Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Phosphazene Base-Catalyzed Double Michael Addition: Stereoselective Synthesis of Cyclohexanones

Author(s): Yang-Guo Li, Yang Zhang, Guang-Fen Du*, Cheng-Zhi Gu and Lin He*

Volume 16, Issue 1, 2019

Page: [76 - 80] Pages: 5

DOI: 10.2174/1570178615666180912115748

Price: $65

Abstract

Phosphazene bases have been utilized as efficient organocatalysts to catalyze the double Michael additions of divinyl ketones with active methylenes to afford functionalized cyclohexanones in 36-91% yields with >25:1 diastereoselectivity.

Keywords: Phosphazene base, double Michael addition, cyclohexanone, organocatalysis, divinyl ketone, methylene.

« Previous
Graphical Abstract
[1]
(a) Ishikawa, T. In Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts; John Wiley & Sons: UK, 2009.
(b) Kondo, Y. Phosphazene: Preparation, Reaction and Catalytic Role.Superbases for Organic Synthesis; John Wiley & Sons, 2009.
(c) Verkade, J.G.; Kisanga, P.B. Tetrahedron, 2003, 59, 7819-7858.
(d) Schwesinger, R.; Schlemper, H. Angew. Chem. Int. Ed., 1987, 26, 1167-1169.
(e) Schwesinger, R.; Hasenfratz, C.; Schlemper, H.; Walz, L.; Peters, E-M.; Peters, K.; von Schnering, H.G. Angew. Chem. Int. Ed., 1993, 32, 1361-1363.
(f) Verkade, J.G.; Kisanga, P.B. J. Org. Chem., 2000, 65, 5431-5432.
[2]
(a) Imahori, T.; Kondo, Y. J. Am. Chem. Soc., 2003, 125, 8082-8083.
(b) Kobayashi, K.; Ueno, M.; Kondo, Y. Chem. Commun. , 2006, 3128-3130.
(c) Ueno, M.; Yonemoto, M.; Hashimoto, M.; Wheatley, A.E.H.; Naka, H.; Kondo, Y. Chem. Commun. , 2007, 2264-2266.
(d) Kobayashi, K.; Ueno, M.; Naka, H.; Kondo, Y. Chem. Commun. , 2008, 3780-3782.
(e) Kobayashi, K.; Ueno, M.; Naka, H.; Kondo, Y. Chem.-Eur. J., 2009, 15, 9805-9809.
(f) Araki, Y.; Kobayashi, K.; Yonemoto, M.; Kondo, Y. Org. Biomol. Chem., 2011, 9, 78-80.
(g) Kawai, H.; Yuan, Z.; Tokunaga, E.; Shibata, N. Org. Biomol. Chem., 2013, 11, 1446-1450.
(h) Kisanga, P.; Verkade, J. J. Org. Chem., 1999, 64, 4298-4303.
(i)D’Sa, B.; Kisanga, P.B.; Verkade, J.G. J. Org. Chem., 1998, 63, 3961-3967.
(j)Kisanga, P.; McLeod, D.; D’Sa, B.; Verkade, J. J. Org. Chem., 1999, 64, 3090-3094.
(k)Kisanga, P.; D’Sa, B.; Verkade, J. J. Org. Chem., 1998, 63, 10057-10059.
(l)Arumugam, S.; Verkade, J.G. J. Org. Chem., 1997, 62, 4827-4828.
(m)Kisanga, P.; D’Sa, B.; Verkade, J.G. Tetrahedron, 2001, 57, 8047-8052.
(n)Yildiz, Y.; Pamuk, H.; Karatepe, Ö.; Dasdelen, Z.; Şen, F. RSC Advances, 2016, 6, 32858-32862.
(o)Yildiz, Y.; Kuzu, S.; Sen, B.; Savk, A.; Akocak, S.; Şen, F. Int. J. Hydrogen Energy, 2017, 42, 13061-13069.
(p)Erken, E.; Yildiz, Y.; Kilbaş, B. Şen, F. J. Nanosci. Nanotechnol., 2016, 16, 5944-5950.
[3]
(a) Du, G-F.; Wang, Y.; Gu, C-Z.; Bai, B.; He, L. RSC Advances, 2015, 5, 35421-35424.
(b) Ueno, M.; Hori, C.; Suzawa, K.; Ebisawa, M.; Kondo, Y. Eur. J. Org. Chem., 2005, 2005, 1965-1968.
(c) Suzawa, K.; Ueno, M.; Wheatley, A.E.H.; Kondo, Y. Chem. Commun. , 2006, 4850-4852.
(d) Naka, H.; Koseki, D.; Kondo, Y. Adv. Synth. Catal., 2008, 350, 1901-1906.
(e) Chintareddy, V.R.; Wadhwa, K.; Verkade, J.G. J. Org. Chem., 2009, 74, 8118-8132.
(f) Wadhwa, K.; Verkade, J.G. J. Org. Chem., 2009, 74, 4368-4371.
Kobayashi, K.; Ueno, M.; Kondo, Y. Chem; Commum, 2006, pp. pp. 3128-3130.
(h) Wadhwa, K.; Verkade, J.G. J. Org. Chem., 2009, 74, 5683-5686.
(i)Wadhwa, K.; Verkade, J.G. J. Org. Chem., 2009, 74, 4368-4371.
(j)Chintareddy, V.R.; Wadhwa, K.; Verkade, J.G. J. Org. Chem., 2011, 76, 4482-4488.
(k)Chintareddy, V.R.; Wadhwa, K.; Verkade, J.G. J. Org. Chem., 2009, 74, 8118-8132.
(l)Wadhwa, K.; Chintareddy, V.R.; Verkade, J.G. J. Org. Chem., 2009, 74, 6681-6690.
[4]
Zhao, J.; Hadjichristidis, N.; Schlaad, H. Polymerization Using Phosphazene Bases.Anionic Polymerization: Principles, Practice, Strength, Consequences and Applications; Hadjichristidis, N; Hirao, A., Ed.; Springer: Tokyo, 2015, pp. 429-449.
(b) Boileau, S.; Illy, N. Prog. Polym. Sci., 2011, 36, 1132-1151.
(c) Hu, S-Y.; Dai, G-X.; Zhao, J-P.; Zhang, G-G. Macromolecules, 2016, 49, 4462-4472.
(d) Alamri, H.; Zhao, J.; Pahovnik, D.; Hadjichristidis, N. Polym. Chem., 2014, 5, 5471-5478.
(e) Zhao, J.; Hadjichristidis, N.; Gnanou, Y. Polimery, 2014, 59, 49-59.
(f) Isono, T.; Asai, S.; Satoh, Y.; Takaoka, T.; Tajima, K.; Kakuchi, T.; Satoh, T. Macromolecules, 2015, 48, 3217-3229.
(g) Isono, T.; Kamoshida, K.; Satoh, Y.; Takaoka, T.; Sato, S.; Satoh, T.; Kakuchi, T. Macromolecules, 2013, 46, 3841-3849.
(h) Satoh, Y.; Miyachi, K.; Matsuno, H.; Isono, T.; Tajima, K.; Kakuchi, T.; Satoh, T. Macromolecules, 2016, 49, 499-509.
[5]
(a) Kisanga, P.B.; Ilankumaran, P.; Fetterly, B.M.; Verkade, J.G. J. Org. Chem., 2002, 67, 3555-3560.
(b) Simón, L.; Paton, R.S. J. Org. Chem., 2017, 82, 3855-3863.
(c) Uraguchi, D.; Yoshioka, K.; Ueki, Y.; Ooi, T. J. Am. Chem. Soc., 2012, 134, 19370-19373.
(d) Bensa, D.; Brunel, J-M.; Buono, G.; Rodriguez, J. Synlett, 2001, 2001, 715-717.
(e) Uraguchi, D.; Yoshioka, K.; Ooi, T. Nat. Commun., 2017, 8, 14793.
(f) Venkat, C.R.; Verkade, J.G. J. Org. Chem., 2007, 72, 3093-3096.
(g) Masuda, K.; Nakano, J.; Yamashita, Y.; Kobayashi, S. Asian J. Org. Chem., 2013, 2, 303-306.
(h) Fetterly, B.M.; Jana, N.K.; Verkade, J.G. Tetrahedron, 2006, 62, 440-456.
(i)Daşdelen, Z.; Yildiz, Y.; Eriş, S.; Şen, F. Appl. Catal. B, 2017, 219, 511-516.
(j)Şen, B.; Akdere, E.H.; Şavk, A.; Gültekin, E.; Parali, Ö.; Göksu, H.; Şen, F. Appl. Catal. B, 2018, 225, 148-153.
(k)Aday, B.; Pamuk, H.; Kaya, M.; Şen, F. J. Nanosci. Nanotechnol., 2016, 16, 6498-6504.
(l)Aday, B.; Yildiz, Y.; Ulus, R.; Eriş, S.; Şen, F.; Kaya, M. New J. Chem., 2016, 40, 748-754.
(m)Yildiz, Y.; Erken, E.; Pamuk, H.; Sert, H.; Şen, F. J. Nanosci. Nanotechnol., 2016, 16, 5951-5958.
[6]
(a) Zhang, Y.; Li, R.; He, Y-H.; Guan, Z. Catal. Lett., 2017, 147, 633-639.
(b) Xu, D-Z.; Zhan, M-Z.; Huang, Y. Tetrahedron, 2014, 70, 176-180.
(c) Bredenkötter, B.; Linke, J.; Kuck, D. Eur. J. Org. Chem., 2017, 2017, 4414-4428.
(d) Liu, C-H.; Xu, Y-L.; Niu, S-Y.; Wei, L-Q.; Liu, Y.; Wang, Y-B.; Zhu, J-Y.; Fu, J-Y.; Yuan, J-F. Chin. J. Chem., 2017, 35, 1231-1238.
(e) Chande, M.S.; Khanwelkar, R.R. Tetrahedron Lett., 2005, 46, 7787-7792.
(f) Zhang, D.; Xu, X.; Tan, J.; Liu, Q. Synlett, 2010, 2010, 917-920.
(g) Li, J-T.; Xu, W-Z.; Chen, G-F.; Li, T-S. Ultrason. Sonochem., 2005, 12, 473-476.
(h) Li, X.; Wang, B.; Zhang, J.; Yan, M. Org. Lett., 2011, 13, 374-377.
(i)De Fusco, C.; Lattanzi, A. Eur. J. Org. Chem., 2011, 2011, 3728-3731.
(j)Ramachary, D.B.; Reddy, Y.V.; Prakash, B.V. Org. Biomol. Chem., 2008, 6, 719-726.
(k)Alvarez, S.G.; Hasegawa, S.; Hirano, M.; Komiya, S. Tetrahedron Lett., 1998, 39, 5209-5212.
(l)Ranu, B.C.; Banerjee, S. Org. Lett., 2005, 7, 3049-3052.
(m)Wang, L-L. Peng. L.; Bai, J.-F.; Jia, L.-N.; Luo, X.-Y.; Huang, Q.-C.; Xu, X.-Y.; Wang, L.-X. Chem. Commun. , 2011, 47, 5593-5595.
[7]
(a) Guo, H.; Xing, F.; Du, G-F.; Huang, K-W.; Dai, B.; He, L. J. Org. Chem., 2015, 80, 12606-12613.
(b) Li, Y-Z.; Wang, Y.; Du, G-F.; Zhang, H-Y.; Yang, H-L.; He, L. Asian J. Org. Chem., 2015, 4, 327-332.
(c) Cong, Z-S.; Li, Y-G.; Du, G-F.; Gu, C-Z.; Dai, B.; He, L. Chem. Commun. , 2017, 53, 13129-13132.
(d) Cong, Z-S.; Li, Y-G.; Du, G-F.; Gu, C-Z.; Dai, B.; He, L. Chem. Commun. , 2017, 53, 13129.
(e) Xing, F.; Feng, Z-N.; Wang, Y.; Du, G-F.; Gu, C-Z.; Dai, B.; He, L. Adv. Synth. Catal., 2018, 360, 1704-1710.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy