Neuroprotective Strategies for Neurological Disorders by Natural Products: An update

Author(s): Muneeb U. Rehman, Adil Farooq Wali, Anas Ahmad, Sheeba Shakeel, Saiema Rasool, Rayeesa Ali, Shazada Mudasir Rashid, Hassan Madkhali, Majid Ahmad Ganaie, Rehan Khan*.

Journal Name: Current Neuropharmacology

Volume 17 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Nature has bestowed mankind with surplus resources (natural products) on land and water. Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. These natural products have been experimentally documented to possess various biological properties such as antioxidant, anti-inflammatory and anti-apoptotic activities. In vitro and in vivo studies have further established the usefulness of natural products in various preclinical models of neurodegenerative disorders. Natural products include phytoconstituents, like polyphenolic antioxidants, found in herbs, fruits, nuts, vegetables and also in marine and freshwater flora. These phytoconstituents may potentially suppress neurodegeneration and improve memory as well as cognitive functions of the brain. Also, they are known to play a pivotal role in the prevention and cure of different neurodegenerative diseases, such as Alzheimer’s disease, epilepsy, Parkinson’s disease and other neuronal disorders. The large-scale neuro-pharmacological activities of natural products have been documented due to the result of either the inhibition of inflammatory processes, or the up-regulation of various cell survival proteins or a combination of both. Due to the scarcity of human studies on neuroprotective effects of natural products, this review focuses on the various established activities of natural products in in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications using the available knowledge in the literature.

Keywords: Neurological disorders, neuroprotection, plant products, nutraceuticals, natural compounds, chronic neurodegenerative diseases.

[1]
Borchardt JK. The beginnings of drug therapy: Ancient mesopotamian medicine. Drug News Perspect 2002; 15(3): 187-92.
[http://dx.doi.org/10.1358/dnp.2002.15.3.840015] [PMID: 12677263]
[2]
Petlevski R, Hadžija M, Slijepčević M, Juretić D. Effect of ‘antidiabetis’ herbal preparation on serum glucose and fructosamine in NOD mice. J Ethnopharmacol 2001; 75(2-3): 181-4.
[http://dx.doi.org/10.1016/S0378-8741(01)00177-5] [PMID: 11297848]
[3]
Bhat SA, Kamal MA, Yarla NS, Ashraf GM. Synopsis on managment strategies for neurodegenerative disorders: Challenges from bench to bedside in successful drug discovery and development. Curr Top Med Chem 2017; 17(12): 1371-8.
[http://dx.doi.org/10.2174/1568026616666161222121229] [PMID: 28017151]
[4]
Dadhania VP, Trivedi PP, Vikram A, Tripathi DN. Nutraceuticals against neurodegeneration: A mechanistic insight. Curr Neuropharmacol 2016; 14(6): 627-40.
[http://dx.doi.org/ 10.2174/1570159X14666160104142223] [PMID: 26725888]
[5]
Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev 2012; 6(12): 81-90.
[http://dx.doi.org/dx.doi. org/10.4103/0973-7847.99898] [PMID: 23055633]
[6]
Singh S, Dikshit M. Apoptotic neuronal death in Parkinson’s disease: involvement of nitric oxide. Brain Res Brain Res Rev 2007; 54(2): 233-50.
[http://dx.doi.org/10.1016/j.brainresrev.2007. 02.001] [PMID: 17408564]
[7]
Vasant M.S.; Kumar, H.; Kim, I.-S.; Koppulla, S.; Kim, B.-W.; Choi, D.-K. Strategic selection of neuroinflammatory models in Parkinson's disease: evidence from experimental studies CNS Neurol. Disord. Drug Targets, (Formerly Current Drug Targets-CNS & Neurological Disorders), 2013, 12(5), 680-697
[8]
Fox, S. H.; Brotchie, J. M. The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future In Prog. Brain Res. Elsevier, 2010, 184, 133-157.
[9]
Wang ZY, Liu JY, Yang CB, et al. Neuroprotective natural products for the treatment of parkinson’s disease by targeting the autophagy-lysosome pathway: A systematic review. Phytother Res 2017; 31(8): 1119-27.
[http://dx.doi.org/10.1002/ptr.5834] [PMID: 28504367]
[10]
Bagli E, Goussia A, Moschos MM, Agnantis N, Kitsos G. 2016.
[11]
Rahman I, Chung S. Dietary polyphenols, deacetylases and chromatin remodeling in inflammation. J Nutrigenet Nutrigenomics 2010; 3(4-6): 220-30.
[http://dx.doi.org/10.1159/000324358] [PMID: 21474953]
[12]
Harvey AL, Clark RL, Mackay SP, Johnston BF. Current strategies for drug discovery through natural products. Expert Opin Drug Discov 2010; 5(6): 559-68.
[http://dx.doi.org/10.1517/17460441.2010.488263] [PMID: 22823167]
[13]
Kimura I. Medical benefits of using natural compounds and their derivatives having multiple pharmacological actions. Yakugaku Zasshi 2006; 126(3): 133-43.
[http://dx.doi.org/10.1248/yakushi. 126.133] [PMID: 16508237]
[14]
Wang F, Shing M, Huen Y, Tsang SY, Xue H. Neuroactive flavonoids interacting with GABAA receptor complex. Curr Drug Targets CNS Neurol Disord 2005; 4(5): 575-85.
[http://dx.doi.org/dx.doi. org/10.2174/156800705774322030] [PMID: 16266290]
[15]
Luk K-C, Stern L, Weigele M, O’Brien RA, Spirt N. Isolation and identification of “diazepam-like” compounds from bovine urine. J Nat Prod 1983; 46(6): 852-61.
[http://dx.doi.org/10. 1021/np50030a005] [PMID: 6330305]
[16]
Häberlein H, Tschiersch K-P, Boonen G, Hiller K-O. Chelidonium majus L.: components with in vitro affinity for the GABAA receptor. Positive cooperation of alkaloids. Planta Med 1996; 62(3): 227-31.
[http://dx.doi.org/10.1055/s-2006-957865] [PMID: 8693034]
[17]
Leung WC, Zheng H, Huen M, Law SL, Xue H. Anxiolytic-like action of orally administered dl-tetrahydropalmatine in elevated plus-maze. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27(5): 775-9.
[http://dx.doi.org/10.1016/S0278-5846(03) 00108-8] [PMID: 12921909]
[18]
Liao J-F, Wang H-H, Chen M-C, Chen C-C, Chen C-F. Benzodiazepine binding site-interactive flavones from Scutellaria baicalensis root. Planta Med 1998; 64(6): 571-2.
[http://dx.doi.org/dx.doi. org/10.1055/s-2006-957517] [PMID: 9776664]
[19]
Hui KM, Wang XH, Xue H. Interaction of flavones from the roots of Scutellaria baicalensis with the benzodiazepine site. Planta Med 2000; 66(1): 91-3.
[http://dx.doi.org/10.1055/s-0029-1243121] [PMID: 10705749]
[20]
Spencer JP. The impact of flavonoids on memory: physiological and molecular considerations. Chem Soc Rev 2009; 38(4): 1152-61.
[http://dx.doi.org/10.1039/b800422f] [PMID: 19421586]
[21]
Lin R-D, Hou WC, Yen KY, Lee MH. Inhibition of monoamine oxidase B (MAO-B) by Chinese herbal medicines. Phytomedicine 2003; 10(8): 650-6.
[http://dx.doi.org/10.1078/0944-7113-00324] [PMID: 14692725]
[22]
Lin X, Zhang N. Berberine: Pathways to protect neurons. Phytother Res 2018; 32(8): 1501-10.
[http://dx.doi.org/10.1002/ptr.6107] [PMID: 29732634]
[23]
Giunta, F. Blueberry polyphenols and neuroprotection. Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease; Elsevier, 2015, pp. 17-28. [http://dx.doi.org/10.1016/ B978-0-12-411462-3.00002-3
[24]
Kulkarni R, Girish KJ, Kumar A. Nootropic herbs (Medhya Rasayana) in Ayurveda: An update. Pharmacogn Rev 2012; 6(12): 147-53.
[http://dx.doi.org/10.4103/0973-7847.99949] [PMID: 23055641]
[25]
Vinutha B, Prashanth D, Salma K, et al. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J Ethnopharmacol 2007; 109(2): 359-63.
[http://dx.doi.org/10.1016/j.jep.2006.06.014] [PMID: 16950584]
[26]
Itua I, Naderali EK. Review: omega-3 and memory function: to eat or not to eat. Am J Alzheimers Dis Other Demen 2010; 25(6): 479-82.
[http://dx.doi.org/10.1177/1533317510376943] [PMID: 20702502]
[27]
Daulatzai MA. Neurotoxic saboteurs: Straws that break the hippo’s (hippocampus) back drive cognitive impairment and Alzheimer’s Disease. Neurotox Res 2013; 24(3): 407-59.
[http://dx.doi.org/10.1007/s12640-013-9407-2] [PMID: 23820984]
[28]
Neumann JT, Cohan CH, Dave KR, Wright CB, Perez-Pinzon MA. Global cerebral ischemia: Synaptic and cognitive dysfunction. Curr Drug Targets 2013; 14(1): 20-35.
[http://dx.doi.org/dx.doi. org/10.2174/138945013804806514] [PMID: 23170794]
[29]
Mishra R, Manchanda S, Gupta M, et al. Tinospora cordifolia ameliorates anxiety-like behavior and improves cognitive functions in acute sleep deprived rats. Sci Rep 2016; 6: 25564.
[http://dx.doi.org/10.1038/srep25564] [PMID: 27146164]
[30]
Yalla RY, Mohana LS, Saravana K. Review on effect of natural memory enhancing drugs on dementia. Int J Phytopharmacol 2010; 1: 1-7.
[31]
Singh H, Dhawan B. Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn.(Brahmi). Indian J Pharmacol 1997; 29(5): 359.
[32]
Vohora D, Pal SN, Pillai KK. Protection from phenytoin-induced cognitive deficit by Bacopa monniera, a reputed Indian nootropic plant. J Ethnopharmacol 2000; 71(3): 383-90.
[http://dx.doi.org/ dx.doi.org/10.1016/S0378-8741(99)00213-5] [PMID: 10940574]
[33]
Shukia B, Khanna NK, Godhwani JL. Effect of Brahmi Rasayan on the central nervous system. J Ethnopharmacol 1987; 21(1): 65-74.
[http://dx.doi.org/10.1016/0378-8741(87)90095-X] [PMID: 3695557]
[34]
Sethiya NK, Nahata A, Dixit V, Mishra S. Cognition boosting effect of Canscora decussata (a South Indian Shankhpushpi). Eur J Integr Med 2012; 4(1): e113-21.
[http://dx.doi.org/10.1016/j.eujim.2011.11.003]
[35]
Urbain A, Marston A, Grilo LS, et al. Xanthones from Gentianella amarella ssp. acuta with acetylcholinesterase and monoamine oxidase inhibitory activities. J Nat Prod 2008; 71(5): 895-7.
[http://dx.doi.org/10.1021/np070690l] [PMID: 18336006]
[36]
Cummings JL, Vinters HV, Cole GM, Khachaturian ZS. Alzheimer’s disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 1998; 51(1)(Suppl. 1): S2-S17.
[http://dx.doi.org/10.1212/WNL.51.1_Suppl_1.S2] [PMID: 9674758]
[37]
Assemi M. Herbs affecting the central nervous system: gingko, kava, St. John’s wort, and valerian. Clin Obstet Gynecol 2001; 44(4): 824-35.
[http://dx.doi.org/10.1097/00003081-200112000-00020] [PMID: 11600863]
[38]
Dias GP, Cavegn N, Nix A, et al. The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety. Oxid Med Cell Longev 2012.
[http://dx.doi.org/ dx.doi.org/10.1155/2012/541971]
[39]
Joseph JA, Shukitt-Hale B, Denisova NA, et al. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 1999; 19(18): 8114-21.
[http://dx.doi.org/dx.doi. org/10.1523/JNEUROSCI.19-18-08114.1999] [PMID: 10479711]
[40]
Youdim KA, Shukitt-Hale B, Martin A, et al. Short-term dietary supplementation of blueberry polyphenolics: Beneficial effects on aging brain performance and peripheral tissue function. Nutr Neurosci 2000; 3(6): 383-97.
[http://dx.doi.org/10.1080/1028415X.2000.11747338]
[41]
Casadesus G, Shukitt-Hale B, Stellwagen HM, et al. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci 2004; 7(5-6): 309-16.
[http://dx.doi.org/ dx.doi.org/10.1080/10284150400020482] [PMID: 15682927]
[41]
Shukitt-Hale B, Lau FC, Carey AN, et al. Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus. Nutr Neurosci 2008; 11(4): 172-82.
[http://dx.doi.org/10.1179/147683008X301487] [PMID: 18681986]
[43]
Hurst RD, Wells RW, Hurst SM, McGhie TK, Cooney JM, Jensen DJ. Blueberry fruit polyphenolics suppress oxidative stress-induced skeletal muscle cell damage in vitro. Mol Nutr Food Res 2010; 54(3): 353-63.
[http://dx.doi.org/10.1002/mnfr. 200900094] [PMID: 19885847]
[44]
Shukitt-Hale B, Carey A, Casadesus G, Galli R, Joseph J. Mechanisms involved in blueberry enhancements of motor and cognitive function in young and old rats. Soc Neurosci Abs 2003; 29: 63314.
[45]
Shukitt-Hale B, Galli RL, Meterko V, et al. Dietary supplementation with fruit polyphenolics ameliorates age-related deficits in behavior and neuronal markers of inflammation and oxidative stress. Age (Dordr) 2005; 27(1): 49-57.
[http://dx.doi.org/10.1007/s11357-005-4004-9] [PMID: 23598603]
[46]
Pandey A, Bani S, Dutt P, Kumar SN, Avtar SK, Nabi QG. Multifunctional neuroprotective effect of Withanone, a compound from Withania somnifera roots in alleviating cognitive dysfunction. Cytokine 2018; 102: 211-21.
[http://dx.doi.org/10.1016/j.cyto. 2017.10.019] [PMID: 29108796]
[47]
Visanji N P, Brotchie J M. 2005.
[48]
Davis GC, Williams AC, Markey SP, et al. Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1979; 1(3): 249-54.
[http://dx.doi.org/10.1016/0165-1781(79) 90006-4] [PMID: 298352]
[49]
Langston JW, Forno LS, Rebert CS, Irwin I. Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 1984; 292(2): 390-4.
[http://dx.doi.org/10.1016/0006-8993(84)90777-7] [PMID: 6607092]
[50]
Huang J-L, Fu S-T, Jiang Y-Y, et al. Protective effects of Nicotiflorin on reducing memory dysfunction, energy metabolism failure and oxidative stress in multi-infarct dementia model rats. Pharmacol Biochem Behav 2007; 86(4): 741-8.
[http://dx.doi.org/10.1016/j.pbb.2007.03.003] [PMID: 17448528]
[51]
Yu L, Chen C, Wang L-F, et al. Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-κB and STAT3 in transient focal stroke. PLoS One 2013; 8(2): e55839.
[http://dx.doi.org/10.1371/journal.pone.0055839] [PMID: 23437066]
[52]
Ren R, Shi C, Cao J, et al. Neuroprotective effects of a standardized flavonoid extract of safflower against neurotoxin-induced cellular and animal models of Parkinson’s disease. Sci Rep 2016; 6: 22135.
[http://dx.doi.org/ dx.doi.org/10.1038/srep22135] [PMID: 26906725]
[53]
Yang Z, Yang J, Jia Y, Tian Y, Wen A. Pharmacokinetic properties of hydroxysafflor yellow A in healthy Chinese female volunteers. J Ethnopharmacol 2009; 124(3): 635-8.
[http://dx.doi.org/dx. doi.org/10.1016/j.jep.2009.02.026] [PMID: 19570628]
[54]
Han B, Zhao H. Effects of hydroxysafflor yellow A in the attenuation of MPTP neurotoxicity in mice. Neurochem Res 2010; 35(1): 107-13.
[http://dx.doi.org/10.1007/s11064-009-0035-4] [PMID: 19680807]
[55]
Gao L, Li C, Yang R-Y, et al. Ameliorative effects of baicalein in MPTP-induced mouse model of Parkinson’s disease: A microarray study. Pharmacol Biochem Behav 2015; 133: 155-63.
[http://dx.doi.org/10.1016/j.pbb.2015.04.004] [PMID: 25895692]
[56]
Xue X, Liu H, Qi L, et al. Baicalein ameliorated the upregulation of striatal glutamatergic transmission in the mice model of Parkinson’s disease. Brain Res Bull 2014; 103: 54-9.
[http://dx.doi.org/10.1016/j.brainresbull.2014.02. 004] [PMID: 24576689]
[57]
Nakajima A, Aoyama Y, Nguyen T-TL, et al. Nobiletin, a citrus flavonoid, ameliorates cognitive impairment, oxidative burden, and hyperphosphorylation of tau in senescence-accelerated mouse. Behav Brain Res 2013; 250: 351-60.
[http://dx.doi.org/10.1016/j.bbr.2013.05.025] [PMID: 23714077]
[58]
Kim HG, Ju MS, Ha SK, et al. Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuroinflammation in vitro and in vivo. Biol Pharm Bull 2012; 35(8): 1287-94.
[http://dx.doi.org/10.1248/bpb.b12-00127] [PMID: 22863927]
[59]
Adeyemi OO, Akindele AJ, Yemitan OK, Aigbe FR, Fagbo FI. Anticonvulsant, anxiolytic and sedative activities of the aqueous root extract of Securidaca longepedunculata Fresen. J Ethnopharmacol 2010; 130(2): 191-5.
[http://dx.doi.org/10. 1016/j.jep.2010.04.028] [PMID: 20435127]
[60]
Juergens UR, Dethlefsen U, Steinkamp G, Gillissen A, Repges R, Vetter H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir Med 2003; 97(3): 250-6.
[http://dx.doi.org/10.1053/rmed.2003.1432] [PMID: 12645832]
[61]
Bhat JU, Parray SA, Aslam M, et al. Anti-seizure activity of flower extracts of Nepeta bractaeta in Swiss albino mice. EXCLI J 2012; 11: 531-7.
[PMID: 27540346]
[62]
Baxter JH, Steinberg D, Mize CE, Avigan J. Absorption and metabolism of uniformly 14C-labeled phytol and phytanic acid by the intestine of the rat studied with thoracic duct cannulation. Biochim Biophys Acta 1967; 137(2): 277-90.
[http://dx.doi.org/ 10.1016/0005-2760(67)90103-8] [PMID: 4167617]
[63]
Baxter JH. Absorption of chlorophyll phytol in normal man and in patients with Refsum’s disease. J Lipid Res 1968; 9(5): 636-41.
[PMID: 4177872]
[64]
Hsieh PF, Hou C-W, Yao P-W, et al. Sesamin ameliorates oxidative stress and mortality in kainic acid-induced status epilepticus by inhibition of MAPK and COX-2 activation. J Neuroinflammation 2011; 8(1): 57.
[http://dx.doi.org/10.1186/1742-2094-8-57] [PMID: 21609430]
[65]
Sok DE, Oh SH, Kim YB, Kang HG, Kim MR. Neuroprotection by extract of Petasites japonicus leaves, a traditional vegetable, against oxidative stress in brain of mice challenged with kainic acid. Eur J Nutr 2006; 45(2): 61-9.
[http://dx.doi.org/10. 1007/s00394-005-0565-8] [PMID: 15997340]
[66]
Schachter SC. Botanicals and herbs: a traditional approach to treating epilepsy. Neurotherapeutics 2009; 6(2): 415-20.
[http://dx.doi.org/ dx.doi.org/10.1016/j.nurt.2008.12.004] [PMID: 19332338]
[67]
Nassiri-Asl M, Naserpour Farivar T, Abbasi E, et al. Effects of rutin on oxidative stress in mice with kainic acid-induced seizure. J Integr Med 2013; 11(5): 337-42.
[http://dx.doi.org/10.3736/jintegrmed 2013042] [PMID: 24063781]
[68]
Xie T, Wang WP, Mao ZF, et al. Effects of epigallocatechin-3-gallate on pentylenetetrazole-induced kindling, cognitive impairment and oxidative stress in rats. Neurosci Lett 2012; 516(2): 237-41.
[http://dx.doi.org/10. 1016/j.neulet.2012.04.001] [PMID: 22521706]
[69]
Wang F, Xu Z, Ren L, Tsang SY, Xue H. GABA A receptor subtype selectivity underlying selective anxiolytic effect of baicalin. Neuropharmacology 2008; 55(7): 1231-7.
[http://dx.doi.org/dx. doi.org/10.1016/j.neuropharm.2008.07.040] [PMID: 18723037]
[70]
Liu Y-F, Gao F, Li X-W, et al. The anticonvulsant and neuroprotective effects of baicalin on pilocarpine-induced epileptic model in rats. Neurochem Res 2012; 37(8): 1670-80.
[http://dx.doi.org/dx.doi. org/10.1007/s11064-012-0771-8] [PMID: 22528832]
[71]
Jäger AK, Krydsfeldt K, Rasmussen HB. Bioassay-guided isolation of apigenin with GABA-benzodiazepine activity from Tanacetum parthenium. Phytother Res 2009; 23(11): 1642-4.
[http://dx.doi.org/10.1002/ptr.2816] [PMID: 19441011]
[72]
Medina JH, Viola H, Wolfman C, et al. Neuroactive flavonoids: new ligands for the Benzodiazepine receptors. Phytomedicine 1998; 5(3): 235-43.
[http://dx.doi.org/10.1016/S0944-7113(98)80034-2] [PMID: 23195847]
[73]
Shakeel S, Rehman MU, Tabassum N, Amin U, Mir MUR. Effect of naringenin (A naturally occurring flavanone) against pilocarpine-induced status epilepticus and oxidative stress in mice. Pharmacogn Mag 2017; 13(Suppl. 1): S154-60.
[http://dx.doi.org/dx. doi.org/10.4103/0973-1296.203977] [PMID: 28479741]
[74]
Mathew J, Paul J, Nandhu MS, Paulose CS. Bacopa monnieri and Bacoside-A for ameliorating epilepsy associated behavioral deficits. Fitoterapia 2010; 81(5): 315-22.
[http://dx.doi.org/ 10.1016/j.fitote.2009.11.005] [PMID: 19944749]
[75]
Joh EH, Lee IA, Kim DH. Kalopanaxsaponins A and B isolated from Kalopanax pictus ameliorate memory deficits in mice. Phytother Res 2012; 26(4): 546-51.
[http://dx.doi.org/10. 1002/ptr.3596] [PMID: 21928370]
[76]
Singh D, Mishra A, Goel RK. Effect of saponin fraction from Ficus religiosa on memory deficit, and behavioral and biochemical impairments in pentylenetetrazol kindled mice. Epilepsy Behav 2013; 27(1): 206-11.
[http://dx.doi.org/10.1016/j.yebeh.2012.11. 004] [PMID: 23332444]
[77]
Kar A. Glycosides, in Pharmacognosy and pharmacobiotechnology 2003.
[78]
Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. Pune: Nirali Prakashan 2003.
[79]
Pal D, Sahoo M, Mishra AK. Analgesic and anticonvulsant effects of saponin isolated from the stems of Opuntia vulgaris Mill in mice. Eur Bull Drug Res 2005; 13: 91-7.
[80]
Pal, D.; Sannigrahi, S.; Mazumder, U. K. Analgesic and anticonvulsant effects of saponin isolated from the leaves of Clerodendrum infortunatum Linn. in mice 2009.
[81]
Gupta M. kanti Mazumder, U.; Chakrabarti, S., CNS activities of methanolic extract of Moringa oleifera root in mice. Fitoterapia 1999; 70(3): 244-50.
[http://dx.doi.org/10.1016/S0367-326X(99) 00029-5]
[82]
Mazumder U, Gupta M, Rath N. CNS activities of Cassia fistula in mice. Phytother Res 1998; 12(7): 520-2.
[http://dx.doi.org/ 10.1002/(SICI)1099-1573(199811)12:7<520:AID-PTR345>3.0. CO;2-O]
[83]
Gupta M, Mazumder UK, Pal D, Bhattacharya S, Chakrabarty S. Studies on brain biogenic amines in methanolic extract of Cuscuta reflexa Roxb. and Corchorus olitorius Linn. seed treated mice. Acta Pol Pharm 2003; 60(3): 207-10.
[PMID: 14556490]
[84]
Chindo BA, Anuka JA, McNeil L, et al. Anticonvulsant properties of saponins from Ficus platyphylla stem bark. Brain Res Bull 2009; 78(6): 276-82.
[http://dx.doi.org/10.1016/j. brainresbull.2008.12.005] [PMID: 19111909]
[85]
Sayyah M, Kamalinejad M, Bahrami Hidage R, Rustaiyan A. Antiepileptic potential and composition of the fruit essential oil of Ferula gummosa boiss. Iran Biomed J 2001; 5(2): 69-72.
[86]
Tosun F, Kızılay ÇA, Erol K, Kılıç FS, Kürkçüoğlu M, Başer KHC. Anticonvulsant activity of furanocoumarins and the essential oil obtained from the fruits of Heracleum crenatifolium. Food Chem 2008; 107(3): 990-3.
[http://dx.doi.org/10.1016/j. foodchem.2007.08.085]
[87]
Wahab A, Ul Haq R, Ahmed A, Khan RA, Raza M. Anticonvulsant activities of nutmeg oil of Myristica fragrans. Phytother Res 2009; 23(2): 153-8.
[http://dx.doi.org/10.1002/ptr. 2548] [PMID: 19067329]
[88]
Perazzo FF, Carvalho JC, Carvalho JE, Rehder VL. Central properties of the essential oil and the crude ethanol extract from aerial parts of Artemisia annua L. Pharmacol Res 2003; 48(5): 497-502.
[http://dx.doi.org/10.1016/S1043-6618(03)00216-0] [PMID: 12967596]
[89]
Koutroumanidou E, Kimbaris A, Kortsaris A, et al. Increased seizure latency and decreased severity of pentylenetetrazol-induced seizures in mice after essential oil administration. Epilepsy Res Treat 2013; 2013: 532657.
[http://dx.doi.org/10.1155/2013/532657] [PMID: 23819045]
[90]
Okoli, C.; Ezike, A.; Agwagah, O.; Akah, P. Anticonvulsant and anxiolytic evaluation of leaf extracts of Ocimum gratissimum, a culinary herb pharmacognosy research, 2010, 2(1), 36-40.
[91]
Oliveira JS, Porto LA, Estevam CS, et al. Phytochemical screening and anticonvulsant property of Ocimum basilicum leaf essential oil. Bol Latinoam Caribe Plantas Med Aromat 2009; 8: 195-202.
[92]
Ismail M. Central Properties and Chemical Composition of Ocimum basilicum. Essential Oil. Pharm Biol 2006; 44(8): 619-26.
[http://dx.doi.org/10.1080/13880200600897544]
[93]
Huang C, Li WG, Zhang XB, et al. α-asarone from Acorus gramineus alleviates epilepsy by modulating A-type GABA receptors. Neuropharmacology 2013; 65: 1-11.
[http://dx.doi.org/10.1016/j.neuropharm.2012.09.001] [PMID: 22975146]
[94]
Hess EJ, Moody KA, Geffrey AL, et al. Cannabidiol as a new treatment for drug-resistant epilepsy in tuberous sclerosis complex. Epilepsia 2016; 57(10): 1617-24.
[http://dx.doi.org/10.1111/epi.13499] [PMID: 27696387]
[95]
Copmans D, Orellana-Paucar AM, Steurs G, et al. Methylated flavonoids as anti-seizure agents: Naringenin 4′,7-dimethyl ether attenuates epileptic seizures in zebrafish and mouse models. Neurochem Int 2018; 112: 124-33.
[http://dx.doi.org/10.1016/j.neuint.2017.11.011] [PMID: 29174382]
[96]
Berchtold NC, Cotman CW. Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-Roman period to the 1960s. Neurobiol Aging 1998; 19(3): 173-89.
[http://dx.doi.org/dx.doi. org/10.1016/S0197-4580(98)00052-9] [PMID: 9661992]
[97]
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007; 3(3): 186-91.
[http://dx.doi.org/10.1016/j.jalz. 2007.04.381] [PMID: 19595937]
[98]
Takahashi RH, Nagao T, Gouras GK. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol Int 2017; 67(4): 185-93.
[http://dx.doi.org/ 10.1111/pin.12520] [PMID: 28261941]
[99]
Fazili NA, Naeem A, Ashraf GM, Hua GS, Kamal MA. Therapeutic Interventions for the Suppression of Alzheimer’s Disease: Quest for a Remedy. Curr Drug Metab 2015; 16(5): 346-53.
[http://dx.doi.org/10.2174/1389200215999141125115749] [PMID: 25429669]
[100]
Szeto JY, Lewis SJJ, Lewis JG. S., Current treatment options for Alzheimer’s disease and Parkinson’s disease dementia. Curr Neuropharmacol 2016; 14(4): 326-38.
[http://dx.doi.org/ 10.2174/1570159X14666151208112754] [PMID: 26644155]
[101]
Behl C, Moosmann B. Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach. Free Radic Biol Med 2002; 33(2): 182-91.
[http://dx.doi.org/10.1016/S0891-5849(02)00883-3] [PMID: 12106814]
[102]
Pappolla MA, Chyan YJ, Omar RA, et al. Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: A chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 1998; 152(4): 871-7.
[PMID: 9546346]
[103]
Heo HJ, Lee CY. Strawberry and its anthocyanins reduce oxidative stress-induced apoptosis in PC12 cells. J Agric Food Chem 2005; 53(6): 1984-9.
[http://dx.doi.org/10.1021/jf048616l] [PMID: 15769124]
[104]
Ma T, Tan M-S, Yu J-T, Tan L. Resveratrol as a therapeutic agent for Alzheimer’s disease. Bio. Med. Res. Inter 2014.
[http://dx.doi.org/ dx.doi.org/10.1155/2014/350516]
[105]
Chauhan V, Chauhan A. Oxidative stress in Alzheimer’s disease. Pathophysiology 2006; 13(3): 195-208.
[http://dx.doi.org/10. 1016/j.pathophys.2006.05.004] [PMID: 16781128]
[106]
Chauhan N, Wang KC, Wegiel J, Malik MN. Walnut extract inhibits the fibrillization of amyloid beta-protein, and also defibrillizes its preformed fibrils. Curr Alzheimer Res 2004; 1(3): 183-8.
[http://dx.doi.org/10.2174/1567205043332144] [PMID: 15975066]
[107]
Frydman-Marom A, Levin A, Farfara D, et al. Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer’s disease animal models. PLoS One 2011; 6(1): e16564.
[http://dx.doi.org/10.1371/journal.pone.0016564] [PMID: 21305046]
[108]
Sancesario GM, Nuccetelli M, Cerri A, et al. Bromelain degrades Aβ1-42 monomers and soluble aggregates: An in vitro study in cerebrospinal fluid of alzheimer’s disease patients. Curr Alzheimer Res 2018; 15(7): 628-36.
[http://dx.doi.org/10.2174/1567205015666180123124851] [PMID: 29359669]
[109]
Katzman R, Saitoh T. Advances in Alzheimer’s disease. FASEB J 1991; 5(3): 278-86.
[http://dx.doi.org/10.1096/fasebj.5.3.2001787] [PMID: 2001787]
[110]
Becker, R.; Giacobini, E., Cholinergic Basis of Alzheimer’s Disease; Birkhauser: Boston, 1991.
[111]
Pereira DM, Ferreres F, Oliveira J, Valentão P, Andrade PB, Sottomayor M. Targeted metabolite analysis of Catharanthus roseus and its biological potential. Food Chem Toxicol 2009; 47(6): 1349-54.
[http://dx.doi.org/10.1016/j.fct.2009.03.012] [PMID: 19298840]
[112]
Lee YK, Yuk DY, Kim TI, et al. Protective effect of the ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on scopolamine-induced memory impairment and the inhibition of acetylcholinesterase activity. J Nat Med 2009; 63(3): 274-82.
[http://dx.doi.org/10.1007/s11418-009-0330-z] [PMID: 19343477]
[113]
Ansari R, Mahta A, Mallack E, Luo JJ. Hyperhomocysteinemia and neurologic disorders: a review. J Clin Neurol 2014; 10(4): 281-8.
[http://dx.doi.org/10.3988/jcn.2014.10.4.281] [PMID: 25324876]
[114]
Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 2004; 318(1): 121-34.
[http://dx.doi.org/dx.doi. org/10.1007/s00441-004-0956-9] [PMID: 15338272]
[115]
Sanders LH, McCoy J, Hu X, et al. Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson’s disease. Neurobiol Dis 2014; 70: 214-23.
[http://dx.doi.org/10.1016/j.nbd.2014.06.014] [PMID: 24981012]
[116]
Sayre LM, Smith MA, Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 2001; 8(7): 721-38.
[http://dx.doi.org/10.2174/0929867013372922] [PMID: 11375746]
[117]
Mercuri NB, Bernardi G. The ‘magic’ of L-dopa: why is it the gold standard Parkinson’s disease therapy? Trends Pharmacol Sci 2005; 26(7): 341-4.
[http://dx.doi.org/10.1016/j.tips.2005.05. 002] [PMID: 15936832]
[118]
Callier S, Morissette M, Grandbois M, Pélaprat D, Di Paolo T. Neuroprotective properties of 17β-estradiol, progesterone, and raloxifene in MPTP C57Bl/6 mice. Synapse 2001; 41(2): 131-8.
[http://dx.doi.org/10.1002/syn.1067] [PMID: 11400179]
[119]
Arevalo M-A, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 2015; 16(1): 17-29.
[http://dx.doi.org/10.1038/nrn3856] [PMID: 25423896]
[120]
Bourque M, Dluzen DE, Di Paolo T. Neuroprotective actions of sex steroids in Parkinson’s disease. Front Neuroendocrinol 2009; 30(2): 142-57.
[http://dx.doi.org/10.1016/j.yfrne.2009.04.014] [PMID: 19410597]
[121]
Cardona-Gomez P, Perez M, Avila J, Garcia-Segura LM, Wandosell F. Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus. Mol Cell Neurosci 2004; 25(3): 363-73.
[http://dx.doi.org/ 10.1016/j.mcn.2003.10.008] [PMID: 15033165]
[122]
Garcia-Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol. Prog Neurobiol 2001; 63(1): 29-60.
[http://dx.doi.org/dx.doi. org/10.1016/S0301-0082(00)00025-3] [PMID: 11040417]
[123]
Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000; 1(2): 120-9.
[http://dx.doi.org/10.1038/35040009] [PMID: 11253364]
[124]
Yao M, Nguyen T-VV, Pike CJ. Estrogen regulates Bcl-w and Bim expression: role in protection against β-amyloid peptide-induced neuronal death. J Neurosci 2007; 27(6): 1422-33.
[http://dx.doi.org/10.1523/JNEUROSCI.2382-06.2007] [PMID: 17287517]
[125]
Morissette M, Al Sweidi S, Callier S, Di Paolo T. Estrogen and SERM neuroprotection in animal models of Parkinson’s disease. Mol Cell Endocrinol 2008; 290(1-2): 60-9.
[http://dx.doi.org/dx.doi. org/10.1016/j.mce.2008.04.008] [PMID: 18515001]
[126]
Mythri RB, Bharath MM. Curcumin: a potential neuroprotective agent in Parkinson’s disease. Curr Pharm Des 2012; 18(1): 91-9.
[http://dx.doi.org/10.2174/138161212798918995] [PMID: 22211691]
[127]
Mythri RB, Harish G, Bharath MM. Therapeutic potential of natural products in Parkinson’s disease. Recent Pat Endocr Metab Immune Drug Discov 2012; 6(3): 181-200.
[http://dx.doi.org/ 10.2174/187221412802481793] [PMID: 22827714]
[128]
Kandinov B, Giladi N, Korczyn AD. Smoking and tea consumption delay onset of Parkinson’s disease. Parkinsonism Relat Disord 2009; 15(1): 41-6.
[http://dx.doi.org/10.1016/j.parkreldis. 2008.02.011] [PMID: 18434232]
[129]
Leonoudakis D, Rane A, Angeli S, Lithgow GJ, Andersen JK, Chinta SJ. Smoking and tea consumption delay onset of Parkinson’s disease. Parkinsonism Relat Disord 2009; 15(1): 41-6.
[130]
Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 2014; 11(5): 4745-67.
[http://dx.doi.org/10.3390/ijerph110504745] [PMID: 24859749]
[131]
Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011; 108(38): 16050-5.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[132]
Surwase SN, Jadhav JP. Bioconversion of L-tyrosine to L-DOPA by a novel bacterium Bacillus sp. JPJ. Amino Acids 2011; 41(2): 495-506.
[http://dx.doi.org/10.1007/s00726-010-0768-z] [PMID: 20963458]
[133]
Ferrante RJ, Klein AM, Dedeoglu A, Beal MF. Therapeutic efficacy of EGb761 (Gingko biloba extract) in a transgenic mouse model of amyotrophic lateral sclerosis. J Mol Neurosci 2001; 17(1): 89-96.
[http://dx.doi.org/10.1385/JMN:17:1:89] [PMID: 11665866]
[134]
Nabavi SF, Daglia M, D’Antona G, Sobarzo-Sánchez E, Talas ZS, Nabavi SM. Natural compounds used as therapies targeting to amyotrophic lateral sclerosis. Curr Pharm Biotechnol 2015; 16(3): 211-8.
[http://dx.doi.org/10.2174/1389201016666 150118132224] [PMID: 25601606]
[135]
Jiang F, DeSilva S, Turnbull J. Beneficial effect of ginseng root in SOD-1 (G93A) transgenic mice. J Neurol Sci 2000; 180(1-2): 52-4.
[http://dx.doi.org/10.1016/S0022-510X(00)00421-4] [PMID: 11090864]
[136]
Trieu VN, Uckun FM. Genistein is neuroprotective in murine models of familial amyotrophic lateral sclerosis and stroke. Biochem Biophys Res Commun 1999; 258(3): 685-8.
[http://dx.doi.org/dx. doi.org/10.1006/bbrc.1999.0577] [PMID: 10329446]
[137]
Koh S-H, Kwon H, Kim KS, et al. Epigallocatechin gallate prevents oxidative-stress-induced death of mutant Cu/Zn-superoxide dismutase (G93A) motoneuron cells by alteration of cell survival and death signals. Toxicology 2004; 202(3): 213-25.
[http://dx.doi.org/10.1016/j.tox. 2004.05.008] [PMID: 15337584]
[138]
Yáñez M, Galán L, Matías-Guiu J, Vela A, Guerrero A, García AG. CSF from amyotrophic lateral sclerosis patients produces glutamate independent death of rat motor brain cortical neurons: protection by resveratrol but not riluzole. Brain Res 2011; 1423: 77-86.
[http://dx.doi.org/10.1016/j.brainres.2011.09.025] [PMID: 21983205]
[139]
Krobitsch S, Kazantsev AG. Huntington’s disease: From molecular basis to therapeutic advances. Int J Biochem Cell Biol 2011; 43(1): 20-4.
[http://dx.doi.org/10.1016/j.biocel.2010.10.014] [PMID: 21056115]
[140]
Kumar P, Kalonia H, Kumar A. Huntington’s disease: pathogenesis to animal models. Pharmacol Rep 2010; 62(1): 1-14.
[http://dx.doi.org/10.1016/S1734-1140(10)70238-3] [PMID: 20360611]
[141]
Sawa A, Tomoda T, Bae B-I. Mechanisms of neuronal cell death in Huntington’s disease. Cytogenet Genome Res 2003; 100(1-4): 287-95.
[http://dx.doi.org/10.1159/000072864] [PMID: 14526190]
[142]
Singhal AK, Naithani V, Bangar OP. Medicinal plants with a potential to treat Alzheimer and associated symptoms. International Journal of Nutrition, Pharmacology. Neurological Diseases 2012; 2(2): 84.
[http://dx.doi.org/10.4103/2231-0738.95927]
[143]
Farrer LA, Cupples LA, Wiater P, Conneally PM, Gusella JF, Myers RH. The normal Huntington disease (HD) allele, or a closely linked gene, influences age at onset of HD. Am J Hum Genet 1993; 53(1): 125-30.
[PMID: 8317477]
[144]
Farooqui T, Farooqui AA. Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech Ageing Dev 2009; 130(4): 203-15.
[http://dx.doi.org/10.1016/j.mad.2008.11.006] [PMID: 19071157]
[145]
Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 2009; 30(4): 379-87.
[http://dx.doi.org/ dx.doi.org/10.1038/aps.2009.24] [PMID: 19343058]
[146]
Wu PF, Zhang Z, Wang F, Chen JG. Natural compounds from traditional medicinal herbs in the treatment of cerebral ischemia/reperfusion injury. Acta Pharmacol Sin 2010; 31(12): 1523-31.
[http://dx.doi.org/10.1038/aps.2010.186] [PMID: 21127495]
[147]
Sandhya S, Vinod K, Kumar S. Herbs used for brain disorders. Hygeia J Drugs Med 2010; 2: 38-45.
[148]
Dey A, De JN. Neuroprotective therapeutics from botanicals and phytochemicals against Huntington’s disease and related neurodegenerative disorders. J Herb Med 2015; 5(1): 1-19.
[http://dx.doi.org/ dx.doi.org/10.1016/j.hermed.2015.01.002]
[149]
Shinomol GK. Muralidhara, Bacopa monnieri modulates endogenous cytoplasmic and mitochondrial oxidative markers in prepubertal mice brain. Phytomedicine 2011; 18(4): 317-26.
[http://dx.doi.org/dx. doi.org/10.1016/j.phymed.2010.08.005] [PMID: 20850955]
[150]
Allison AC, Cacabelos R, Lombardi VR, Alvarez XA, Vigo C. Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25(7): 1341-57.
[http://dx.doi.org/dx. doi.org/10.1016/S0278-5846(01)00192-0] [PMID: 11513350]
[151]
Visioli F, Riso P, Grande S, Galli C, Porrini M. Protective activity of tomato products on in vivo markers of lipid oxidation. Eur J Nutr 2003; 42(4): 201-6.
[http://dx.doi.org/10.1007/s00394-003-0415-5] [PMID: 12923651]
[152]
Baba NH, Antoniades K, Habbal Z. Effects of dietary canola, olive, and linolenic acid enriched olive oils on plasma lipids, lipid peroxidation and lipoprotein lipase activity in rats. Nutr Res 1999; 19(4): 601-12.
[http://dx.doi.org/10.1016/S0271-5317(99) 00025-1]
[153]
Hsiao, G.; Fong, T. H.; Tzu, N. H.; Lin, K. H.; Chou, D. S.; Sheu, J. R. A potent antioxidant, lycopene, affords neuroprotection against microglia activation and focal cerebral ischemia in rats in vivo, 2004, 18(3), 351-356
[154]
Kumar P, Kumar A. Effect of lycopene and epigallocatechin-3-gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: a novel nitric oxide mechanism. Food Chem Toxicol 2009; 47(10): 2522-30.
[http://dx.doi.org/dx.doi. org/10.1016/j.fct.2009.07.011] [PMID: 19616597]
[155]
Kumar P, Padi SS, Naidu PS, Kumar A. Cyclooxygenase inhibition attenuates 3-nitropropionic acid-induced neurotoxicity in rats: possible antioxidant mechanisms. Fundam Clin Pharmacol 2007; 21(3): 297-306.
[http://dx.doi.org/10.1111/j.1472-8206.2007. 00485.x] [PMID: 17521299]
[156]
Raso GM, Meli R, Di Carlo G, Pacilio M, Di Carlo R. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A.1. Life Sci 2001; 68(8): 921-31.
[http://dx.doi.org/10.1016/S0024-3205(00)00999-1] [PMID: 11213362]
[157]
Ishige K, Schubert D, Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 2001; 30(4): 433-46.
[http://dx.doi.org/10.1016/S0891-5849(00)00498-6] [PMID: 11182299]
[158]
Nishimura M, Okimura Y, Fujita H, et al. Mechanism of 3-nitropropionic acid-induced membrane permeability transition of isolated mitochondria and its suppression by L-carnitine. Cell Biochem Funct 2008; 26(8): 881-91.
[http://dx.doi.org/10.1002/cbf.1521] [PMID: 18942062]
[159]
Kumar P, Padi SS, Naidu PS, Kumar A. Possible neuroprotective mechanisms of curcumin in attenuating 3-nitropropionic acid-induced neurotoxicity. Methods Find Exp Clin Pharmacol 2007; 29(1): 19-25.
[http://dx.doi.org/10.1358/mf.2007.29.1. 1063492] [PMID: 17344940]
[160]
Kumar P, Padi SSV, Naidu PS, Kumar A. Effect of resveratrol on 3-nitropropionic acid-induced biochemical and behavioural changes: possible neuroprotective mechanisms. Behav Pharmacol 2006; 17(5-6): 485-92.
[http://dx.doi.org/10.1097/00008877-200609000-00014] [PMID: 16940769]
[161]
Chen C-M. Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington’s disease. Chang Gung Med J 2011; 34(2): 135-52.
[PMID: 21539755]
[162]
Kumar A, Ratan RR. Oxidative stress and Huntington’s disease: The good, the bad, and the ugly. J Huntingtons Dis 2016; 5(3): 217-37.
[http://dx.doi.org/10.3233/JHD-160205] [PMID: 27662334]
[163]
Choudhary S, Kumar P, Malik J. Plants and phytochemicals for Huntington’s disease. Pharmacogn Rev 2013; 7(14): 81-91.
[http://dx.doi.org/10.4103/0973-7847.120505] [PMID: 24347915]
[164]
Keum Y-S, Park K-K, Lee J-M, et al. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett 2000; 150(1): 41-8.
[http://dx.doi.org/10.1016/S0304-3835(99)00369-9] [PMID: 10755385]
[165]
Radad K, Gille G, Liu L, Rausch W-D. Use of ginseng in medicine with emphasis on neurodegenerative disorders. J Pharmacol Sci 2006; 100(3): 175-86.
[http://dx.doi.org/10.1254/jphs.CRJ05010X] [PMID: 16518078]
[166]
Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J Biol Chem 2007; 282(8): 5641-52.
[http://dx.doi.org/10.1074/jbc.M609532200] [PMID: 17182613]
[166]
McCance KL, Heuther SE. Pathophysiology: The Biologic Basis for Disease in Adults and Children. Philadelphia, USA: Elsevier Mosby 2006; p. 411.
[168]
Geuna S, Tos P, Titolo P, Ciclamini D, Beningo T, Battiston B. Update on nerve repair by biological tubulization. J Brachial Plex Peripher Nerve Inj 2014; 9(1): 3.
[http://dx.doi.org/10.1186/1749-7221-9-3] [PMID: 24606921]
[169]
Noble J, Munro CA, Prasad VS, Midha R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 1998; 45(1): 116-22.
[http://dx.doi.org/10.1097/00005373-199807000-00025] [PMID: 9680023]
[170]
Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus 2004; 16(5): E1.
[http://dx.doi.org/10.3171/foc.2004.16.5.2] [PMID: 15174821]
[171]
Gustafsson H, Flood K, Berge O-G, Brodin E, Olgart L, Stiller C-O. Gabapentin reverses mechanical allodynia induced by sciatic nerve ischemia and formalin-induced nociception in mice. Exp Neurol 2003; 182(2): 427-34.
[http://dx.doi.org/10.1016/S0014-4886(03)00097-9] [PMID: 12895453]
[172]
Schenker M, Riederer BM, Kuntzer T, Barakat-Walter I. Thyroid hormones stimulate expression and modification of cytoskeletal protein during rat sciatic nerve regeneration. Brain Res 2002; 957(2): 259-70.
[http://dx.doi.org/10.1016/S0006-8993(02) 03607-7] [PMID: 12445968]
[173]
Quintans JS, Antoniolli ÂR, Almeida JR, Santana-Filho VJ, Quintans-Júnior LJ. Natural products evaluated in neuropathic pain models - a systematic review. Basic Clin Pharmacol Toxicol 2014; 114(6): 442-50.
[http://dx.doi.org/10.1111/bcpt.12178] [PMID: 24252102]
[174]
Ren Z-L, Zuo P-P. Neural regeneration: role of traditional Chinese medicine in neurological diseases treatment. J Pharmacol Sci 2012; 120(3): 139-45.
[http://dx.doi.org/10.1254/jphs. 12R06CP] [PMID: 23099323]
[175]
McDowell LR. Vitamins in Animal and Human Nutrition. USA: Iowa State University Pres 2008.
[176]
Wang SA, Yang J, Zhang GB, Feng YH, Wang F, Zhou PY. Effect of mecobalamin treatment on the recovery of patients with posterior communicating artery aneurysm inducing oculomotor nerve palsy after operation. Eur Rev Med Pharmacol Sci 2015; 19(14): 2603-7.
[PMID: 26221889]
[177]
Lopatina T, Kalinina N, Karagyaur M, et al. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One 2011; 6(3): e17899.
[http://dx.doi.org/ 10.1371/journal.pone.0017899] [PMID: 21423756]
[178]
Sun H, Yang T, Li Q, et al. Dexamethasone and vitamin B(12) synergistically promote peripheral nerve regeneration in rats by upregulating the expression of brain-derived neurotrophic factor. Arch Med Sci 2012; 8(5): 924-30.
[http://dx.doi.org/10.5114/aoms.2012.31623] [PMID: 23185205]
[179]
Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta 2009; 1790(10): 1149-60.
[http://dx.doi.org/10.1016/j.bbagen.2009.07.026] [PMID: 19664690]
[180]
Biewenga G, Haenen GR, Bast A. The role of lipoic acid in the treatment of diabetic polyneuropathy. Drug Metab Rev 1997; 29(4): 1025-54.
[http://dx.doi.org/10.3109/03602539709002242] [PMID: 9421684]
[181]
Bustamante J, Lodge JK, Marcocci L, Tritschler HJ, Packer L, Rihn BH. α-lipoic acid in liver metabolism and disease. Free Radic Biol Med 1998; 24(6): 1023-39.
[http://dx.doi.org/10. 1016/S0891-5849(97)00371-7] [PMID: 9607614]
[182]
Zhang Y, Wang X, Wang X, et al. Protective effect of flavonoids from Scutellaria baicalensis Georgi on cerebral ischemia injury. J Ethnopharmacol 2006; 108(3): 355-60.
[http://dx.doi.org/10. 1016/j.jep.2006.05.022] [PMID: 16829002]
[183]
De Grandis D, Santoro L, Di Benedetto P. L-acetylcarnitine in the treatment of patients with peripheral neuropathies. Clin Drug Investig 1995; 10(6): 317-22.
[http://dx.doi.org/10.2165/00044011-199510060-00001] [PMID: 27519331]
[184]
Hart AM, Wilson AD, Montovani C, et al. Acetyl-l-carnitine: a pathogenesis based treatment for HIV-associated antiretroviral toxic neuropathy. AIDS 2004; 18(11): 1549-60.
[http://dx.doi.org/10.1097/01.aids.0000 131354.14408.fb] [PMID: 15238773]
[185]
Kamata H, Tanaka C, Yagisawa H, et al. Suppression of nerve growth factor-induced neuronal differentiation of PC12 cells. N-acetylcysteine uncouples the signal transduction from ras to the mitogen-activated protein kinase cascade. J Biol Chem 1996; 271(51): 33018-25.
[http://dx.doi.org/10.1074/jbc.271.51.33018] [PMID: 8955147]
[186]
Park DS, Stefanis L, Yan CYI, Farinelli SE, Greene LA. Ordering the cell death pathway. Differential effects of BCL2, an interleukin-1-converting enzyme family protease inhibitor, and other survival agents on JNK activation in serum/nerve growth factor-deprived PC12 cells. J Biol Chem 1996; 271(36): 21898-905.
[http://dx.doi.org/10.1074/jbc.271.36.21898] [PMID: 8702992]
[187]
Drukarch B, Schepens E, Jongenelen CA, Stoof JC, Langeveld CH. Astrocyte-mediated enhancement of neuronal survival is abolished by glutathione deficiency. Brain Res 1997; 770(1-2): 123-30.
[http://dx.doi.org/10.1016/S0006-8993(97)00790-7] [PMID: 9372211]
[188]
Dringen R, Hamprecht B. N-acetylcysteine, but not methionine or 2-oxothiazolidine-4-carboxylate, serves as cysteine donor for the synthesis of glutathione in cultured neurons derived from embryonal rat brain. Neurosci Lett 1999; 259(2): 79-82.
[http://dx.doi.org/dx.doi. org/10.1016/S0304-3940(98)00894-5] [PMID: 10025562]
[189]
Kaste M. Thrombolysis in ischaemic stroke -- present and future: role of combined therapy. Cerebrovasc Dis 2001; 11(Suppl. 1): 55-9.
[http://dx.doi.org/10.1159/000049126] [PMID: 11244201]
[190]
Siesjö BK. Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J Neurosurg 1992; 77(2): 169-84.
[http://dx.doi.org/10.3171/jns.1992.77.2.0169] [PMID: 1625004]
[191]
Chaudhary G, Sharma U, Jagannathan NR, Gupta YK. Evaluation of Withania somnifera in a middle cerebral artery occlusion model of stroke in rats. Clin Exp Pharmacol Physiol 2003; 30(5-6): 399-404.
[http://dx.doi.org/10.1046/j.1440-1681. 2003.03849.x] [PMID: 12859433]
[192]
Bhattacharya SK, Bhattacharya D, Sairam K, Ghosal S. Effect of Withania somnifera glycowithanolides on a rat model of tardive dyskinesia. Phytomedicine 2002; 9(2): 167-70.
[http://dx.doi.org/dx. doi.org/10.1078/0944-7113-00089] [PMID: 11995951]
[193]
Gaire BP, Moon S-K, Kim H. Scutellaria baicalensis in stroke management: nature’s blessing in traditional Eastern medicine. Chin J Integr Med 2014; 20(9): 712-20.
[http://dx.doi.org/ 10.1007/s11655-014-1347-9] [PMID: 24752475]
[194]
Satoh T, Kosaka K, Itoh K, et al. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J Neurochem 2008; 104(4): 1116-31.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05039.x] [PMID: 17995931]
[195]
Zheng GQ, Cheng W, Wang Y, et al. Ginseng total saponins enhance neurogenesis after focal cerebral ischemia. J Ethnopharmacol 2011; 133(2): 724-8.
[http://dx.doi.org/10.1016/j.jep.2010.01. 064] [PMID: 21073942]
[196]
Tian J, Fu F, Geng M, et al. Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci Lett 2005; 374(2): 92-7.
[http://dx.doi.org/10.1016/j.neulet.2004.10.030] [PMID: 15644271]
[197]
Zhang Z, Peng D, Zhu H, Wang X. Experimental evidence of Ginkgo biloba extract EGB as a neuroprotective agent in ischemia stroke rats. Brain Res Bull 2012; 87(2-3): 193-8.
[http://dx.doi.org/dx. doi.org/10.1016/j.brainresbull.2011.11.002] [PMID: 22100334]
[198]
Lee EJ, Chen HY, Wu TS, Chen TY, Ayoub IA, Maynard KI. Acute administration of Ginkgo biloba extract (EGb 761) affords neuroprotection against permanent and transient focal cerebral ischemia in Sprague-Dawley rats. J Neurosci Res 2002; 68(5): 636-45.
[http://dx.doi.org/10.1002/jnr.10251] [PMID: 12111854]
[199]
Deyama T, Nishibe S, Nakazawa Y. Constituents and pharmacological effects of Eucommia and Siberian ginseng. Acta Pharmacol Sin 2001; 22(12): 1057-70.
[PMID: 11749801]
[200]
Xie Y, Zhang B, Zhang Y. Protective effects of Acanthopanax polysaccharides on cerebral ischemia-reperfusion injury and its mechanisms. Int J Biol Macromol 2015; 72: 946-50.
[http://dx.doi.org/dx. doi.org/10.1016/j.ijbiomac.2014.09.055] [PMID: 25451748]
[201]
Li W, Liu M, Feng S, et al. Acanthopanax for Acute Ischemic Stroke. Stroke 2010; 41(11): e582-3.
[http://dx.doi.org/10.1161/STROKEAHA.110.593855] [PMID: 20847317]
[202]
Lee E-J, Chen H-Y, Lee M-Y, et al. Cinnamophilin reduces oxidative damage and protects against transient focal cerebral ischemia in mice. Free Radic Biol Med 2005; 39(4): 495-510.
[http://dx.doi.org/ 10.1016/j.freeradbiomed.2005.04.004] [PMID: 16043021]
[203]
Rathore P, Dohare P, Varma S, et al. Curcuma oil: reduces early accumulation of oxidative product and is anti-apoptogenic in transient focal ischemia in rat brain. Neurochem Res 2008; 33(9): 1672-82.
[http://dx.doi.org/10.1007/s11064-007-9515-6] [PMID: 17955367]
[204]
Chen CM, Liu SH, Lin-Shiau SY. Honokiol, a neuroprotectant against mouse cerebral ischaemia, mediated by preserving Na+, K+-ATPase activity and mitochondrial functions. Basic Clin Pharmacol Toxicol 2007; 101(2): 108-16.
[http://dx.doi.org/10. 1111/j.1742-7843.2007.00082.x] [PMID: 17651312]
[205]
Su S-Y, Cheng C-Y, Tsai T-H, Hsieh C-L. Paeonol protects memory after ischemic stroke via inhibiting β-secretase and apoptosis. Evid Based Complement Alternat Med 2012.
[http://dx.doi.org/10.1155/2012/932823]
[206]
Hsieh C-L, Cheng C-Y, Tsai T-H, et al. Paeonol reduced cerebral infarction involving the superoxide anion and microglia activation in ischemia-reperfusion injured rats. J Ethnopharmacol 2006; 106(2): 208-15.
[http://dx.doi.org/10.1016/j.jep.2005.12.027] [PMID: 16458462]
[207]
Suk K, Kim SY, Leem K, et al. Neuroprotection by methanol extract of Uncaria rhynchophylla against global cerebral ischemia in rats. Life Sci 2002; 70(21): 2467-80.
[http://dx.doi.org/dx. doi.org/10.1016/S0024-3205(02)01534-5] [PMID: 12173411]
[208]
Chen L, Xiang Y, Kong L, et al. Hydroxysafflor yellow A protects against cerebral ischemia-reperfusion injury by anti-apoptotic effect through PI3K/Akt/GSK3β pathway in rat. Neurochem Res 2013; 38(11): 2268-75.
[http://dx.doi.org/10.1007/s11064-013-1135-8] [PMID: 23990223]
[209]
Wang C, Zhang D, Li G, et al. Neuroprotective effects of safflor yellow B on brain ischemic injury. Exp Brain Res 2007; 177(4): 533-9.
[http://dx.doi.org/10. 1007/s00221-006-0705-2] [PMID: 17006684]
[210]
Ye Y, Li J, Cao X, Chen Y, Ye C, Chen K. Protective effect of n-butyl alcohol extracts from Rhizoma Pinelliae Pedatisectae against cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol 2016; 188: 259-65.
[http://dx.doi.org/10.1016/j.jep.2016. 04.046] [PMID: 27132713]
[211]
Ding Y, Chen M, Wang M, Li Y, Wen A. Posttreatment with 11-Keto-β-Boswellic Acid Ameliorates Cerebral Ischemia-Reperfusion Injury: Nrf2/HO-1 Pathway as a Potential Mechanism. Mol Neurobiol 2015; 52(3): 1430-9.
[http://dx.doi.org/ 10.1007/s12035-014-8929-9] [PMID: 25452227]
[212]
Li K, Ding D, Zhang M. Neuroprotection of Osthole against Cerebral Ischemia/Reperfusion Injury through an Anti-apoptotic Pathway in Rats. Biol Pharm Bull 2016; 39(3): 336-42.
[http://dx.doi.org/ dx.doi.org/10.1248/bpb.b15-00699] [PMID: 26934926]
[213]
Liang G, Shi B, Luo W, Yang J. The protective effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats. Behav Brain Funct 2015; 11: 18.
[http://dx.doi.org/10.1186/s12993-015-0064-x] [PMID: 25907417]
[214]
Singh H, Rastogi R, Srimal R, Dhawan B. Effect of bacosides A and B on avoidance responses in rats. Phytother Res 1988; 2(2): 70-5.
[http://dx.doi.org/10.1002/ptr.2650020205]
[215]
Gupta A, Raj H, Karchuli MS, Upmanyu N. Comparative evaluation of ethanolic extracts of Bacopa monnieri, Evolvulus alsinoides, Tinospora cordifolia and their combinations on cognitive functions in rats. Curr Aging Sci 2013; 6(3): 239-43.
[http://dx.doi.org/ dx.doi.org/10.2174/18746098112059990036] [PMID: 23866011]
[216]
Papandreou MA, Dimakopoulou A, Linardaki ZI, et al. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav Brain Res 2009; 198(2): 352-8.
[http://dx.doi.org/10. 1016/j.bbr.2008.11.013] [PMID: 19056430]
[217]
Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P. Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci 2008; 9(2)(Suppl. 2): S6.
[http://dx.doi.org/dx.doi. org/10.1186/1471-2202-9-S2-S6] [PMID: 19090994]
[218]
Singh B, Kaur P. Gopichand; Singh, R.D.; Ahuja, P.S. Biology and chemistry of Ginkgo biloba. Fitoterapia 2008; 79(6): 401-18.
[http://dx.doi.org/10.1016/j.fitote.2008.05.007] [PMID: 18639617]
[219]
Nakaya T-A, Kita M, Kuriyama H, Iwakura Y, Imanishi J. Panax ginseng induces production of proinflammatory cytokines via toll-like receptor. J Interferon Cytokine Res 2004; 24(2): 93-100.
[http://dx.doi.org/10.1089/107999004322813336] [PMID: 14980073]
[220]
Polkowski K, Mazurek AP. Biological properties of genistein. A review of in vitro and in vivo data. Acta Poloniae Pliarmaceutica—. Drug Res 2000; 57(2): l35-55.
[221]
Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res 2006; 66(5): 2500-5.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3636] [PMID: 16510563]
[222]
Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006; 5(6): 493-506.
[http://dx.doi.org/10.1038/nrd2060] [PMID: 16732220]
[223]
Langcake P, Pryce R. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 1976; 9(1): 77-86.
[http://dx.doi.org/dx. doi.org/10.1016/0048-4059(76)90077-1]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 3
Year: 2019
Page: [247 - 267]
Pages: 21
DOI: 10.2174/1570159X16666180911124605
Price: $58

Article Metrics

PDF: 28
HTML: 1