular and convenient method to passivate and protect reactive metal nanoparticles is to either graft pre-assembled polymer molecules to the nanoparticle surface or use the reactive nanoparticle surface to initiate and propagate oligomer or polymer growth.

Conclusion: Reactive nanoparticles composed of aluminum, magnesium, zinc, titanium, or boron may be effectively passivated, capped, and protected by a variety of organic polymers. Such treatment mitigates degradation due to atmospheric reaction, while retaining the unique properties associated with the metal-polymer nanocomposites.

Keywords: Encapsulation, metalloid, nanoparticle, passivation, polymer, reactive metal.

[1]
Dubois C, Lafleur PG, Roy C, Brousseau P, Stowe RA. Polymer-grafted metal nanoparticles for fuel applications. J Propuls Power 2007; 23(4): 651-8.
[2]
Glassman I, Yetter RA. Combustion of nonvolatile fuels.InCombustion. 4th ed. Burlington: Academic Press 2008; pp. 495-550.
[3]
Yetter RA, Risha GA, Son SF. Metal particle combustion and nanotechnology. Proc Combust Inst 2009; 32: 1819-38.
[4]
Kim DW, Kim KT, Min TS, Kim KJ, Kim SH. Improved energetic-behaviors of spontaneously surface-mediated Al particles. Sci Rep-UK 2017; 7: 4659.
[5]
Cox JD, Wagman DD, Medvedev VA. In CODATA key values for thermodynamics. New York: Hemisphere Pub. Corp. 1989.
[6]
Berner MK, Zarko VE, Talawar MB. Nanoparticles of energetic materials: Synthesis and properties. Combust Explo Shock 2013; 49(6): 625-47.
[7]
Mench MM, Kuo KK, Yeh CL, Lu YC. Comparison of thermal behavior of regular and ultra-fine aluminum powders (Alex) made from plasma explosion process. Combust Sci Technol 1998; 135(1-6): 269-92.
[8]
Thatai S, Khurana P, Boken J, Prasad S, Kumar D. Nanoparticles and core-shell nanocomposite based new generation water remediation materials and analytical techniques: A review. Microchem J 2014; 116: 62-76.
[9]
Chen YN, Egan GC, Wan JY, et al. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat Commun 2016; 7: 12332.
[10]
Wang J, Qiao ZQ, Yang YT, et al. Core-shell Al-polytetrafluoroethylene (PTFE) configurations to enhance reaction kinetics and energy performance for nanoenergetic materials. Chem-Eur J 2016; 22(1): 279-84.
[11]
Tang Y, Kong CD, Zong YC, Li SQ, Zhuo JK, Yao Q. Combustion of aluminum nanoparticle agglomerates: From mild oxidation to microexplosion. P Combust Inst 2017; 36(2): 2325-32.
[12]
Jouet RJ, Warren AD, Rosenberg DM, Bellitto VJ, Park K, Zachariah MR. Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids. Chem Mater 2005; 17(11): 2987-96.
[13]
Fernando KAS, Smith MJ, Harruff BA, Lewis WK, Guliants EA, Bunker CE. Sonochemically assisted thermal decomposition of alane N,N-dimethylethylamine with titanium (IV) isopropoxide in the presence of oleic acid to yield air-stable and size-selective aluminum core-shell nanoparticles. J Phys Chem C 2009; 113(2): 500-3.
[14]
Fogliazza M, Sicard L, Decorse P, Chevillot-Biraud A, Mangeney C, Pinson J. Powerful surface chemistry approach for the grafting of alkyl multi layers on aluminum nanoparticles. Langmuir 2015; 31(22): 6092-8.
[15]
Foley TJ, Johnson CE, Higa KT. Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chem Mater 2005; 17(16): 4086-91.
[16]
Gray JE, Luan B. Protective coatings on magnesium and its alloys - a critical review. J Alloys Compd 2002; 336(1): 88-113.
[17]
Natarajan S, Sivan V, Tennyson PG, Kiran VR. Protective coatings on magnesium and its alloys: A critical review. Corr Prev Control 2004; 51(4): 142-63.
[18]
Chung SW, Guliants EA, Bunker CE, et al. Capping and passivation of aluminum nanoparticles using alkyl-substituted epoxides. Langmuir 2009; 25(16): 8883-7.
[19]
Jelliss PA, Buckner SW, Chung SW, Patel A, Guliants EA, Bunker CE. The use of 1,2-epoxyhexane as a passivating agent for core-shell aluminum nanoparticles with very high active aluminum content. Solid State Sci 2013; 23: 8-12.
[20]
Hammerstroem DW, Burgers MA, Chung SW, et al. Aluminum nanoparticles capped by polymerization of alkyl-substituted epoxides: Ratio-dependent stability and particle size. Inorg Chem 2011; 50(11): 5054-9.
[21]
Chung SW, Guliants EA, Bunker CE, Jelliss PA, Buckner SW. Size-dependent nanoparticle reaction enthalpy: Oxidation of aluminum nanoparticles. J Phys Chem Solids 2011; 72(6): 719-24.
[22]
Jelliss PA, Patel A, Thomas BJ, et al. Polymerization passivation strategies for the stabilization of energetic aluminum nanomaterials. Nanotech 2013: Advanced Materials, CNTs, Particles. Films Compos 2013; 1: 358-61.
[23]
Jelliss PA, Thomas BJ, Patel A. Polymerization passivation strategies for the stabilization of energetic aluminum nanomaterials. Int J Chem 2014; 3: 122-31.
[24]
Thomas BJ, Bunker CE, Guliants EA, et al. Synthesis of aluminum nanoparticles capped with copolymerizable epoxides. J Nanopart Res 2013; 15(6): 1729.
[25]
Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 2010; 35(1-2): 278-301.
[26]
Shahravan A, Desai T, Matsoukas T. Passivation of aluminum nanoparticles by plasma-enhanced chemical vapor deposition for energetic nanomaterials. ACS Appl Mater Inter 2014; 6(10): 7942-7.
[27]
Patel A, Becic J, Buckner SW, Jelliss PA. Reactive aluminum metal nanoparticles within a photodegradable poly(methyl methacrylate) matrix. Chem Phys Lett 2014; 591: 268-72.
[28]
Zeng WH, Buckner SW, Jelliss PA. Poly(methyl methacrylate) as an environmentally responsive capping material for aluminum nanoparticles. ACS Omega 2017; 2(5): 2034-40.
[29]
Madhankumar A, Nagarajan S, Rajendran N, Nishimura T. EIS evaluation of protective performance and surface characterization of epoxy coating with aluminum nanoparticles after wet and dry corrosion test. J Solid State Electr 2012; 16(6): 2085-93.
[30]
Nishimura T, Raman V. Corrosion prevention of aluminum nanoparticles by a polyurethane coating. Materials 2014; 7(6): 4710-22.
[31]
Nishimura T, Raman V. Epoxy polymer coating to prevent the corrosion of aluminum nanoparticles. Polym Adv Technol 2016; 27(6): 712-7.
[32]
Haber JA, Buhro WE. Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; facile room-temperature grain growth. J Am Chem Soc 1998; 120(42): 10847-55.
[33]
Ghanta SR, Muralidharan K. Solution phase chemical synthesis of nano aluminium particles stabilized in poly(vinylpyrrolidone) and poly(methylmethacrylate) matrices. Nanoscale 2010; 2(6): 976-80.
[34]
Ghanta SR, Muralidharan K. Chemical synthesis of aluminum nanoparticles. J Nanopart Res 2013; 15(6): 1715.
[35]
Gottapu S, Padhi SK, Krishna MG, Muralidharan K. Poly(vinylpyrrolidone) stabilized aluminum nanoparticles obtained by the reaction of SiCl4 with LiAlH4. New J Chem 2015; 39(7): 5203-7.
[36]
Esmaeili B, Chaouki J, Dubois C. Nanoparticle encapsulation by a polymer via in situ polymerization in supercritical conditions. Polym Eng Sci 2012; 52(3): 637-42.
[37]
Atmane YA, Sicard L, Lamouri A, et al. Functionalization of aluminum nanoparticles using a combination of aryl diazonium salt chemistry and iniferter method. J Phys Chem C 2013; 117(49): 26000-6.
[38]
Abdelkader EM, Jelliss PA, Buckner SW. Main group nanoparticle synthesis using electrical explosion of wires. Nano-Struct Nano-Objects 2016; 7(Supplement. C): 23-31.
[39]
Huang XY, Ma ZS, Wang YQ, Jiang PK, Yin Y, Li Z. Polyethylene/aluminum nanocomposites: Improvement of dielectric strength by nanoparticle surface modification. J Appl Polym Sci 2009; 113(6): 3577-84.
[40]
Huang XY, Kim CN, Ma ZS, Jiang PK, Yin Y, Li Z. Correlation between rheological, electrical, and microstructure characteristics in polyethylene/aluminum nanocomposites. J Polym Sci, B, Polym Phys 2008; 46(20): 2143-54.
[41]
Huang XY, Jiang PK, Kim CN, Ke QQ, Wang GL. Preparation, microstructure and properties of polyethylene aluminum nanocomposite dielectrics. Compos Sci Technol 2008; 68(9): 2134-40.
[42]
Shao H, Liu T, Wang Y, Xu H, Li X. Preparation of Mg-based hydrogen storage materials from metal nanoparticles. J Alloys Compd 2008; 465(1): 527-33.
[43]
Kojima Y, Kawai Y, Haga T. Magnesium-based nano-composite materials for hydrogen storage. J Alloys Compd 2006; 424(1): 294-8.
[44]
Reiser A, Bogdanović B, Schlichte K. The application of Mg-based metal-hydrides as heat energy storage systems. Int J Hydrogen Energy 2000; 25(5): 425-30.
[45]
Shao H, Wang Y, Xu H, Li X. Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy. J Solid State Chem 2005; 178(7): 2211-7.
[46]
Shao H, Xu H, Wang Y, Li X. Synthesis and hydrogen storage behavior of Mg-Co-H system at nanometer scale. J Solid State Chem 2004; 177(10): 3626-32.
[47]
Xuanzhou Z, Rong Y, Jianglan Q, et al. The synthesis and hydrogen storage properties of pure nanostructured Mg2FeH6. Nanotechnology 2010; 21(9): 095706.
[48]
Tomozawa M, Hiromoto S. Growth mechanism of hydroxyapatite-coatings formed on pure magnesium and corrosion behavior of the coated magnesium. Appl Surf Sci 2011; 257(19): 8253-7.
[49]
Sathiyanarayanan S, Azim SS, Venkatachari G. Corrosion resistant properties of polyaniline-acrylic coating on magnesium alloy. Appl Surf Sci 2006; 253(4): 2113-7.
[50]
Eslami A, Hosseini SG, Shariaty SHM. Stabilization of ammonium azide particles through its microencapsulation with some organic coating agents. Powder Technol 2011; 208(1): 137-43.
[51]
Pourmortazavi SM, Babaee S, Ashtiani FS. Statistical optimization of microencapsulation process for coating of magnesium particles with Viton polymer. Appl Surf Sci 2015; 349(Suppl. C): 817-25.
[52]
Hosseini SG, Pourmortazavi SM, Fathollahi M. Orthogonal array design for the optimization of silver recovery from waste photographic paper. Sep Sci Technol 2004; 39(8): 1953-66.
[53]
Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Alamdari RF, Rahimi-Nasrabadi M. Determination of the optimal conditions for synthesis of silver oxalate nanorods. Chem Eng Technol 2008; 31(10): 1532-5.
[54]
Pourmortazavi SM, Babaee S, Marashianpour Z, Kohsari I. Stabilizing of magnesium powder by microencapsulation with azidodeoxy cellulose nitrate. Prog Org Coat 2015; 81(Suppl. C): 107-15.
[55]
Jeon K-J, Moon HR, Ruminski AM, et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat Mater 2011; 10: 286.
[56]
Aguey-Zinsou KF, Ares Fernandez JR, Klassen T, Bormann R. Effect of Nb2O5 on MgH2 properties during mechanical milling. Int J Hydrogen Energy 2007; 32(13): 2400-7.
[57]
de Jongh PE, Wagemans RWP, Eggenhuisen TM, et al. The preparation of carbon-supported magnesium nanoparticles using melt infiltration. Chem Mater 2007; 19(24): 6052-7.
[58]
Haas I, Gedanken A. Synthesis of metallic magnesium nanoparticles by sonoelectrochemistry. J Chem Soc Chem Commun 2008; (15): 1795-7.
[59]
Li W, Li C, Ma H, Chen J. Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption. J Am Chem Soc 2007; 129(21): 6710-1.
[60]
Makridis SS, Gkanas EI, Panagakos G, et al. Polymer-stable magnesium nanocomposites prepared by laser ablation for efficient hydrogen storage. Int J Hydrogen Energy 2013; 38(26): 11530-5.
[61]
Chen P, Sun J, Zhu Y, et al. Corrosion resistance of biodegradable Mg with a composite polymer coating. J Biomater Sci Polym Ed 2016; 27(17): 1763-74.
[62]
Abdelkader EM, Jelliss PA, Buckner SW. Synthesis of organically-capped metallic zinc nanoparticles using electrical explosion of wires (EEW) coupled with PIERMEN. Mater Chem Phys 2015; 149-150(Suppl. C): 238-45.
[63]
Venkatachalam K, Gavalas VG, Xu S, de Leon AC, Bhattacharyya D, Bachas LG. Poly(amino acid)-facilitated electrochemical growth of metal nanoparticles. J Nanosci Nanotechnol 2006; 6(8): 2408-12.
[64]
Ates M. Comparison of corrosion protection of chemically and electrochemically synthesized poly(N-vinylcarbazole) and its nanocomposites on stainless steel. J Solid State Electrochem 2015; 19(2): 533-41.
[65]
Park EJ, Lee SW, Bang IC, Park HW. Optimal synthesis and characterization of Ag nanofluids by electrical explosion of wires in liquids. Nanoscale Res Lett 2011; 6(1): 223.
[66]
Lin C-H, Tseng S-K. Electrochemically reductive dechlorination of pentachlorophenol using a high overpotential zinc cathode. Chemosphere 1999; 39(13): 2375-89.
[67]
Kim YH, Carraway ER. Dechlorination of chlorinated phenols by zero valent zinc. Environ Technol 2003; 24(12): 1455-63.
[68]
Muthirulan P, Rajendran N. Poly(o-phenylenediamine) coatings on mild steel: Electrosynthesis, characterization and its corrosion protection ability in acid medium. Surf Coat Tech 2012; 206(8-9): 2072-8.
[69]
Carp O, Huisman CL, Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 2004; 32(1-2): 33-177.
[70]
Barbe CJ, Arendse F, Comte P, et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc 1997; 80(12): 3157-71.
[71]
Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta 2006; 443(1): 1-36.
[72]
Reid DL, Russo AE, Carro RV, et al. Nanoscale additives tailor energetic materials. Nano Lett 2007; 7(7): 2157-61.
[73]
Reid DL, Kreitz KR, Stephens MA, et al. Development of highly active titania-based nanoparticles for energetic materials. J Phys Chem C 2011; 115(21): 10412-8.
[74]
Shyu I-M, Liu T-K. Combustion characteristics of GAP-coated boron particles and the fuel-rich solid propellant. Combust Flame 1995; 100(4): 634-44.
[75]
Shin WG, Han D, Park Y, Hyun HS, Sung H-G, Sohn Y. Combustion of boron particles coated with an energetic polymer material. Korean J Chem Eng 2016; 33(10): 3016-20.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 3
ISSUE: 1
Year: 2019
Page: [3 - 13]
Pages: 11
DOI: 10.2174/2452271602666180917095629
Price: $58

Article Metrics

PDF: 37
HTML: 5