Recent Trends in Fast Liquid Chromatography for Pharmaceutical Analysis

Author(s): Najma Memon , Tahira Qureshi , Muhammad Iqbal Bhanger* , Muhammad Imran Malik .

Journal Name: Current Analytical Chemistry

Volume 15 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Liquid chromatography is the workhorse of analytical laboratories of pharmaceutical companies for analysis of bulk drug materials, intermediates, drug products, impurities and degradation products. This efficient technique is impeded by its long and tedious analysis procedures. Continuous efforts of scientists to reduce the analysis time resulted in the development of three different approaches namely, HTLC, chromatography using monolithic columns and UHPLC.

Methods: Modern column technology and advances in chromatographic stationary phase including silica-based monolithic columns and reduction in particle and column size (UHPLC) have not only revolutionized the separation power of chromatographic analysis but also have remarkably reduced the analysis time. Automated ultra high-performance chromatographic systems equipped with state-ofthe- art software and detection systems have now spawned a new field of analysis, termed as Fast Liquid Chromatography (FLC). The chromatographic approaches that can be included in FLC are hightemperature liquid chromatography, chromatography using monolithic column, and ultrahigh performance liquid chromatography.

Results: This review summarizes the progress of FLC in pharmaceutical analysis during the period from year 2008 to 2017 focusing on detecting pharmaceutical drugs in various matrices, characterizing active compounds of natural products, and drug metabolites. High temperature, change in the mobile phase, use of monolithic columns, new non-porous, semi-porous and fully porous reduced particle size of/less than 3μm packed columns technology with high-pressure pumps have been extensively studied and successively applied to real samples. These factors revolutionized the fast high-performance separations.

Conclusion: Taking into account the recent development in fast liquid chromatography approaches, future trends can be clearly predicated. UHPLC must be the most popular approach followed by the use of monolithic columns. Use of high temperatures during analysis is not a feasible approach especially for pharmaceutical analysis due to thermosensitive nature of analytes.

Keywords: Drug analysis, monolithic columns, fast liquid chromatography, high-temperature liquid chromatography, pharmaceutical analysis, ultra performance liquid chromatography.

[1]
Görög, S. The sacred cow: The questionable role of assay methods in characterising the quality of bulk pharmaceuticals. J. Pharm. Biomed. Anal., 2005, 36(5), 931-937.
[2]
Bonfilio, R.; De Araujo, M.B.; Salgado, H.R.N. Recent applications of analytical techniques for quantitative pharmaceutical analysis: A review. WSEAS Trans Biol. Biomed., 2010, 7(4), 316-338.
[3]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem., 2013, 10, S1409-S1421.
[4]
Teutenberg, T. Potential of high temperature liquid chromatography for the improvement of separation efficiency-A review. Anal. Chim. Acta, 2009, 643(1), 1-12.
[5]
Erni, F. Use of high-performance liquid chromatography in the pharmaceutical industry. J. Chromatogr. A, 1990, 507(Suppl. C), 141-149.
[6]
Allmon, S.D.; Dorsey, J.G. Retention mechanisms in subcritical water reversed-phase chromatography. J. Chromatogr. A, 2009, 1216(26), 5106-5111.
[7]
Yang, Y.; Kapalavavi, B. Subcritical Water Chromatography - An Economical and Green Separation Technique.Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: New Jersey, 2006.
[8]
Smith, R.M. Superheated water chromatography - A green technology for the future. J. Chromatogr. A, 2008, 1184(1), 441-455.
[9]
Heinisch, S.; Rocca, J-L. Sense and nonsense of high-temperature liquid chromatography. J. Chromatogr. A, 2009, 1216(4), 642-658.
[10]
Sandra, P.; Vanhoenacker, G. Elevated temperature-extended column length conventional liquid chromatography to increase peak capacity for the analysis of tryptic digests. J. Sep. Sci., 2007, 30(2), 241-244.
[11]
Al-Khateeb, L.A.; Smith, R.M. High-temperature liquid chromatography of steroids on a bonded hybrid column. Anal. Bioanal. Chem., 2009, 394(5), 1255-1260.
[12]
Giegold, S.; Holzhauser, M.; Kiffmeyer, T.; Tuerk, J.; Teutenberg, T.; Rosenhagen, M.; Hennies, D.; Hoppe-Tichy, T.; Wenclawiak, B. Influence of the stationary phase on the stability of thalidomide and comparison of different methods for the quantification of thalidomide in tablets using high-temperature liquid chromatography. J. Pharm. Biomed. Anal., 2008, 46(4), 625-630.
[13]
Hjerten, S.; Liao, J-L.; Zhang, R. High-performance liquid chromatography on continuous polymer beds. J. Chromatogr. A, 1989, 473, 273-275.
[14]
Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishizuka, N.; Tanaka, N. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal. Chem., 1996, 68(19), 3498-3501.
[15]
Unger, K.K.; Skudas, R.; Schulte, M.M. Particle packed columns and monolithic columns in high-performance liquid chromatography-comparison and critical appraisal. J. Chromatogr. A, 2008, 1184(1), 393-415.
[16]
Urban, J.; Jandera, P. Polymethacrylate monolithic columns for capillary liquid chromatography. J. Sep. Sci., 2008, 31(14), 2521-2540.
[17]
Ali, I.; Gaitonde, V.D.; Aboul-Enein, H.Y. Monolithic silica stationary phases in liquid chromatography. J. Chromatogr. Sci., 2009, 47(6), 432-442.
[18]
Svec, F. Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode. J. Chromatogr. A, 2012, 1228, 250-262.
[19]
Namera, A.; Saito, T. Advances in monolithic materials for sample preparation in drug and pharmaceutical analysis. TrAC Tr. Anal. Chem., 2013, 45, 182-196.
[20]
Chen, L.; Ou, J.; Liu, Z.; Lin, H.; Wang, H.; Dong, J.; Zou, H. Fast preparation of a highly efficient organic monolith via photo-initiated thiol-ene click polymerization for capillary liquid chromatography. J. Chromatogr. A, 2015, 1394, 103-110.
[21]
Abro, K.; Memon, N.; Bhanger, M.; Perveen, S.; Kandhro, A. Multi-component quantitation of loratadine, pseudoephedrine and paracetamol in plasma and pharmaceutical formulations with liquid chromatography-tandem mass spectrometry utilizing a monolithic column. Quim. Nova, 2012, 35(10), 1950-1954.
[22]
Abro, K.; Memon, N.; Bhanger, M.; Abro, S.; Perveen, S.; Lagharì, A. Determination of Vitamins E, D3; K1 in plasma by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry utilizing a monolithic column. Anal. Lett., 2014, 47(1), 14-24.
[23]
Abro, K.; Memon, N.; Bhanger, M.; Perveen, S.; Panhwar, A. Comparative study of electrospray and atmospheric pressure chemical ionization with liquid chromatography-mass spectrometry for quantification of five antihyperglycemic agents utilizing monolithic column. Anal. Lett., 2012, 45(14), 1947-1959.
[24]
Tennikova, T.B.; Svec, F.; Belenkii, B.G. High-Performance Membrane chromatography. A novel method of protein separation. J. Liq. Chromatogr., 1990, 13(1), 63-70.
[25]
Cabrera, K. Applications of silica-based monolithic HPLC columns. J. Sep. Sci., 2004, 27(10-11), 843-852.
[26]
Knox, J.H.; Saleem, M. Kinetic conditions for optimum speed and resolution in column chromatography. J. Chromatogr. Sci., 1969, 7(10), 614-622.
[27]
John, H.K. Band dispersion in chromatography: A universal expression for the contribution from the mobile zone. J. Chromatogr. A, 2002, 960(1-2), 7-18.
[28]
Berta, R.; Babják, M.; Gazdag, M. A study of some practical aspects of high temperature liquid chromatography in pharmaceutical applications. J. Pharm. Biomed. Anal., 2011, 54(3), 458-462.
[29]
Edge, A.M.; Shillingford, S.; Smith, C.; Payne, R.; Wilson, I.D. Temperature as a variable in liquid chromatography: Development and application of a model for the separation of model drugs using water as the eluent. J. Chromatogr. A, 2006, 1132(1), 206-210.
[30]
Guillarme, D.; Russo, R.; Rudaz, S.; Bicchi, C.; Veuthey, J-L. Chromatographic performance of silica-based stationary phases in high temperature liquid chromatography: pharmaceutical applications. Curr. Pharm. Anal., 2007, 3(4), 221-229.
[31]
Liu, J.; Sun, J.; Zhang, W.; Gao, K.; He, Z. HPLC determination of rifampicin and related compounds in pharmaceuticals using monolithic column. J. Pharm. Biomed. Anal., 2008, 46(2), 405-409.
[32]
Tzanavaras, P.D.; Themelis, D.G.; Zotou, A.; Stratis, J.; Karlberg, B. Optimization and validation of a dissolution test for selegiline hydrochloride tablets by a novel rapid HPLC assay using a monolithic stationary phase. J. Pharm. Biomed. Anal., 2008, 46(4), 670-675.
[33]
Hefnawy, M.; Al-Omar, M.; Julkhuf, S. Rapid and sensitive simultaneous determination of ezetimibe and simvastatin from their combination drug products by monolithic silica high-performance liquid chromatographic column. J. Pharm. Biomed. Anal., 2009, 50(3), 527-534.
[34]
Zheng, J.; Patel, D.; Tang, Q.; Markovich, R.J.; Rustum, A.M. Comparison study of porous, fused-core; monolithic silica-based C18 HPLC columns for Celestoderm-V Ointment analysis. J. Pharm. Biomed. Anal., 2009, 50(5), 815-822.
[35]
Bellomarino, S.A.; Brown, A.J.; Conlan, X.A.; Barnett, N.W. Preliminary evaluation of monolithic column high-performance liquid chromatography with tris(2,2-bipyridyl)ruthenium(II) chemiluminescence detection for the determination of quetiapine in human body fluids. Talanta, 2009, 77(5), 1873-1876.
[36]
Domingues, D.S.; Souza, I.D.D.; Queiroz, M.E.C. Analysis of drugs in plasma samples from schizophrenic patients by column-switching liquid chromatography-tandem mass spectrometry with organic-inorganic hybrid cyanopropyl monolithic column. J. Chromatogr. B, 2015, 993-994(Suppl. C), 26-35.
[37]
Kimoto, A.; Watanabe, A.; Yamamoto, E.; Higashi, T.; Kato, M. Rapid analysis of DOXIL stability and drug release from DOXIL by HPLC using a glycidyl methacrylate-coated monolithic column. Chem. Pharm. Bull., 2017, 65(10), 945-949.
[38]
Kontou, M.; Zotou, A. Use of a monolithic column for the development and validation of a HPLC method for the determination of famoti-dine, cimetidine and nizatidine in biological fluids. J. Appl. Bioanal., 2017, 3(4), 98-109.
[39]
Qiu, D.; Li, F.; Zhang, M.; Kang, J. Preparation of phosphorylcholine-based hydrophilic monolithic column and application for analysis of drug-related impurities with capillary electrochromatography. Electrophoresis, 2016, 37(12), 1725-1732.
[40]
Yehia, A.M.; Mohamed, H.M. Green approach using monolithic column for simultaneous determination of coformulated drugs. J. Sep. Sci., 2016, 39(11), 2114-2122.
[41]
Lyu, D-Y.; Yang, C-X.; Yan, X-P. Fabrication of aluminum terephthalate metal-organic framework incorporated polymer monolith for the microextraction of non-steroidal anti-inflammatory drugs in water and urine samples. J. Chromatogr. A, 2015, 1393(Suppl. C), 1-7.
[42]
Chen, X.; Cao, Y.; Lv, D.; Zhu, Z.; Zhang, J.; Chai, Y. Comprehensive two-dimensional HepG2/cell membrane chromatography/monolithic column/time-of-flight mass spectrometry system for screening anti-tumor components from herbal medicines. J. Chromatogr. A, 2012, 1242(Suppl. C), 67-74.
[43]
Kuroda, Y.; Hamaguchi, R.; Tanimoto, T. Phospholipid-Modified ODS monolithic column for affinity prediction of hydrophobic basic drugs to phospholipids. Chromatographia, 2014, 77(5), 405-411.
[44]
Zhao, X.; Chen, W.; Liu, Z.; Guo, J.; Zhou, Z.; Crommen, J.; Moaddel, R.; Jiang, Z. A novel mixed phospholipid functionalized monolithic column for early screening of drug induced phospholipidosis risk. J. Chromatogr. A, 2014, 1367(Suppl. C), 99-108.
[45]
Alcaráz, M.R.; Siano, G.G.; Culzoni, M.J.; de la Peña, A.M.; Goicoechea, H.C. Modeling four and three-way fast high-performance liquid chromatography with fluorescence detection data for quantitation of fluoroquinolones in water samples. Anal. Chim. Acta, 2014, 809, 37-46.
[46]
Gritti, F.; Bell, D.S.; Guiochon, G. Particle size distribution and column efficiency. An ongoing debate revived with 1.9μm Titan-C18 particles. J. Chromatogr. A, 2014, 1355, 179-192.
[47]
Li, M.; Tarawally, M.; Liu, X.; Liu, X.; Guo, L.; Yang, L.; Wang, G. Application of cyclodextrin-modified gold nanoparticles in enantioselective monolith capillary electrochromatography. Talanta, 2013, 109(Suppl. C), 1-6.
[48]
Zhang, Z.; Wu, M.; Wu, R.a.; Dong, J.; Ou, J.; Zou, H. Preparation of Perphenylcarbamoylated β-Cyclodextrin-silica Hybrid Monolithic Column with “One-Pot” Approach for Enantioseparation by Capillary Liquid Chromatography. Anal. Chem., 2011, 83(9), 3616-3622.
[49]
He, J.; Fang, G.; Deng, Q.; Wang, S. Preparation, characterization and application of organic-inorganic hybrid ractopamine multi-template molecularly imprinted capillary monolithic column. Anal. Chim. Acta, 2011, 692(1), 57-62.
[50]
Hsu, C-H.; Cheng, Y-J.; Singco, B.; Huang, H-Y. Analyses of non-steroidal anti-inflammatory drugs by on-line concentration capillary electrochromatography using poly(stearyl methacrylate-divinylbenzene) monolithic columns. J. Chromatogr. A, 2011, 1218(2), 350-358.
[51]
Yoo, M.J.; Hage, D.S. Use of peak decay analysis and affinity microcolumns containing silica monoliths for rapid determination of drug-protein dissociation rates. J. Chromatogr. A, 2011, 1218(15), 2072-2078.
[52]
Nageswara Rao, R.; Ramachandra, B.; Mastan Vali, R. Reversed-phase liquid chromatographic separation of antiretroviral drugs on a monolithic column using ionic liquids as mobile phase additives. J. Sep. Sci., 2011, 34(5), 500-507.
[53]
Kumar, A.P.; Park, J.H. Fast separations of chiral β-blockers on a cellulose tris(3,5-dimethylphenylcarbamate)-coated zirconia monolithic column by capillary electrochromatography. J. Chromatogr. A, 2011, 1218(31), 5369-5373.
[54]
Abro, K.; Memon, N.; Bhanger, M.; Mahesar, S.; Perveen, S. Liquid Chromatographic Determination of Pioglitazone in Pharmaceuticals, Serum and Urine Samples. Pak. J. Anal. Environ. Chem., 2011, 12, 1.
[55]
Yuan, R.; Wang, Y.; Ding, G. Enantiomeric separation by capillary electrochromatography on a sulfated poly β-cyclodextrin modified silica-based monolith. Anal. Sci., 2010, 26(9), 943-947.
[56]
Liao, S.; Wang, X.; Lin, X.; Wu, X.; Xie, Z. A molecularly imprinted monolith for the fast chiral separation of antiparasitic drugs by pressurized CEC. J. Sep. Sci., 2010, 33(14), 2123-2130.
[57]
Heideloff, C.; Bunch, D.R.; Wang, S. A novel HPLC method for quantification of 10 antiepileptic drugs or metabolites in serum/plasma using a monolithic column. Ther. Drug Monit., 2010, 32(1), 102-106.
[58]
Li, Y.; Song, C.; Zhang, L.; Zhang, W.; Fu, H. Fabrication and evaluation of chiral monolithic column modified by β-cyclodextrin derivatives. Talanta, 2010, 80(3), 1378-1384.
[59]
Thomas, A.; Déglon, J.; Steimer, T.; Mangin, P.; Daali, Y.; Staub, C. On-line desorption of dried blood spots coupled to hydrophilic interaction/reversed-phase LC/MS/MS system for the simultaneous analysis of drugs and their polar metabolites. J. Sep. Sci., 2010, 33(6-7), 873-879.
[60]
Zhu, T.; Bi, W.; Row, K.H. A new ionic liquids-based monolithic column for determination of caffeine and theophylline. J. Appl. Polym. Sci., 2010, 118(6), 3425-3430.
[61]
Zhang, H.; Jiang, Y.; Wen, J.; Zhou, T.; Fan, G.; Wu, Y. Rapid determination of telmisartan in human plasma by HPLC using a monolithic column with fluorescence detection and its application to a bioequivalence study. J. Chromatogr. B, 2009, 877(29), 3729-3733.
[62]
Yoo, M.J.; Hage, D.S. Evaluation of silica monoliths in affinity microcolumns for high-throughput analysis of drug-protein interactions. J. Sep. Sci., 2009, 32(15-16), 2776-2785.
[63]
Zhu, T.; Row, K.H. Extraction and determination of cefazolin sodium and cefotaxime sodium in human urine with a weak ion exchange monolithic column. J. Liq. Chromatogr. Relat. Technol., 2009, 32(10), 1423-1433.
[64]
Zarghi, A.; Shafaati, A.; Foroutan, S.M.; Movahed, H. Rapid quantification of valsartan in human plasma by liquid chromatography using a monolithic column and a fluorescence detection: Application for pharmacokinetic studies. Sci. Pharm., 2008, 76(3), 439-450.
[65]
de Villiers, A.; Lestremau, F.; Szucs, R.; Gélébart, S.; David, F.; Sandra, P. Evaluation of ultra performance liquid chromatography. J. Chromatogr. A, 2006, 1127(1), 60-69.
[66]
Natishan, T.K. Developments in fast liquid chromatographic analysis of pharmaceuticals. J. Liq. Chromatogr. Relat. Technol., 2011, 34(13), 1133-1156.
[67]
Vincenti, M.; Cavanna, D.; Gerace, E.; Pirro, V.; Petrarulo, M.; Di Corcia, D.; Salomone, A. Fast screening of 88 pharmaceutical drugs and metabolites in whole blood by ultrahigh-performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2013, 405(2-3), 863-879.
[68]
MacNair, J.E.; Patel, K.D.; Jorgenson, J.W. Ultrahigh-Pressure Reversed-Phase capillary liquid chromatography: isocratic and gradient elution using columns packed with 1.0-μm particles. Anal. Chem., 1999, 71(3), 700-708.
[69]
Fekete, S.; Oláh, E.; Fekete, J. Fast liquid chromatography: The domination of core-shell and very fine particles. J. Chromatogr. A, 2012, 1228, 57-71.
[70]
DeStefano, J.; Langlois, T.; Kirkland, J. Characteristics of superficially-porous silica particles for fast HPLC: some performance comparisons with sub-2-µm particles. J. Chromatogr. Sci., 2008, 46(3), 254-260.
[71]
Kirkland, J.J.; Schuster, S.A.; Johnson, W.L.; Boyes, B.E. Fused-core particle technology in high-performance liquid chromatography: an overview. J. Pharm. Anal., 2013, 3(5), 303-312.
[72]
Miyabe, K. Evaluation of chromatographic performance of various packing materials having different structural characteristics as stationary phase for fast high performance liquid chromatography by new moment equations. J. Chromatogr. A, 2008, 1183(1), 49-64.
[73]
Walter, T.H.; Andrews, R.W. Recent innovations in UHPLC columns and instrumentation. TrAC Tr. Anal. Chem., 2014, 63, 14-20.
[74]
Fekete, S.; Kohler, I.; Rudaz, S.; Guillarme, D. Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal., 2014, 87, 105-119.
[75]
Fountain, K.J.; Neue, U.D.; Grumbach, E.S.; Diehl, D.M. Effects of extra-column band spreading, liquid chromatography system operating pressure; column temperature on the performance of sub-2-μm porous particles. J. Chromatogr. A, 2009, 1216(32), 5979-5988.
[76]
Wu, N.; Bradley, A.C.; Welch, C.J.; Zhang, L. Effect of extra‐column volume on practical chromatographic parameters of sub‐2‐μm particle‐packed columns in ultra‐high pressure liquid chromatography. J. Sep. Sci., 2012, 35(16), 2018-2025.
[77]
McCalley, D.V. Some practical comparisons of the efficiency and overloading behaviour of sub-2μm porous and sub-3μm shell particles in reversed-phase liquid chromatography. J. Chromatogr. A, 2011, 1218(20), 2887-2897.
[78]
Patel, D.C.; Breitbach, Z.S.; Wahab, M.F.; Barhate, C.L.; Armstrong, D.W. Gone in seconds: praxis, performance; peculiarities of ultrafast chiral liquid chromatography with superficially porous particles. Anal. Chem., 2015, 87(18), 9137-9148.
[79]
D’Orazio, G.; Rocco, A.; Fanali, S. Fast-liquid chromatography using columns of different internal diameters packed with sub-2μm silica particles. J. Chromatogr. A, 2012, 1228, 213-220.
[80]
Perrenoud, A.G-G.; Veuthey, J-L.; Guillarme, D. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the analysis of pharmaceutical compounds. J. Chromatogr. A, 2012, 1266, 158-167.
[81]
Krishna, S.R.; Rao, B.; Rao, N.S. A validated rapid stability-indicating method for the determination of related substances in solifenacin succinate by ultra-fast liquid chromatography. J. Chromatogr. Sci., 2010, 48(10), 807-810.
[82]
Bandarkar, F.; Khattab, I. Simultaneous estimation of glibenclamide, gliclazide; metformin hydrochloride from bulk and commercial products using a validated ultra fast liquid chromatography technique. J. Liq. Chromatogr. Relat. Technol., 2010, 33(20), 1814-1830.
[83]
Stoll, D.R.; Talus, E.S.; Harmes, D.C.; Zhang, K. Evaluation of detection sensitivity in comprehensive two-dimensional liquid chromatography separations of an active pharmaceutical ingredient and its degradants. Anal. Bioanal. Chem., 2015, 407(1), 265-277.
[84]
Fernández, P.; González, M.; Regenjo, M.; Ares, A.M.; Fernández, A.M.; Lorenzo, R.A.; Carro, A.M. Analysis of drugs of abuse in human plasma using microextraction by packed sorbents and ultra-high-performance liquid chromatography. J. Chromatogr. A, 2017, 1485(Suppl. C), 8-19.
[85]
Schappler, J.; Nicoli, R.; Nguyen, D.; Rudaz, S.; Veuthey, J-L.; Guillarme, D. Coupling ultra high-pressure liquid chromatography with single quadrupole mass spectrometry for the analysis of a complex drug mixture. Talanta, 2009, 78(2), 377-387.
[86]
Borges, E.M.; Rostagno, M.A.; Meireles, M.A.A. Sub-2 [small mu ]m fully porous and partially porous (core-shell) stationary phases for reversed phase liquid chromatography. RSC Advances, 2014, 4(44), 22875-22887.
[87]
Begou, O.; Kontou, A.; Raikos, N.; Sarafidis, K.; Roilides, E.; Papadoyannis, I.N.; Gika, H.G. An ultra-high pressure liquid chromatography-tandem mass spectrometry method for the quantification of teicoplanin in plasma of neonates. J. Chromatogr. B, 2017, 1047, 215-222.
[88]
Bernardi, G.; Rizzetti, T.M.; Adaime, M.B.; Zanella, R.; Prestes, O.D. Fast sample preparation method using ultra-high performance liquid chromatography coupled to tandem mass spectrometry for natamycin determination in wine samples. J. Braz. Chem. Soc., 2017, 28, 831-837.
[89]
Panda, S.S.; Sharma, K.; Mohanty, B.; Bera, V.V.; Acharjya, S.K.; Chowdhury, B. Quality by Design (QbD) enabled enhanced bioanalytical extraction and UFLC determination of vilazodone from rat serum. J. Liq. Chromatogr. Relat. Technol., 2017, 40(15), 775-782.
[90]
Campos-Mañas, M.C.; Plaza-Bolaños, P.; Sánchez-Pérez, J.A.; Malato, S.; Agüera, A. Fast determination of pesticides and other contaminants of emerging concern in treated wastewater using direct injection coupled to highly sensitive ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2017, 1507(Suppl. C), 84-94.
[91]
Pugajeva, I.; Rusko, J.; Perkons, I.; Lundanes, E.; Bartkevics, V. Determination of pharmaceutical residues in wastewater using high performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry. J. Pharm. Biomed. Anal., 2017, 133(Suppl. C), 64-74.
[92]
Gonzalez, A.G.; Taraba, L.; Hraníček, J.; Kozlík, P.; Coufal, P. Determination of dasatinib in the tablet dosage form by ultra high performance liquid chromatography, capillary zone electrophoresis; sequential injection analysis. J. Sep. Sci., 2017, 40(2), 400-406.
[93]
Liu, C.; Zhang, A.; Yan, G-l.; Shi, H.; Sun, H.; Han, Y.; Zhou, Y.; Wang, X. High-throughput ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry method for the rapid analysis and characterization of multiple constituents of Radix Polygalae. J. Sep. Sci., 2017, 40(3), 663-670.
[94]
Wong, J.M.; Jones, J.W.; Jiang, W.; Polli, J.E.; Kane, M.A. Quantification of lamotrigine in patient plasma using a fast liquid chromatography-tandem mass spectrometry method with backflush technology. Ther. Drug Monit., 2015, 37(2), 188-197.
[95]
Xiang, S.X.; Kang, C.; Xie, L.X.; Yin, X.L.; Gu, H.W.; Yu, R.Q. Fast quantitative analysis of four tyrosine kinase inhibitors in different human plasma samples using three‐way calibration‐assisted liquid chromatography with diode array detection. J. Sep. Sci., 2015, 38(16), 2781-2788.
[96]
Petrović, M.; Škrbić, B.; Živančev, J.; Ferrando-Climent, L.; Barcelo, D. Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole-linear ion trap in different types of water in Serbia. Sci. Total Environ., 2014, 468, 415-428.
[97]
Lebel, P.; Gagnon, J.; Furtos, A.; Waldron, K.C. A rapid, quantitative liquid chromatography-mass spectrometry screening method for 71 active and 11 natural erectile dysfunction ingredients present in potentially adulterated or counterfeit products. J. Chromatogr. A, 2014, 1343, 143-151.
[98]
Jia, Y.; Li, X.; Xie, H.; Shen, J.; Luo, J.; Wang, J.; Wang, K.D.; Liu, Q.; Kong, L. Analysis and pharmacokinetics studies of gastrodin and p-hydroxybenzyl alcohol in dogs using ultra fast liquid chromatography-tandem mass spectrometry method. J. Pharm. Biomed. Anal., 2014, 99, 83-88.
[99]
Fernández, M.M.R.; Di Fazio, V.; Wille, S.M.R.; Kummer, N.; Samyn, N. A quantitative, selective and fast ultra-high performance liquid chromatography tandem mass spectrometry method for the simultaneous analysis of 33 basic drugs in hair (amphetamines, cocaine, opiates, opioids and metabolites). J. Chromatogr. B, 2014, 965, 7-18.
[100]
Zhang, G-J.; Fang, B-H.; Liu, Y-H.; Wang, X-F.; Xu, L-X.; Zhang, Y-P.; He, L-M. Development of a multi-residue method for fast screening and confirmation of 20 prohibited veterinary drugs in feedstuffs by liquid chromatography tandem mass spectrometry. J. Chromatogr. B, 2013, 936, 10-17.
[101]
Colin, P.; De Bock, L.; T’jollyn, H.; Boussery, K.; Van Bocxlaer, J. Development and validation of a fast and uniform approach to quantify β-lactam antibiotics in human plasma by solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry. Talanta, 2013, 103, 285-293.
[102]
Becker, S.; Thiery, J.; Ceglarek, U. Evaluation of a novel commercial assay for the determination of cyclosporine a, tacrolimus, sirolimus; everolimus by liquid chromatography-tandem mass spectrometric assay. Ther. Drug Monit., 2013, 35(1), 129-132.
[103]
Herrera-Herrera, A.V.; Hernández-Borges, J.; Borges-Miquel, T.M.; Rodríguez-Delgado, M.Á. Dispersive liquid-liquid microextraction combined with ultra-high performance liquid chromatography for the simultaneous determination of 25 sulfonamide and quinolone antibiotics in water samples. J. Pharm. Biomed. Anal., 2013, 75, 130-137.
[104]
Högner, C.; Sturm, S.; Seger, C.; Stuppner, H. Development and validation of a rapid ultra-high performance liquid chromatography diode array detector method for Vitex agnus-castus. J. Chromatogr. B, 2013, 927, 181-190.
[105]
Masiá, A.; Ibáñez, M.; Blasco, C.; Sancho, J.; Picó, Y.; Hernández, F. Combined use of liquid chromatography triple quadrupole mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry in systematic screening of pesticides and other contaminants in water samples. Anal. Chim. Acta, 2013, 761, 117-127.
[106]
Li, G.; Han, W.; Jiang, W.; Zhang, D.; Ye, W.; Chen, X.; Ma, A. Quantitative determination of arenobufagin in rat plasma by ultra fast liquid chromatography-tandem mass spectrometry and its application in a pharmacokinetic study. J. Chromatogr. B, 2013, 939, 86-91.
[107]
Fernández, P.; González, C.; Pena, M.T.; Carro, A.M.; Lorenzo, R.A. A rapid ultrasound-assisted dispersive liquid-liquid microextraction followed by ultra-performance liquid chromatography for the simultaneous determination of seven benzodiazepines in human plasma samples. Anal. Chim. Acta, 2013, 767, 88-96.
[108]
Musenga, A.; Cowan, D.A. Use of ultra-high pressure liquid chromatography coupled to high resolution mass spectrometry for fast screening in high throughput doping control. J. Chromatogr. A, 2013, 1288, 82-95.
[109]
Ansermot, N.; Brawand-Amey, M.; Kottelat, A.; Eap, C.B. Fast quantification of ten psychotropic drugs and metabolites in human plasma by ultra-high performance liquid chromatography tandem mass spectrometry for therapeutic drug monitoring. J. Chromatogr. A, 2013, 1292, 160-172.
[110]
Rhea, J.M.; Snyder, M.L.; Winkler, A.M.; Abou-Diwan, C.; Fantz, C.R.; Ritchie, J.C.; Szlam, F.; Tanaka, K.A.; Molinaro, R.J. Development of a fast and simple liquid chromatography-tandem mass spectrometry method for the quantitation of argatroban in patient plasma samples. J. Chromatogr. B, 2012, 893, 168-172.
[111]
Lankheet, N.A.; Hillebrand, M.J.; Rosing, H.; Schellens, J.H.; Beijnen, J.H.; Huitema, A.D. Method development and validation for the quantification of dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, sorafenib and sunitinib in human plasma by liquid chromatography coupled with tandem mass spectrometry. Biomed. Chromatogr., 2013, 27(4), 466-476.
[112]
Tölgyesi, Á.; Sharma, V.K.; Fekete, S.; Fekete, J.; Simon, A.; Farkas, S. Development of a rapid method for the determination and confirmation of nitroimidazoles in six matrices by fast liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal., 2012, 64, 40-48.
[113]
Nováková, L.; Gottvald, T.; Vlčková, H.; Trejtnar, F.; Mandíková, J.; Solich, P. Highly sensitive fast determination of entecavir in rat urine by means of hydrophilic interaction chromatography-ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2012, 1259, 237-243.
[114]
Liu, S.; Xing, J.; Zheng, Z.; Song, F.; Liu, Z.; Liu, S. Ultrahigh performance liquid chromatography-triple quadrupole mass spectrometry inhibitors fishing assay: a novel method for simultaneously screening of xanthine oxidase inhibitor and superoxide anion scavenger in a single analysis. Anal. Chim. Acta, 2012, 715, 64-70.
[115]
Fernández, M.M.R.; Wille, S.M.; Samyn, N. Quantitative method validation for the analysis of 27 antidepressants and metabolites in plasma with ultraperformance liquid chromatography-tandem mass spectrometry. Ther. Drug Monit., 2012, 34(1), 11-24.
[116]
Yang, B.; Weyers, A.; Baik, J.Y.; Sterner, E.; Sharfstein, S.; Mousa, S.A.; Zhang, F.; Dordick, J.S.; Linhardt, R.J. Ultra-performance ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for heparin disaccharide analysis. Anal. Biochem., 2011, 415(1), 59-66.
[117]
Salomone, A.; Gerace, E.; Brizio, P.; Gennaro, M.C.; Vincenti, M. A fast liquid chromatography-tandem mass spectrometry method for determining benzodiazepines and analogues in urine. Validation and application to real cases of forensic interest. J. Pharm. Biomed. Anal., 2011, 56(3), 582-591.
[118]
Domínguez-Romero, J.C.; García-Reyes, J.F.; Molina-Díaz, A. Screening and quantitation of multiclass drugs of abuse and pharmaceuticals in hair by fast liquid chromatography electrospray time-of-flight mass spectrometry. J. Chromatogr. B, 2011, 879(22), 2034-2042.
[119]
Hasselstrøm, J. Quantification of antidepressants and antipsychotics in human serum by precipitation and ultra high pressure liquid chromatography-tandem mass spectrometry. J. Chromatogr. B, 2011, 879(1), 123-128.
[120]
Chen, Q.; Luo, S.; Zhang, Y.; Chen, Z. Development of a liquid chromatography-mass spectrometry method for the determination of ursolic acid in rat plasma and tissue: Application to the pharmacokinetic and tissue distribution study. Anal. Bioanal. Chem., 2011, 399(8), 2877-2884.
[121]
Keski-Rahkonen, P.; Huhtinen, K.; Poutanen, M.; Auriola, S. Fast and sensitive liquid chromatography-mass spectrometry assay for seven androgenic and progestagenic steroids in human serum. J. Steroid Biochem. Mol. Biol., 2011, 127(3), 396-404.
[122]
Sousa, J.; Alves, G.; Fortuna, A.; Pena, A.; Lino, C.; Falcão, A. Development and validation of a fast isocratic liquid chromatography method for the simultaneous determination of norfloxacin, lomefloxacin and ciprofloxacin in human plasma. Biomed. Chromatogr., 2011, 25(5), 535-541.
[123]
Guddat, S.; Solymos, E.; Orlovius, A.; Thomas, A.; Sigmund, G.; Geyer, H.; Thevis, M.; Schänzer, W. High‐throughput screening for various classes of doping agents using a new ‘dilute‐and‐shoot’liquid chromatography‐tandem mass spectrometry multi‐target approach. Drug Test. Anal., 2011, 3(11-12), 836-850.
[124]
Badoud, F.; Grata, E.; Perrenoud, L.; Saugy, M.; Rudaz, S.; Veuthey, J-L. Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. II: Confirmatory analysis. J. Chromatogr. A, 2010, 1217(25), 4109-4119.
[125]
Decosterd, L.A.; Rochat, B.; Pesse, B.; Mercier, T.; Tissot, F.; Widmer, N.; Bille, J.; Calandra, T.; Zanolari, B.; Marchetti, O. Multiplex ultra-performance liquid chromatography-tandem mass spectrometry method for simultaneous quantification in human plasma of fluconazole, itraconazole, hydroxyitraconazole, posaconazole, voriconazole, voriconazole-N-oxide, anidulafungin; caspofungin. Antimicrob. Agents Chemother., 2010, 54(12), 5303-5315.
[126]
Chauve, B.; Guillarme, D.; Cléon, P.; Veuthey, J.L. Evaluation of various HILIC materials for the fast separation of polar compounds. J. Sep. Sci., 2010, 33(6-7), 752-764.
[127]
Chiaochan, C.; Koesukwiwat, U.; Yudthavorasit, S.; Leepipatpiboon, N. Efficient hydrophilic interaction liquid chromatography-tandem mass spectrometry for the multiclass analysis of veterinary drugs in chicken muscle. Anal. Chim. Acta, 2010, 682(1), 117-129.
[128]
Corona, G.; Elia, C.; Casetta, B.; Toffoli, G. Fast liquid chromatography-tandem mass spectrometry method for routine assessment of irinotecan metabolic phenotype. Ther. Drug Monit., 2010, 32(5), 638-646.
[129]
Humbert, L.; Grisel, F.; Richeval, C.; Lhermitte, M. Screening of xenobiotics by ultra-performance liquid chromatography-mass spectrometry using in-source fragmentation at increasing cone voltages: library constitution and an evaluation of spectral stability. J. Anal. Toxicol., 2010, 34(9), 571-580.
[130]
Pietrogrande, M.C.; Dondi, F.; Ciogli, A.; Gasparrini, F.; Piccin, A.; Serafini, M. Characterization of new types of stationary phases for fast and ultra-fast liquid chromatography by signal processing based on AutoCovariance Function: A case study of application to Passiflora incarnata L. extract separations. J. Chromatogr. A, 2010, 1217(26), 4355-4364.
[131]
Huerta-Fontela, M.; Galceran, M.T.; Ventura, F. Fast liquid chromatography-quadrupole-linear ion trap mass spectrometry for the analysis of pharmaceuticals and hormones in water resources. J. Chromatogr. A, 2010, 1217(25), 4212-4222.
[132]
Else, L.; Watson, V.; Tjia, J.; Hughes, A.; Siccardi, M.; Khoo, S.; Back, D. Validation of a rapid and sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) assay for the simultaneous determination of existing and new antiretroviral compounds. J. Chromatogr. B, 2010, 878(19), 1455-1465.
[133]
Iriarte, G.; Gonzalez, O.; Ferreirós, N.; Maguregui, M.I.; Alonso, R.M.; Jiménez, R.M. Validation of a fast liquid chromatography-UV method for the analysis of drugs used in combined cardiovascular therapy in human plasma. J. Chromatogr. B, 2009, 877(27), 3045-3053.
[134]
Koster, R.A.; Dijkers, E.C.; Uges, D.R. Robust, high-throughput LC-MS/MS method for therapeutic drug monitoring of cyclosporine, tacrolimus, everolimus; sirolimus in whole blood. Ther. Drug Monit., 2009, 31(1), 116-125.
[135]
Thomas, A.; Kohler, M.; Schänzer, W.; Kamber, M.; Delahaut, P.; Thevis, M. Determination of Synacthen in urine for sports drug testing by means of nano‐ultra‐performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2009, 23(17), 2669-2674.
[136]
Chico, J.; Rubies, A.; Centrich, F.; Companyo, R.; Prat, M.D.; Granados, M. High-throughput multiclass method for antibiotic residue analysis by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2008, 1213(2), 189-199.
[137]
Huidobro, A.; Pruim, P.; Schoenmakers, P.; Barbas, C. Ultra rapid liquid chromatography as second dimension in a comprehensive two-dimensional method for the screening of pharmaceutical samples in stability and stress studies. J. Chromatogr. A, 2008, 1190(1), 182-190.
[138]
Aguilera-Luiz, M.M.; Vidal, J.L.; Romero-Gonzalez, R.; Frenich, A.G. Multi-residue determination of veterinary drugs in milk by ultra-high-pressure liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2008, 1205(1-2), 10-16.
[139]
Min, J.Z.; Shimizu, Y.; Toyo’oka, T.; Inagaki, S.; Kikura-Hanajiri, R.; Goda, Y. Simultaneous determination of 11 designated hallucinogenic phenethylamines by ultra-fast liquid chromatography with fluorescence detection. J. Chromatogr. B, 2008, 873(2), 187-194.
[140]
Qi, L-W.; Cao, J.; Li, P.; Yu, Q-T.; Wen, X-D.; Wang, Y-X.; Li, C-Y.; Bao, K-D.; Ge, X-X.; Cheng, X-L. Qualitative and quantitative analysis of Radix Astragali products by fast high-performance liquid chromatography-diode array detection coupled with time-of-flight mass spectrometry through dynamic adjustment of fragmentor voltage. J. Chromatogr. A, 2008, 1203(1), 27-35.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 4
Year: 2019
Page: [349 - 372]
Pages: 24
DOI: 10.2174/1573411014666180912125155
Price: $58

Article Metrics

PDF: 40
HTML: 2