Targeting Matrix Metalloproteinases for Diabetic Retinopathy: The Way Ahead?

Author(s): Ankita Solanki, Lokesh K. Bhatt*, Thomas P. Johnston, Kedar S. Prabhavalkar.

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Diabetic retinopathy (DR) is a severe sight-threatening complication of diabetes. It causes progressive damage to the retina and is the most common cause of vision impairment and blindness among diabetic patients. DR develops as a result of various changes in the ocular environment. Such changes include accelerated mitochondrial dysfunction, apoptosis, reactive oxygen species production, and formation of acellular capillaries. Matrix metalloproteinases (MMPs) are one of the major culprits in causing DR. Under physiological conditions, MMPs cause remodeling of the extracellular matrix in the retina, while under pathological conditions, they induce retinal cell apoptosis. This review focuses on the roles of various MMPs, primarily MMP-2 and MMP-9 in DR and also their participation in oxidative stress, mitochondrial dysfunction, and apoptosis, along with their involvement in various signaling pathways. This review also underscores different strategies to inhibit MMPs, thus suggesting that MMPs may represent a putative therapeutic target in the treatment of DR.

Keywords: Matrix metalloproteinase, Diabetic retinopathy, Oxidative stress, mitochondrial dysfunction, signaling pathways, MMP inhibitors.

[1]
Das, A. Diabetic Retinopathy: Battling the global epidemic. Invest. Ophthalmol. Vis. Sci., 2016, 57(15), 6669-6682.
[2]
Solomon, S.D.; Chew, E.; Duh, E.J.; Sobrin, L.; Sun, J.K.; VanderBeek, B.L.; Wykoff, C.C.; Gardner, T.W. Diabetic retinopathy: A position statement by the American Diabetes Association. Diabetes Care, 2017, 40(3), 412-418.
[3]
Yau, J.W.Y.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; Haffner, S.; Hamman, R.F.; Ikram, M.K.; Kayama, T.; Klein, B.E.; Klein, R.; Krishnaiah, S.; Mayurasakorn, K.; O’Hare, J.P.; Orchard, T.J.; Porta, M.; Rema, M.; Roy, M.S.; Sharma, T.; Shaw, J.; Taylor, H.; Tielsch, J.M.; Varma, R.; Wang, J.J.; Wang, N.; West, S.; Xu, L.; Yasuda, M.; Zhang, X.; Mitchell, P.; Wong, T.Y. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 2012, 35(3), 556-564.
[4]
Dehdashtian, E.; Mehrzadi, S.; Yousefi, B.; Hosseinzadeh, A.; Reiter, R.J.; Safa, M.; Ghaznavi, H.; Naseripour, M. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; Involvement of autophagy, Inflammation and oxidative stress. Life Sci., 2018, 193, 20-33.
[5]
Duh, E.J.; Sun, J.K.; Stitt, A.W. Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight, 2017, 2(14), 1-13.
[6]
Nentwich, M.M. Diabetic retinopathy - ocular complications of diabetes mellitus. World J. Diabetes, 2015, 6(3), 489.
[7]
Ola, M.S. Novel drugs and their targets in the potential treatment of diabetic retinopathy. Med. Sci. Monit., 2013, 19, 300-308.
[8]
de Moraes, G.; Layton, C.J. Therapeutic targeting of diabetic retinal neuropathy as a strategy in preventing diabetic retinopathy. Clin. Experiment. Ophthalmol., 2016, 44(9), 838-852.
[9]
Mohammad, G.; Siddiquei, M.M. Role of matrix metalloproteinase-2 and -9 in the development of diabetic retinopathy. J. Ocul. Biol. Dis. Infor., 2012, 5(1), 1-8.
[10]
Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol., 2014, 15(12), 786-801.
[11]
Lewandowski, K.C.; Banach, E.; Bieńkiewicz, M.; Lewiński, A. Matrix metalloproteinases in type 2 diabetes and non-diabetic controls: Effects of short-term and chronic hyperglycaemia. Arch. Med. Sci., 2011, 7(2), 294-303.
[12]
Kowluru, R.A.; Mohammad, G.; Dos Santos, J.M.; Zhong, Q. Abrogation of MMP-9 gene protects against the development of retinopathy in diabetic mice by preventing mitochondrial damage. Diabetes, 2011, 60(11), 3023-3033.
[13]
Mohammad, G.; Kowluru, R.A. Novel role of mitochondrial matrix metalloproteinase-2 in the development of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2011, 52(6), 3832-3841.
[14]
Kowluru, R.A. Role of matrix metalloproteinase-9 in the development of diabetic retinopathy and its regulation by H-Ras. Investig. Opthalmology Vis. Sci., 2010, 51(8), 4320.
[15]
Kaphingst, K.A.; Persky, S.; Lachance, C. Diabetic retinopathy and signaling mechanism for activation of matrix metalloproteinase-9. J. Cell. Physiol., 2010, 14(4), 384-399.
[16]
Calderon, G.D.; Juarez, O.H.; Hernandez, G.E.; Punzo, S.M.; De La Cruz, Z.D. Oxidative stress and diabetic retinopathy: Development and treatment. Eye, 2017, 31(8), 1122-1130.
[17]
Volpe, C.M.O.; Villar-Delfino, P.H.; dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis., 2018, 9(2), 119.
[18]
Ung, L.; Pattamatta, U.; Carnt, N.; Wilkinson-Berka, J.L.; Liew, G.; White, A.J.R. Oxidative stress and reactive oxygen species: A review of their role in ocular disease. Clin. Sci. (Lond.), 2017, 131(24), 2865-2883.
[19]
Kowluru, R.A.; Kanwar, M. Oxidative stress and the development of diabetic retinopathy: Contributory role of matrix metalloproteinase-2. Free Biol. Med., 2010, 46(12), 1677-1685.
[20]
Kowluru, R.A.; Shan, Y. Role of oxidative stress in epigenetic modification of MMP-9 promoter in the development of diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol., 2017, 255(5), 955-962.
[21]
Kowluru, R.A.; Santos, J.M.; Zhong, Q. Sirt1, A negative regulator of matrix metalloproteinase-9 in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2014, 55(9), 5653-5660.
[22]
Juuti-Uusitalo, K.; Nieminen, M.; Treumer, F.; Ampuja, M.; Kallioniemi, A.; Klettner, A.; Skottman, H. Effects of cytokine activation and oxidative stress on the function of the human embryonic stem cell-derived retinal pigment epithelial cells. Investig. Opthalmology Vis. Sci., 2015, 56(11), 6265.
[23]
Yoshida, S.; Murata, M.; Noda, K.; Matsuda, T.; Saito, M.; Saito, W.; Kanda, A.; Ishida, S. Proteolytic cleavage of vascular adhesion protein-1 induced by vascular endothelial growth factor in retinal capillary endothelial cells. Jpn. J. Ophthalmol., 2018, 62(2), 256-264.
[24]
Kowluru, R.A.; Chan, P.S. Oxidative stress and diabetic retinopathy. Exp. Diabetes Res., 2007, 2007, 1-12.
[25]
Bek, T. Mitochondrial dysfunction and diabetic retinopathy. Mitochondrion, 2017, 36, 4-6.
[26]
Mishra, M.; Lillvis, J.; Seyoum, B.; Kowluru, R.A. Peripheral blood mitochondrial dna damage as a potential noninvasive biomarker of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2016, 57(10), 4035.
[27]
Mohammad, G.; Kowluru, R.A. Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction. Lab. Invest., 2011, 90(9), 1365-1372.
[28]
Tien, T.; Zhang, J.; Muto, T.; Kim, D.; Sarthy, V.P.; Roy, S. High glucose induces mitochondrial dysfunction in retinal müller cells: Implications for diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2017, 58(7), 2915.
[29]
Tremolada, G.; Del Turco, C.; Lattanzio, R.; Maestroni, S.; Maestroni, A.; Bandello, F.; Zerbini, G. The role of angiogenesis in the development of proliferative diabetic retinopathy: Impact of intravitreal anti-VEGF treatment. Exp. Diabetes Res., 2012, 2012, 728325.
[30]
Feng, Y.; Wang, Y.; Pfister, F.; Hillebrands, J.L.; Deutsch, U.; Hammes, H.P. Decreased hypoxia-induced neovascularization in angiopoietin-2 heterozygous knockout mouse through reduced mmp activity. Cell. Physiol. Biochem., 2009, 23(4-6), 277-284.
[31]
Loukovaara, S.; Robciuc, A.; Holopainen, J.M.; Lehti, K.; Pessi, T.; Liinamaa, J.; Kukkonen, K.T.; Jauhiainen, M.; Koli, K.; Keski-Oja, J.; Immonen, I. Ang-2 upregulation correlates with increased levels of MMP-9, VEGF, EPO and TGFβ1 in diabetic eyes undergoing vitrectomy. Acta Ophthalmol., 2013, 91(6), 531-539.
[32]
Abu El-Asrar, A.M.; Ahmad, A.; Bittoun, E.; Siddiquei, M.M.; Mohammad, G.; Mousa, A.; De Hertogh, G.; Opdenakker, G. Differential expression and localization of human tissue inhibitors of metalloproteinases in proliferative diabetic retinopathy. Acta Ophthalmol., 2018, 96(1), e27-e37.
[33]
Gong, C.Y.; Lu, B.; Sheng, Y.C.; Yu, Z.Y.; Zhou, J.Y.; Ji, L.L. The development of diabetic retinopathy in goto-kakizaki rat and the expression of angiogenesis-related signals. Chin. J. Physiol., 2016, 59(2), 100-108.
[34]
Ye, P.; Liu, J.; He, F.; Xu, W.; Yao, K. Hypoxia-induced deregulation of miR-126 and its regulative effect on VEGF and MMP-9 expression. Int. J. Med. Sci., 2013, 11(1), 17-23.
[35]
Mao, X.B.; You, Z.P.; Wu, C.; Huang, J. Potential suppression of the high glucose and insulin-induced retinal neovascularization by sirtuin 3 in the human retinal endothelial cells. Biochem. Biophys. Res. Commun., 2017, 482(2), 341-345.
[36]
Abu El-Asrar, A.M.; Alam, K.; Nawaz, M.I.; Mohammad, G.; Van den Eynde, K.; Siddiquei, M.M.; Mousa, A.; De Hertogh, G.; Opdenakker, G. Upregulation of thrombin/matrix metalloproteinase-1/protease-activated receptor-1 chain in proliferative diabetic retinopathy. Curr. Eye Res., 2016, 41(12), 1590-1600.
[37]
Mohammad, G.; Vandooren, J.; Siddiquei, M.M.; Martens, E.; Abu El-Asrar, A.M.; Opdenakker, G. Functional links between gelatinase B/matrix metalloproteinase-9 and prominin-1/CD133 in diabetic retinal vasculopathy and neuropathy. Prog. Retin. Eye Res., 2014, 43, 76-91.
[38]
Beranek, M.; Kolar, P.; Tschoplova, S.; Kankova, K.; Vasku, A. Genetic variations and plasma levels of gelatinase a (matrix metalloproteinase-2) and gelatinase B (matrix metalloproteinase-9) in proliferative diabetic retinopathy. Mol. Vis., 2008, 14, 1114-1121.
[39]
Singh, K.; Goyal, P.; Singh, M.; Deshmukh, S.; Upadhyay, D.; Kant, S.; Agrawal, N.K.; Gupta, S.K.; Singh, K. Association of functional SNP-1562C > T in MMP9 promoter with proliferative diabetic retinopathy in north Indian type 2 diabetes mellitus patients. J. Diabetes Complications, 2017, 31(12), 1648-1651.
[40]
Abu El-Asrar, A.M.; Siddiquei, M.M.; Nawaz, M.I.; De Hertogh, G.; Mohammad, G.; Alam, K.; Mousa, A.; Opdenakker, G. Coexpression of heparanase activity, cathepsin L, tissue factor, tissue factor pathway inhibitor, and MMP-9 in proliferative diabetic retinopathy. Mol. Vis., 2016, 22, 424-435.
[41]
Abu El-Asrar, A.M.; Ahmad, A.; Alam, K.; Siddiquei, M.M.; Mohammad, G.; Hertogh, G.; De Mousa, A.; Opdenakker, G. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a potential biomarker of angiogenesis in proliferative diabetic retinopathy. Acta Ophthalmol., 2017, 95(7), 697-704.
[42]
Khan, Z.A.; Chakrabarti, S. Cellular signaling and potential new treatment targets in diabetic retinopathy. Exp. Diabetes Res., 2007, 2007, 1-12.
[43]
Mohammad, G.; Kowluru, R.A. Diabetic retinopathy & signaling mechanism for activation of MMP9. J. Cell. Physiol., 2012, 227(3), 1052-1061.
[44]
Mohammad, G.; Siddiquei, M.M.; Nawaz, M.I.; El-asrar, A.M.A. The ERK1/2 inhibitor U0126 attenuates diabetes-induced upregulation of MMP-9 and biomarkers of inflammation in the retina. J. Diabetes Res., 2013, 2013, 1-9.
[45]
Miyata, Y.; Kase, M.; Sugita, Y.; Shimada, A.; Nagase, T.; Katsura, Y.; Kosano, H. Protein kinase C-mediated regulation of matrix metalloproteinase and tissue inhibitor of metalloproteinase production in a human retinal müller cells. Curr. Eye Res., 2012, 37(9), 842-849.
[46]
Ozawa, Y.; Nakao, K.; Kurihara, T.; Shimazaki, T.; Shimmura, S.; Ishida, S.; Yoshimura, A.; Tsubota, K.; Okano, H. Roles of STAT3/SOCS3 pathway in regulating the visual function and ubiquitin-proteasome-dependent degradation of rhodopsin during retinal inflammation. J. Biol. Chem., 2008, 283(36), 24561-24570.
[47]
Chen, M.; Wang, W.; Ma, J.; Ye, P.; Wang, K. High glucose induces mitochondrial dysfunction and apoptosis in human retinal pigment epithelium cells via promoting SOCS1 and Fas/FasL signaling. Cytokine, 2016, 78, 94-102.
[48]
Zhu, S.H.; Liu, B.Q.; Hao, M.J.; Fan, Y.X.; Qian, C.; Teng, P.; Zhou, X.W.; Hu, L.; Liu, W.T.; Yuan, Z.L.; Li, Q.P. Paeoniflorin suppressed high glucose-induced retinal microglia MMP-9 expression and inflammatory response via inhibition of TLR4/NF-κB pathway through upregulation of SOCS3 in diabetic retinopathy. Inflammation, 2017, 40(5), 1475-1486.
[49]
Wang, H.; Xing, W.; Tang, S.; Wang, Z.; Lv, T.; Wu, Y.; Guo, S.; Li, C.; Han, J.; Zhu, R.; Wang, W. HuoXueJieDu formula alleviates diabetic retinopathy in rats by inhibiting SOCS3-STAT3 and TIMP1-A2M pathways. Int. J. Genomics, 2017, 2017, 4832125.
[50]
Mao, H.; Lockyer, P.; Townley-Tilson, D.; Xie, L.; Pi, X. LRP1 regulates retinal angiogenesis by inhibiting PARP-1 activity and endothelial cell proliferation. Arterioscler. Thromb. Vasc. Biol., 2016, 36(2), 87-92.
[51]
Hossain, A.; Tauhid, L.; Davenport, I.; Huckaba, T.; Graves, R.; Mandal, T.; Muniruzzaman, S.; Ahmed, S.A.; Bhattacharjee, P.S. LRP-1 pathway targeted inhibition of vascular abnormalities in the retina of diabetic mice. Curr. Eye Res., 2017, 42(4), 640-647.
[52]
Miloudi, K.; Binet, F.; Wilson, A.; Cerani, A.; Oubaha, M.; Menard, C.; Henriques, S.; Mawambo, G.; Dejda, A.; Nguyen, P.T.; Rezende, F.A.; Bourgault, S.; Kennedy, T.E.; Sapieha, P. Truncated netrin-1 contributes to pathologic vascular permeability in diabetic retinopathy. J. Clin. Invest., 2016, 126(8), 3006-3022.
[53]
Forough, R.; Weylie, B.; Collins, C.; Parker, J.L.; Zhu, J.; Barhoumi, R.; Watson, D.K. Transcription factor Ets-1 regulates fibroblast growth factor-1-mediated angiogenesis in vivo: Role of Ets-1 in the regulation of the PI3K/AKT/MMP-1 pathway. J. Vasc. Res., 2006, 43(4), 327-337.
[54]
Kowluru, R.A.; Mishra, M. Contribution of epigenetics in diabetic retinopathy. Sci. China Life Sci., 2015, 58(6), 556-563.
[55]
Liu, P.; Wilson, M.J. miR-520c and miR-373 target mTOR and SIRT1, activate the Ras/ Raf/MEK/Erk pathway and NF-κB, with up-regulation of MMP9 in human fibrosarcoma cells. J. Cell. Physiol., 2012, 227(2), 867-876.
[56]
Pavlová, S.; Klucska, K.; Vašíček, D.; Ryban, L.; Harrath, A.H.; Alwasel, S.H.; Sirotkin, A.V. The involvement of SIRT1 and transcription factor NF-κB (p50/p65) in regulation of porcine ovarian cell function. Anim. Reprod. Sci., 2013, 140(3-4), 180-188.
[57]
Kauppinen, A.; Suuronen, T.; Ojala, J.; Kaarniranta, K.; Salminen, A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell. Signal., 2013, 25(10), 1939-1948.
[58]
Kowluru, R.A.; Santos, J.M.; Mishra, M. Epigenetic modifications and diabetic retinopathy. BioMed Res. Int., 2013, 2013, 635284.
[59]
Zhong, Q.; Kowluru, R.A. Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy. Diabetes, 2013, 62(7), 2559-2568.
[60]
Kadiyala, C.S.R.; Zheng, L.; Du, Y.; Yohannes, E.; Kao, H.Y.; Miyagi, M.; Kern, T.S. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J. Biol. Chem., 2012, 287(31), 25869-25880.
[61]
Song, C.; Zhu, S.; Wu, C.; Kang, J. Histone deacetylase (HDAC) 10 suppresses cervical cancer metastasis through inhibition of matrix metalloproteinase (MMP) 2 and 9 expression. J. Biol. Chem., 2013, 288(39), 28021-28033.
[62]
Mani, S.K.; Kern, C.B.; Kimbrough, D.; Addy, B.; Kasiganesan, H.; Rivers, W.T.; Patel, R.K.; Chou, J.C.; Spinale, F.G.; Mukherjee, R.; Menick, D.R. Inhibition of class I histone deacetylase activity represses matrix metalloproteinase-2 and -9 expression and preserves LV function postmyocardial infarction. Am. J. Physiol. Heart Circ. Physiol., 2015, 308(11), H1391-H1401.
[63]
Kwa, F.A.A.; Thrimawithana, T.R. Epigenetic modifications as potential therapeutic targets in age-related macular degeneration and diabetic retinopathy. Drug Discov. Today, 2014, 19(9), 1387-1393.
[64]
Abu El-Asrar, A.M.; Mohammad, G.; Nawaz, M.I.; Siddiquei, M.M.; Van Den Eynde, K.; Mousa, A.; De Hertogh, G.; Opdenakker, G. Relationship between vitreous levels of matrix metalloproteinases and vascular endothelial growth factor in proliferative diabetic retinopathy. PLoS One, 2013, 8(12), 1-11.
[65]
Shitama, T.; Hayashi, H.; Noge, S.; Uchio, E.; Oshima, K.; Takemori, N.; Komori, N.; Matsumoto, H. Proteome profiling of vitreoretinal diseases by cluster analysis. Proteomics Clin. Appl., 2008, 2(9), 1265-1280.
[66]
Ortiz, G.; Salica, J.P.; Chuluyan, E.H.; Gallo, J.E. Diabetic retinopathy: Could the alpha-1 antitrypsin be a therapeutic option? Biol. Res., 2014, 47(1), 58.
[67]
Kim, H.S.; Luo, L.; Pflugfelder, S.C.; Li, D.Q. Doxycycline inhibits TGF-β1-induced MMP-9 via Smad and MAPK pathways in human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci., 2005, 46(3), 840-848.
[68]
Scott, I.U.; Jackson, G.R.; Quillen, D.A.; Larsen, M.; Klein, R.; Liao, J.; Holfort, S.; Munch, I.C.; Gardner, T.W. Effect of doxycycline vs. placebo on retinal function and diabetic retinopathy progression in patients with severe nonproliferative or non-high-risk proliferative diabetic retinopathy. JAMA Ophthalmol., 2014, 132(5), 535-543.
[69]
Di, Y.; Nie, Q.Z.; Chen, X.L. Matrix metalloproteinase-9 and vascular endothelial growth factor expression change in experimental retinal neovascularization. Int. J. Ophthalmol., 2016, 9(6), 804-808.
[70]
Ioannidou, E.; Tseriotis, V.S.; Tziomalos, K. Role of lipid-lowering agents in the management of diabetic retinopathy. World J. Diabetes, 2017, 8(1), 1-6.
[71]
El-Azab, M.F.; Mysona, B.A.; El-Remessy, A. Statins for prevention of diabetic-related blindness: A new treatment option? Expert Rev. Ophthalmol., 2011, 6(3), 269-272.
[72]
Tang, J.; Kern, T.S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res., 2012, 30(5), 343-358.
[73]
Bhatt, L.K.; Addepalli, V. Attenuation of diabetic retinopathy by enhanced inhibition of MMP-2 and MMP-9 using aspirin and minocycline in streptozotocin-diabetic rats. Am. J. Transl. Res., 2010, 2(2), 181-189.
[74]
Parkar, N.; Addepalli, V. Nobiletin ameliorates streptozotocin induced diabetic retinopathy in experimental rat. Discov. Phytomed., 2014, 1, 3-7.
[75]
Kaur, H.; Chen, S.; Xin, X.; Chiu, J.; Khan, Z.A.; Chakrabarti, S. Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300. Diabetes, 2006, 55(11), 3104-3111.
[76]
Miller, C.G.; Budoff, G.; Prenner, J.L.; Schwarzbauer, J.E. Fibronectin in retinal disease. Exp. Biol. Med., 2017, 242(1), 1-7.
[77]
Feng, B.; Chen, S.; McArthur, K.; Wu, Y.; Sen, S.; Ding, Q.; Feldman, R.D.; Chakrabarti, S. miR-146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes, 2011, 60(11), 2975-2984.
[78]
Wu, Y.; Feng, B.; Chen, S.; Chakrabarti, S. ERK5 regulates glucose-induced increased fibronectin production in the endothelial cells and in the retina in diabetes. Invest. Ophthalmol. Vis. Sci., 2012, 53(13), 8405-8413.
[79]
Kota, S.; Meher, L.; Jammula, S.; Kota, S.; Krishna, S.V.S.; Modi, K. Aberrant angiogenesis: The gateway to diabetic complications. Indian J. Endocrinol. Metab., 2012, 16(6), 918.
[80]
Grant, M.B.; Caballero, S.; Bush, D.M.; Spoerri, P.E. Fibronectin fragments modulate human retinal capillary cell proliferation and migration. Diabetes, 1998, 47(8), 1335-1340.
[81]
Kota, S.K.; Meher, L.K.; Jammula, S.; Kota, S.K.; Krishna, S.V.; Modi, K.D. Aberrant angiogenesis: The gateway to diabetic complications. Indian J. Endocrinol. Metab., 2012, 16(6), 918-930.
[82]
Murphy, P.A.; Begum, S.; Hynes, R.O. Tumor angiogenesis in the absence of fibronectin or its cognate integrin receptors. PLoS One, 2015, 10(3), e0120872.
[83]
Chaturvedi, M.; Kaczmarek, L. MMP-9 inhibition: A therapeutic strategy in ischemic stroke. Mol. Neurobiol., 2014, 49(1), 563-573.
[84]
Jo, H.; Jung, S.; Kang, J.; Yim, H.; Kang, K. Sulodexide inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy. BMB Rep., 2014, 47(11), 637-642.
[85]
Di, Y.; Nie, Q.Z.; Chen, X.L. Matrix metalloproteinase-9 and vascular endothelial growth factor expression change in experimental retinal neovascularization. Int. J. Ophthalmol., 2016, 9(6), 804-808.
[86]
Giebel, S.J.; Menicucci, G.; McGuire, P.G.; Das, A. Matrix metalloproteinases in early diabetic retinopathy and their role in alternation of the blood-retinal barrier. Lab. Invest., 2005, 85(5), 597-607.
[87]
Fields, G.B. New strategies for targeting matrix metalloproteinases. Matrix Biol., 2015, 44, 239-246.
[88]
Paemen, L.; Martens, E.; Masure, S.; Opdenakker, G. Monoclonal antibodies specific for natural human neutrophil gelatinase B used for affinity purification, quantitation by two‐site ELISA and inhibition of enzymatic activity. Eur. J. Biochem., 1995, 234(3), 759-765.
[89]
Hu, J.; Van den Steen, P.E.; Houde, M.; Ilenchuk, T.T.; Opdenakker, G. Inhibitors of gelatinase B/matrix metalloproteinase-9 activity: comparison of a peptidomimetic and polyhistidine with single-chain derivatives of a neutralizing monoclonal antibody. Biochem. Pharmacol., 2004, 67(5), 1001-1009.
[90]
Martens, E.; Leyssen, A.; Van Aelst, I.; Fiten, P.; Piccard, H.; Hu, J.; Descamps, F.J.; Van den Steen, P.E.; Proost, P.; Van Damme, J.; Liuzzi, G.M. A monoclonal antibody inhibits gelatinase B/MMP-9 by selective binding to part of the catalytic domain and not to the fibronectin or zinc binding domains. Biochim. Biophys. Acta, 2007, 1770(2), 178-186.
[91]
Pruijt, J.F.; Fibbe, W.E.; Laterveer, L.; Pieters, R.A.; Lindley, I.J.; Paemen, L.; Masure, S.; Willemze, R.; Opdenakker, G. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc. Natl. Acad. Sci. USA, 1999, 96(19), 10863-10868.
[92]
Devy, L.; Huang, L.; Naa, L.; Yanamandra, N.; Pieters, H.; Frans, N.; Chang, E.; Tao, Q.; Vanhove, M. jeune, A.; van Gool, R. Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Res., 2009, 69(4), 1517-1526.
[93]
Zucker, S.; Cao, J. Selective matrix metalloproteinase (MMP) inhibitors in cancer therapy: Ready for prime time? Cancer Biol. Ther., 2009, 8(24), 2371-2373.
[94]
Hoogenboom, H.R. Selecting and screening recombinant antibody libraries. Nat. Biotechnol., 2005, 23(9), 1105.
[95]
Nam, D.H.; Rodriguez, C.; Remacle, A.G.; Strongin, A.Y. Ge. X. Active-site MMP-selective antibody inhibitors discovered from convex paratope synthetic libraries. Proc. Natl. Acad. Sci. USA, 2016, 113(52), 14970-14975.
[96]
Lopez, T.; Nam, D.H.; Kaihara, E.; Mustafa, Z.; Ge, X. Identification of highly selective MMP‐14 inhibitory FABS by deep sequencing. Biotechnol. Bioeng., 2017, 114(6), 1140-1150.
[97]
Marshall, D.C.; Lyman, S.K.; McCauley, S.; Kovalenko, M.; Spangler, R.; Liu, C.; Lee, M.; O’Sullivan, C.; Barry-Hamilton, V.; Ghermazien, H.; Mikels-Vigdal, A. Selective allosteric inhibition of MMP9 is efficacious in preclinical models of ulcerative colitis and colorectal cancer. PLoS One, 2015, 10(5), e0127063.
[98]
Gálvez, B.G.; Matías-Román, S.; Albar, J.P.; Sánchez-Madrid, F.; Arroyo, A.G. Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and; matrix remodeling. J. Biol. Chem., 2001, 276(40), 37491-37500.
[99]
Talmi-Frank, D.; Altboum, Z.; Solomonov, I.; Udi, Y.; Jaitin, D.A.; Klepfish, M.; David, E.; Zhuravlev, A.; Keren-Shaul, H.; Winter, D.R.; Gat-Viks, I. Extracellular matrix proteolysis by MT1-MMP contributes to influenza-related tissue damage and mortality. Cell Host Microbe, 2016, 20(4), 458-470.
[100]
Udi, Y.; Grossman, M.; Solomonov, I.; Dym, O.; Rozenberg, H.; Moreno, V.; Cuniasse, P.; Dive, V.; Arroyo, A.G.; Sagi, I. Inhibition mechanism of membrane metalloprotease by an exosite-swiveling conformational antibody. Structure, 2015, 23(1), 104-115.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 4
Year: 2019
Page: [324 - 333]
Pages: 10
DOI: 10.2174/1389203719666180914093109
Price: $65

Article Metrics

PDF: 31
HTML: 10

Special-new-year-discount