Formation of a Toxic Quinoneimine Metabolite from Diclofenac: A Quantum Chemical Study

Author(s): Muthusamy Ramesh*, Prasad V. Bharatam.

Journal Name: Drug Metabolism Letters

Volume 13 , Issue 1 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Background: Diclofenac is a non-steroidal antiinflammatory drug. It is predominantly metabolized by CYP2C9. 4'-hydroxydiclofenac and its quinoneimine are the metabolites of diclofenac. However, few numbers of serious cases of idiosyncratic hepatotoxicity due to diclofenac metabolism were reported. The formation of the quinoneimine metabolite was found to be responsible for this idiosyncratic toxicity. Quinoneimine is an over-oxidized metabolite of diclofenac.

Method: In this work, computational studies were conducted to detail the formation of a quinoneimine metabolite from diclofenac. Further, the idiosyncratic toxicity of quinoneimine due to its reactivity was also investigated by quantum chemical analysis.

Results & Conclusion: The results demonstrate the possibility of formation of quinoneimine metabolite due to various factors that are involved in the metabolism of diclofenac. The present study may provide the structural in-sights during the drug development processes to avoid the metabolism directed idiosyncratic toxicity.

Keywords: Quantum chemical analysis, quinoneimine, diclofenac, idiosyncratic toxicity, CYP2C9, non-steroidal antiinflammatory drug.

Boelsterli, U.A. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Toxicol. Appl. Pharmacol., 2003, 192, 307-322.
Aithal, G.P. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Expert Opin. Drug Saf., 2004, 3, 519-523.
Aithal, G.P.; Day, C.P. Nonsteroidal anti-inflammatory drug–induced hepatotoxicity. Clin. Liver Dis., 2007, 11, 563-575.
Harmalker, S.P.; Sawyer, D.T. Electrochemical and spectroscopic studies of 3, 5-di-tert-butyl-2-aminophenol and of electrosynthesized 3, 5-di-tert-butyl-2-iminocyclohexa-3, 5-dienone in aprotic solvents. J. Org. Chem., 1984, 49, 3579-3583.
Young, T.E.; Babbitt, B.W. Electrochemical study of the oxidation of. alpha.-methyldopamine. alpha.-methylnoradrenaline, and dopamine. J. Org. Chem., 1989, 48, 562-566.
Koymans, L.; Van Lenthe, J.H.; Van de Straat, R.; Donne-Op den Kelder, G.M.; Vermeulen, N.P. A theoretical study on the metabolic activation of paracetamol by cytochrome P-450: indications for a uniform oxidation mechanism. Chem. Res. Toxicol., 1989, 2, 60-66.
Bessems, J.G.; Vermeulen, N.P. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit. Rev. Toxicol., 2001, 31, 55-138.
Nassini, R.; Materazzi, S.; Andrè, E.; Sartiani, L.; Aldini, G.; Trevisani, M.; Carnini, C.; Massi, D.; Pedretti, P.; Carini, M.; Cerbai, E.; Preti, D.; Villetti, G.; Civelli, M.; Trevisan, G.; Azzari, C.; Stokesberry, S.; Sadofsky, L.; McGarvey, L.; Patacchini, R.; Geppetti, P. Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J., 2010, 24, 4904-4916.
Tang, W.; Stearns, R.A.; Wang, R.W.; Chiu, S.H.; Baillie, T.A. Roles of human hepatic cytochrome P450s 2C9 and 3A4 in the metabolic activation of diclofenac. Chem. Res. Toxicol., 1999, 12, 192-199.
Naisbitt, D.J.; Williams, D.P.; O’Neill, P.M.; Maggs, J.L.; Willock, D.J.; Pirmohamed, M.; Park, B.K. Metabolism-dependent neutrophil cytotoxicity of amodiaquine: a comparison with pyronaridine and related antimalarial drugs. Chem. Res. Toxicol., 1998, 11, 1586-1595.
Martínez-Cabot, A.; Messeguer, A. Generation of quinoneimine intermediates in the bioactivation of 3-(N-phenylamino) alanine (PAA) by human liver microsomes: a potential link between eosinophilia-myalgia syndrome and toxic oil syndrome. Chem. Res. Toxicol., 2007, 20, 1556-1562.
Kalgutkar, A.S.; Obach, R.S.; Maurer, T.S. Mechanism-based inactivation of cytochrome P450 enzymes: chemical mechanisms, structure-activity relationships and relationship to clinical drug-drug interactions and idiosyncratic adverse drug reactions. Curr. Drug Metab., 2007, 8, 407-447.
Shiraki, H.; Kozar, M.P.; Melendez, V.; Hudson, T.H.; Ohrt, C.; Magill, A.J.; Lin, A.J. Antimalarial activity of novel 5-aryl-8-aminoquinoline derivatives. J. Med. Chem., 2010, 54, 131-142.
Teng, W.C.; Oh, J.W.; New, L.S.; Wahlin, M.D.; Nelson, S.D.; Ho, H.K.; Chan, E.C.Y. Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib. Mol. Pharm., 2010, 78, 693-703.
Balvers, W.G.; Boersma, M.G.; Vervoort, J.; Rietjens, I.M. Experimental and theoretical study on the redox cycling of resorufin by solubilized and membrane-bound NADPH-cytochrome reductase. Chem. Res. Toxicol., 1992, 5, 268-273.
Boersma, M.G.; Balvers, W.G.; Boeren, S.; Vervoort, J.; Rietjens, I.M. NADPH-cytochrome reductase catalysed redox cycling of 1, 4-benzoquinone; hampered at physiological conditions, initiated at increased pH values. Biochem. Pharmacol., 1994, 47, 1949-1955.
Kenny, J.R.; Maggs, J.L.; Meng, X.; Sinnott, D.; Clarke, S.E.; Park, B.K.; Stachulski, A.V. Syntheses and characterization of the acyl glucuronide and hydroxy metabolites of diclofenac. J. Med. Chem., 2004, 47, 2816-2825.
Freccero, M.; Di Valentin, C.; Sarzi-Amadè, M. Modeling H-bonding and solvent effects in the alkylation of pyrimidine bases by a prototype quinone methide: a DFT study. J. Am. Chem. Soc., 2003, 125, 3544-3553.
Valentin, C.D.; Freccero, M.; Zanaletti, R.; Sarzi-Amadè, M. o-Quinone methide as alkylating agent of nitrogen, oxygen, and sulfur nucleophiles. The role of H-bonding and solvent effects on the reactivity through a DFT computational study. J. Am. Chem. Soc., 2001, 123, 8366-8377.
Freccero, M.; Gandolfi, R.; Sarzi-Amadè, M. Selectivity of purine alkylation by a quinone methide. Kinetic or thermodynamic control? J. Org. Chem., 2003, 68, 6411-6423.
Boersma, M.G.; Vervoort, J.; Szymusiak, H.; Lemanska, K.; Tyrakowska, B.; Cenas, N.; Segura-Aguilar, J.; Rietjens, I.M. Regioselectivity and reversibility of the glutathione conjugation of quercetin quinone methide. Chem. Res. Toxicol., 2000, 13, 185-191.
Miyamoto, G.; Zahid, N.; Uetrecht, J.P. Oxidation of diclofenac to reactive intermediates by neutrophils, myeloperoxidase, and hypochlorous acid. Chem. Res. Toxicol., 1997, 10, 414-419.
Shen, S.; Hargus, S.J.; Martin, B.M.; Pohl, L.R. Cytochrome P4502C11 is a target of diclofenac covalent binding in rats. Chem. Res. Toxicol., 1997, 10, 420-423.
Ulrich, R.G. Idiosyncratic toxicity: a convergence of risk factors. Annu. Rev. Med., 2007, 58, 17-34.
Kawase, A.; Hashimoto, R.; Shibata, M.; Shimada, H.; Iwaki, M. Involvement of reactive metabolites of diclofenac in cytotoxicity in sandwich-cultured rat hepatocytes. Int. J. Toxicol., 2017, 36, 260-267.
Yamazaki, H.; Inoue, K.; Chiba, K.; Ozawa, N.; Kawai, T.; Suzuki, Y.; Goldstein, J.A.; Guengerich, F.P.; Shimada, T. Comparative studies on the catalytic roles of cytochrome P450 2C9 and its Cys-and Leu-variants in the oxidation of warfarin, flurbiprofen, and diclofenac by human liver microsomes. Biochem. Pharmacol., 1998, 56, 243-251.
Melet, A.; Assrir, N.; Jean, P.; Lopez-Garcia, M.P.; Marques-Soares, C.; Jaouen, M.; Dansette, P.M.; Sari, M.A.; Mansuy, D. Substrate selectivity of human cytochrome P450 2C9: importance of residues 476, 365, and 114 in recognition of diclofenac and sulfaphenazole and in mechanism-based inactivation by tienilic acid. Arch. Biochem. Biophys., 2003, 409, 80-91.
den Braver, M.W.; den Braver-Sewradj, S.P.; Vermeulen, N.P.; Commandeur, J.N. Characterization of cytochrome P450 isoforms involved in sequential two-step bioactivation of diclofenac to reactive p-benzoquinone imines. Toxicol. Lett., 2016, 253, 46-54.
Bort, R.; Macé, K.; Boobis, A.; Gómez-Lechón, M.J.; Pfeifer, A.; Castell, J. Hepatic metabolism of diclofenac: role of human CYP in the minor oxidative pathways. Biochem. Pharmacol., 1999, 58, 787-796.
Rainsford, K.D. Anti-inflammatory and anti-rheumatic drugs; CRC Press: Boca Raton, 1985.
Ramesh, M.; Bharatam, P.V. CYP isoform specificity toward drug metabolism: analysis using common feature hypothesis. J. Mol. Model., 2012, 18, 709-720.
Dunk, A.; Walt, R.; Jenkins, W.; Sherlock, S. Diclofenac hepatitis. Brit. Med. J. , 1982, 284, 1605.
Scully, L.; Clarke, D.; Barr, R. Diclofenac induced hepatitis. Dig. Dis. Sci., 1993, 38, 744-751.
Banks, A.T.; Zimmerman, H.J.; Ishak, K.G.; Harter, J.G. Diclofenac‐associated hepatotoxicity: analysis of 180 cases reported to the Food and Drug Administration as adverse reactions. Hepatology, 1995, 22, 820-827.
Boelsterli, U.A. Xenobiotic acyl glucuronides and acyl CoA thioesters as protein-reactive metabolites with the potential to cause idiosyncratic drug reactions. Curr. Drug Metab., 2002, 3, 439-450.
Tang, W. The metabolism of diclofenac-enzymology and toxicology perspectives. Curr. Drug Metab., 2003, 4, 319-329.
Sallie, R.; Quinlan, M.; McKenzie, T.; Shilkin, K.; Reed, W. Diclofenac hepatitis. Int. Med. J., 1991, 21, 251-255.
Bhogaraju, A.; Nazeer, S.; Al-Baghdadi, Y.; Rahman, M.; Wrestler, F.; Patel, N. Diclofenac-associated hepatitis. South. Med. J., 1999, 92, 711-713.
] National Library of Medicine HSDB Database. Hazardous Substances¶ Databank Number: 7234, 2012.
Koymans, L.; Van Lenthe, J.H. Donné-op Den K.G.; Vermeulen, N. Mechanisms of activation of phenacetin to reactive metabolites by cytochrome P-450: a theoretical study involving radical intermediates. Mol. Pharmacol., 1990, 37, 452-460.
Mariam, Y.H.; Chantranupong, L. Electron affinities of p-benzoquinone, p-benzoquinone imine and p-benzoquinone diimine, and spin densities of their p-benzosemiq. J. Comput. Aided Mol. Des., 1997, 11, 345-356.
Liu, H.; Walker, L.A.; Doerksen, R.J. DFT study on the radical anions formed by primaquine and its derivatives. Chem. Res. Toxicol., 2011, 24, 1476-1485.
Fragoso, T.P.; de Mesquita Carneiro, J.W.; Vargas, M.D. Aminequinone-hydroxylquinoneimine tautomeric equilibrium revisited: molecular modeling study of the tautomeric equilibrium and substituent effects in 4-(4-R-phenylamino) naphthalene-1, 2-diones. J. Mol. Model., 2010, 16, 825-830.
Song, Y. Theoretical studies on electrochemistry of p-aminophenol. Spectrochimica Acta Part A, 2007, 67, 611-618.
Kalgutkar, A.S.; Vaz, A.D.; Lame, M.E.; Henne, K.R.; Soglia, J.; Zhao, S.X.; Abramov, Y.A.; Lombardo, F.; Collin, C.; Hendsch, Z.S.; Hope, C.E. Bioactivation of the nontricyclic antidepressant nefazodone to a reactive quinone-imine species in human liver microsomes and recombinant cytochrome P450 3A4. Drug Metab. Dispos., 2004, 33, 243-253.
Shafiei, H.; Haqgu, M.; Nematollahi, D.; Gholami, M.R. An experimental and computational study on the rate constant of electrochemically generated N-acetyl-p-quinoneimine with dimethylamine. Int. J. Electrochem. Sci., 2008, 3, 1092-1107.
Alves, C.; Borges, R.; Da Silva, A. Density functional theory study of metabolic derivatives of the oxidation of paracetamol. Int. J. Quantum Chem., 2006, 106, 2617-2623.
Friedman, M.A.; Woodcock, J.; Lumpkin, M.M.; Shuren, J.E.; Hass, A.E.; Thompson, L.J. The safety of newly approved medicines: do recent market removals mean there is a problem? JAMA, 1999, 281, 1728-1734.
Cruciani, G.; Carosati, E.; De Boeck, B.; Ethirajulu, K.; Mackie, C.; Howe, T.; Vianello, R. MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J. Med. Chem., 2005, 48, 6970-6979.
Sanderson, D.; Earnshaw, C. Computer prediction of possible toxic action from chemical structure; the DEREK system. Hum. Exp. Toxicol., 1991, 10, 261-273.
Cariello, N.F.; Wilson, J.D.; Britt, B.H.; Wedd, D.J.; Burlinson, B.; Gombar, V. Comparison of the computer programs DEREK and TOPKAT to predict bacterial mutagenicity. Deductive estimate of risk from existing knowledge. Toxicity prediction by komputer assisted technology. Mutagenesis, 2002, 17, 321-329.
Ridings, J.E.; Barratt, M.D.; Cary, R.; Earnshaw, C.G.; Eggington, C.E.; Ellis, M.K.; Judson, P.N.; Langowski, J.J.; Marchant, C.A.; Payne, M.P.; Watson, W.P.; Yih, T.D. Computer prediction of possible toxic action from chemical structure: an update on the DEREK system. Toxicology, 1996, 106, 267-279.
MAESTRO, version 9.2; Schrodinger, LLC: New York, 2011.
Frisch, M.J.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Zakrzewski, V.G.; Montgomery, J.A.J.; Stratmann, R.E.; Burant, J.C.; Dapprich, S.; Millam, J.M.; Daniels, A.D.; Kudin, K.N.; Strain, M.C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P.Y.; Cui, Q.; Morokuma, K.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Cioslowski, J.; Ortiz, J.V.; Baboul, A.G.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Andres, J.L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E.S.; and Pople, J.A. Gaussian, Inc., Wallingford CT, , 2004.
Chen, H.; Hirao, H.; Derat, E.; Schlichting, I.; Shaik, S. Quantum mechanical/molecular mechanical study on the mechanisms of compound I formation in the catalytic cycle of chloroperoxidase: an overview on heme enzymes. J. Phys. Chem. B, 2008, 112, 9490-9500.
Shaik, S.; de Visser, S.P.; Ogliaro, F.; Schwarz, H.; Schröder, D. Two-state reactivity mechanisms of hydroxylation and epoxidation by cytochrome P-450 revealed by theory. Curr. Opin. Chem. Biol., 2002, 6, 556-567.
Ortiz de Montellano, P.R. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev., 2010, 110, 932-948.
Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations. Chem. Rev., 2010, 110, 949-1017.
Becke, A.D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648-5652.
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37, 785-789.
Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B Condens. Matter, 1992, 45, 13244-13249.
Parr, R.G.; Yang, W. Density functional theory of atoms and molecules; Oxford University Press: New York, 1989.
Lipkowitz, K.B.; Boyd, D.B. In reviews in computational chemistry; VCH Publishers: New York, 1996.
Foresman, J.B.; Frisch, A. Exploring chemistry with electronic structure methods, 2nd ed; Gaussian: Pittsburgh, 1996.
Scott, A.P.; Radom, L. Harmonic vibrational frequencies: an evaluation of Hartree− Fock, Møller− Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem., 1996, 100, 16502-16513.
Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys., 1985, 83, 735-746.
Patel, D.S.; Bharatam, P.V.; Divalent, N. I) compounds with two lone pairs on nitrogen. J. Phys. Chem. A, 2011, 115, 7645-7655.
Ramesh, M.; Bharatam, P.V. Importance of hydrophobic parameters in identifying appropriate pose of CYP substrates in cytochromes. Eur. J. Med. Chem., 2014, 71, 15-23.
Poon, G.K.; Chen, Q.; Teffera, Y.; Ngui, J.S.; Griffin, P.R.; Braun, M.P.; Doss, G.A.; Freeden, C.; Stearns, R.A.; Evans, D.C.; Baillie, T.A.; Tang, W. Bioactivation of diclofenac via benzoquinone imine intermediates—identification of urinary mercapturic acid derivatives in rats and humans. Drug Metab. Dispos., 2001, 29, 1608-1613.
Stierlin, H.; Faigle, J. Biotransformation of diclofenac sodium (Voltaren®) in animals and in man.: II. Quantitative determination of the unchanged drug and principal phenolic metabolites, in urine and bile. Xenobiotica, 1979, 9, 611-621.
Stierlin, H.; Faigle, J.W.; Sallmann, A.; Küng, W.; Richter, W.J.; Kriemler, H.P.; Alt, K.O. Win kler, T. Biotransformation of diclofenac sodium (Voltaren®) in animals and in man: I. Isolation and identification of principal metabolites. Xenobiotica, 1979, 9, 601-610.
Olsen, L.; Rydberg, P.; Rod, T.H.; Ryde, U. Prediction of activation energies for hydrogen abstraction by cytochrome P450. J. Med. Chem., 2006, 49, 6489-6499.
Chandra, A.K.; Uchimaru, T. The OH bond dissociation energies of substituted phenols and proton affinities of substituted phenoxide ions: a DFT study. Int. J. Mol. Sci., 2002, 3, 407-422.
Wang, L.F.; Zhang, H.Y. A theoretical investigation on DPPH radical-scavenging mechanism of edaravone. Bioorg. Med. Chem. Lett., 2003, 13, 3789-3792.
Bathelt, C.M.; Mulholland, A.J.; Harvey, J.N. QM/MM modeling of benzene hydroxylation in human cytochrome P450 2C9. J. Phys. Chem., 2008, 112, 13149-13156.
de Visser, S.P.; Shaik, S. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome P450 enzymes. J. Am. Chem. Soc., 2003, 125, 7413-7424.
Parr, R.G.; Szentpaly, L.V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121, 1922-1924.
Chattaraj, P.K.; Roy, D.R. Update 1 of: electrophilicity index. Chem. Rev., 2007, 107, PR46-PR74.
Fukui, K. The role of frontier orbitals in chemical reactions In Frontier Orbitals and Reaction Paths: Selected Papers of Kenichi Fukui;, Fukui, K.; Fujimoto, H., Eds.; World Scientific Series in 20th Century Chemistry: London,. 1997, 150-170.
Fukui, K. The role of frontier orbitals in chemical reactions. Science, 1982, 218, 747-754.
Parr, R.G.; Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc., 1984, 106, 4049-4050.
Domingo, L.R.; Pérez, P.; Contreras, R. Reactivity of the carbon–carbon double bond towards nucleophilic additions. A DFT analysis. Tetrahedron, 2004, 60, 6585-6591.
Greenidge, P.A.; Kramer, C.; Mozziconacci, J.C.; Wolf, R.M. MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement. J. Chem. Inf. Model., 2013, 53, 201-209.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [64 - 76]
Pages: 13
DOI: 10.2174/1872312812666180913120736

Article Metrics

PDF: 30
PRC: 1