In silico Analysis of L-Glutaminase from Extremophiles

Author(s): Sarita Devi, Savitri, Tilak Raj, Nikhil Sharma, Wamik Azmi*.

Journal Name: Current Proteomics

Volume 16 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: L-glutaminase enzyme belongs to the family of hydrolases, those acting on carbon-nitrogen bonds other than peptide bonds, specifically in linear amides. Protein L-glutaminase, which converts amino acid glutamine to a glutamate residue, is useful as antileukemic agent, antiretroviral agent and a new food-processing enzyme.

Objective: The sequences representing L-glutaminase from extremophiles were analyzed for different physico-chemical properties and to relate these observed differences to their extremophilic properties, phylogenetic tree construction and the evolutionary relationship among them.

Methods: In this work, in silico analysis of amino acid sequences of extremophilic (thermophile, halophile and psychrophiles) proteins has been done. The physiochemical properties of these four groups of proteins for L-glutaminase also differ in number of amino acids, aliphatic index and grand average of hydropathicity (GRAVY).

Result: The GRAVY was found to be significantly high in thermophilic (2.29 fold) and psychrophilic bacteria (3.3 fold) as compare to mesophilic bacteria. The amino acid Cys (C) was found to be statistically significant in mesophilic bacteria (approximately or more than 3 fold) as compared to the abundance of this amino acid in extremophilic bacteria.

Conclusion: Multiple sequence alignment revealed the domain/motif for glutaminase that consists of Ser-74, Lys-77, Asn-126, Lys-268, and Ser-269, which is highly conserved in all microorganisms.

Keywords: L-glutaminase, leukemia, extremophiles, multiple sequence alignment, phylogenetic tree, amino acid.

[1]
Thangavelu, K.; Chong, Q.Y.; Low, B.C.; Sivaraman, J. Structural basis for the active site inhibition mechanism of human kidney-type glutaminase (KGA). Sci. Rep., 2014, 4, 3837.
[2]
Ericson, J.W.; Cerione, R.A. Glutaminase: a hot spot for regulation of cancer cell metabolism. Oncotarget, 2010, 1, 734-740.
[3]
Rajagopalan, K.N.; DeBerardinis, R.J. Role of glutamine in cancer: therapeutic and imaging implications. ‎. J. Nucl. Med., 2011, 52, 1005-1008.
[4]
Roberts, J.; McGregor, W.G. Inhibition of mouse retroviral disease by bioactive glutaminase-asparaginase. J. Gen. Virol., 1991, 72, 299-305.
[5]
Pallem, C.; Manipati, S.; Somalanka, S.R. Process optimization of L-glutaminase production by Trichodermakoningii under Solid State Fermentation (SSF). Int. J. Appl. Biol. Pharm, 2010, 1, 168-1174.
[6]
Gomes, J.; Steiner, W. The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol., 2004, 42, 223-235.
[7]
Niehaus, F.; Bertoldo, C.; Kahler, M.; Antranikian, G. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol., 1999, 51, 711-729.
[8]
Dokholyana, N.V.; Mirnya, L.A.; Shakhnovich, E.I. Understanding conserved amino acids in proteins. Physica A, 2002, 314, 600-606.
[9]
Devi, S.; Sharma, N.; Savitri.; Bhalla, T.C. Comparative analysis of amino acid sequence from mesophiles and thermophiles in respective of carbo-nitrogen hydrolase family. 3 Biotech., 2013, 3, 491- 507.
[10]
Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry, 5th ed; W.H. Freeman: New York, USA, 2002.
[11]
Jin, Q.; Yuan, Z.; Xu, J.; Wang, Y.; Shen, Y.; Lu, W.; Wang, J.; Liu, H.; Yang, J.; Yang, F.; Zhang, X.; Zhang, J.; Yang, G.; Wu, H. Qu. D.; Dong, J.; Sun, L.; Xue, Y.; Zhao, A.; Gao, Y.; Zhu, J.; Kan, B.; Ding, K.; Chen, S.; Cheng, H.; Yao, Z.; He, B.; Chen, R.; Ma, D.; Qiang, B.; Wen, Y.; Hou, Y.; Yu, J. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O 157. Nucleic Acids Res., 2002, 30, 4432-4441.
[12]
Parkhill, J.; Wren, B.W.; Thomson, N.R.; Titball, R.W.; Holden, M.T.; Prentice, M.B.; Sebaihia, M.; James, K.D.; Churcher, C.; Mungall, K.L.; Baker, S.; Basham, D.; Bentley, S.D.; Brooks, K.; Cerdeño-Tárraga, A.M.; Chillingworth, T.; Cronin, A.; Davies, R.M.; Davis, P.; Dougan, G.; Feltwell, T.; Hamlin, N.; Holroyd, S.; Jagels, K.; Karlyshev, A.V.; Leather, S.; Moule, S.; Oyston, P.C.; Quail, M.; Rutherford, K.; Simmonds, M.; Skelton, J.; Stevens, K.; Whitehead, S.; Barrell, B.G. Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 2001, 413, 523-537.
[13]
Wood, D.W.; Setubal, J.C.; Kaul, R.; Monks, D.E.; Kitajima, J.P.; Okura, V.K.; Zhou, Y.; Chen, L.; Wood, G.E.; Almeida, N.F.; Woo, L.; Chen, Y.; Paulsen, I.T.; Eisen, J.A.; Karp, P.D.; Bovee, D.; Chapman, P.; Clendenning, J.; Deatherage, G.; Gillet, W.; Grant, C.; Kutyavin, T.; Levy, R.; Li, M.J.; McClelland, E.; Palmieri, A.; Raymond, C.; Rouse, G.; Saenphimmachak, C.; Wu, Z.; Romero, P.; Gordon, D.; Zhang, S.; Yoo, H.; Tao, Y.; Biddle, P.; Jung, M.; Krespan, W.; Perry, M.; Gordon-Kamm, B.; Liao, L.; Kim, S.; Hendrick, C.; Zhao, Z.Y.; Dolan, M.; Chumley, F.; Tingey, S.V.; Tomb, J.F.; Gordon, M.P.; Olson, M.V.; Nester, E.W. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science, 2001, 294, 2317-2323.
[14]
Sebaihia, M.; Peck, M.W.; Minton, N.P.; Thomson, N.R.; Holden, M.T.; Mitchell, W.J.; Carter, A.T.; Bentley, S.D.; Mason, D.R.; Crossman, L.; Paul, C.J.; Ivens, A.; Wells-Bennik, M.H.; Davis, I.J.; Cerdeño-Tárraga, A.M.; Churcher, C.; Quail, M.A.; Chillingworth, T.; Feltwell, T.; Fraser, A.; Goodhead, I.; Hance, Z.; Jagels, K.; Larke, N.; Maddison, M.; Moule, S.; Mungall, K.; Norbertczak, H.; Rabbinowitsch, E.; Sanders, M.; Simmonds, M.; White, B.; Whithead, S.; Parkhill, J. Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res., 2007, 17, 1082-1092.
[15]
Omura, S.; Ikeda, H.; Ishikawa, J.; Hanamoto, A.; Takahashi, C.; Shinose, M.; Takahashi, Y.; Horikawa, H.; Nakazawa, H.; Osonoe, T.; Kikuchi, H.; Shiba, T.; Sakaki, Y.; Hattori, M. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. ‎. Proc. Natl. Acad. Sci. USA, 2001, 98, 12215-12220.
[16]
Manzoor, S.; Bongcam, R.; Schnürer, E.A.; Müller, B. First genome sequence of a syntrophic acetate-oxidizing bacterium, Tepidanaerobacter acetatoxydans strain Re1. Genome Announc., 2013, 1, 00213-212.
[17]
Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; Garber, R.L.; Goltry, L.; Tolentino, E.; Westbrock-Wadman, S.; Yuan, Y.; Brody, L.L.; Coulte, S.N.; Folger, K.R.; Kas, A.; Larbig, K.; Lim, R.; Smith, K.; Spencer, D.; Wong, G.K.; Wu, Z.; Paulsen, I.T.; Reizer, J.; Saier, M.H.; Hancock, R.E.; Lory, S.; Olson, M.V. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 2000, 406, 6799959-6799964.
[18]
Brown, G.; Singer, A.; Proudfoot, M.; Skarina, T.; Kim, Y.; Chang, C.; Dementieva, I.; Kuznetsova, E.; Gonzalez, C.F.; Joachimiak, A.; Savchenko, A.; Yakunin, A.F. Functional and structural characterization of four glutaminases from Escherichia coli and Bacillus subtilis. Biochemistry, 2008, 47, 5724-5735.
[19]
Takami, H.; Takaki, Y.; Chee, G.J.; Nishi, S.; Shimamura, S.; Suzuki, H.; Matsui, S.; Uchiyama, I. Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilu. Nucleic Acids Res., 2004, 32, 6292-6303.
[20]
Nakamura, Y.; Kaneko, T.; Sato, S.; Ikeuchi, M.; Katoh, H.; Sasamoto, S.; Watanabe, A.; Iriguchi, M.; Kawashima, K.; Kimura, T.; Kishida, Y.; Kiyokawa, C.; Kohara, M.; Matsumoto, M.; Matsuno, A.; Nakazaki, N.; Shimpo, S.; Sugimoto, M.; Takeuchi, C.; Yamada, M.; Tabata, S. Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res., 2002, 9, 123-130.
[21]
Bishnoi, U.; Polson, S.W.; Sherrier, D.J.; Bais, H.P. Draft genome sequence of a natural root isolate, Bacillus subtilis UD1022, a potential plant growth-promoting biocontrol agent. Genome Announc., 2015, 3, e00696-e00715.
[22]
Stolyar, S.; Liu, Z.; Thiel, V.; Tomsho, L.P.; Pinel, N.; Nelson, W.C.; Lindemann, S.R.; Romine, M.F.; Haruta, S.; Schuster, S.C.; Bryant, D.A.; Fredricksona, J.K. Genome sequence of the thermophilic cyanobacterium Thermosynechococcus sp. strain NK55a. Genome Announc., 2014, 2, e01060-e01713.
[23]
Vishnivetskaya, T.A.; Lucas, S.; Copeland, A.; Lapidus, A.; del Rio, G.T.; Dalin, E.; Tice, H.; Bruce, D.C.; Goodwin, L.A.; Pitluck, S.; Saunders, E.; Brettin, T.; Detter, C.; Han, C.; Larimer, F.; Land, M.L.; Hauser, L.J.; Kyrpides, N.C.; Ovchinnikova, G.; Kathariou, S.; Ramaley, R.F.; Rodrigues, D.F.; Hendrix, C.; Richardson, P.; Tiedje, J.M. Complete genome sequence of the thermophilic bacterium Exiguobacterium sp. AT1b. J. Bacteriol., 2011, 193, 2880-2891.
[24]
Bradbury, M.; Greenfield, P.; Midgley, D.; Li, D.; Tran-Dinh, N.; Brown, J. Draft genome sequence of Clostridium sporogenes PA 3679, the common nontoxigenic surrogate for proteolytic Clostridium botulinum. J. Bacteriol., 2012, 194, 1631-1632.
[25]
Göker, M.; Saunders, E.; Lapidus, A.; Nolan, M.; Lucas, S.; Hammon, N.; Deshpande, S.; Cheng, J.F.; Han, C.; Tapia, R.; Goodwin, L.A.; Pitluck, S.; Liolios, K.; Mavromatis, K.; Pagani, I.; Ivanova, N.; Mikhailova, N.; Pati, A.; Chen, A.; Palaniappan, K.; Land, M.; Chang, Y.J.; Jeffries, C.D.; Brambilla, E.M.; Rohde, M.; Spring, S.; Detter, J.C.; Woyke, T.; Bristow, J.; Eisen, J.A.; Markowitz, V.; Hugenholtz, P.; Kyrpides, N.C.; Klenk, H.P. Genome sequence of the moderately thermophilic, amino- acid degrading and sulphur-reducing bacterium Thermovirga lienii type strain (Cas60314-T). Stand. Genomic Sci., 2012, 6, 230-239.
[26]
Ohnishi, Y.; Ishikawa, J.; Hara, H.; Suzuki, H.; Ikenoya, M.; Ikeda, H.; Yamashita, A.; Hattori, M.; Horinouchi, S. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol., 2008, 190, 4050-4060.
[27]
Saum, S.H.; Pfeiffer, F.; Palm, P.; Rampp, M.; Schuster, S.C.; Müller, V.; Oesterhelt, D. Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride- dependent bacterium Halobacillus halophilus. Environ. Microbiol., 2013, 15, 1619-1633.
[28]
Phrommao, E.; Yongsawatdigul, J.; Rodtong, S.; Steele, J.L. Complete genome sequence of Virgibacillus sp. SK37, a moderately halophilic bacterium isolated from Thai fish sauce fermentation. A0A075JR74 _9BACI, 2018, May 25. http://www.uniprot.org/ uniprot/A0A075JR74/publications (Accessed on: January 04, 2018).
[29]
Ivanova, N.; Sikorski, J.; Chertkov, O.; Nolan, M.; Lucas, S.; Hammon, N.; Deshpande, S.; Cheng, J.F.; Tapia, R.; Han, C.; Goodwin, L.; Pitluck, S.; Huntemann, M.; Liolios, K.; Pagani, I.; Mavromatis, K.; Ovchinikova, G.; Pati, A.; Chen, A.; Palaniappan, K.; Land, M.; Hauser, L.; Brambilla, E.M.; Kannan, K.P.; Rohde, M.; Tindall, B.J.; Göker, M.; Detter, J.C.; Woyke, T.; Bristow, J.; Eisen, J.A.; Markowitz, V.; Hugenholtz, P.; Kyrpides, N.C.; Klenk, H.P.; Lapidus, A. Complete genome sequence of the extremely halophilic Halanaerobium praevalens type strain (GSL). Stand. Genomic Sci., 2011, 4, 312-321.
[30]
Zhao, B.; Mesbah, N.M.; Dalin, E.; Goodwin, L.; Nolan, M.; Pitluck, S.; Chertkov, O.; Brettin, T.S.; Han, J.; Larimer, F.W.; Land, M.L.; Hauser, L.; Kyrpides, N.; Wiegel, J. Complete genome sequence of the anaerobic, halophilic alkalithermophile Natranaerobius thermophilus JW/NM-WN-LF. J. Bacteriol., 2011, 193, 4023-4024.
[31]
Joseph, T.C.; Baby, A.; Reghunathan, D.; Varghese, A.M.; Murugadas, V.; Lalitha, K.V. Draft genome sequence of the halophilic and highly halotolerant Gamma proteobacteria strain MFB021. Genome Announc., 2014, 2, e01156-e14.
[32]
Papke, R.T.; de la Haba, R.R.; Infante-Domínguez, C.; Pérez, D.; Sánchez-Porro, C.; Lapierre, P.; Ventosa, A. Draft genome sequence of the moderately halophilic bacterium Marinobacter lipolyticus strain SM19. Genome Announc., 2013, 1(4), e00379-e00413.
[33]
Bharadwaj, S.V.V.; Shrivastav, A.; Dubey, S.; Ghosh, T.; Paliwal, C.; Maurya, R.; Mishra, S. Draft genome sequence of halomonas hydrothermalis MTCC 5445, isolated from the West coast of India. Genome Announc., 2015, 3, e01419-e14.
[34]
Methé, B.A.; Nelson, K.E.; Deming, J.W.; Momen, B.; Melamud, E.; Zhang, X.; Moult, J.; Madupu, R.; Nelson, W.C.; Dodson, R.J.; Brinkac, L.M.; Daugherty, S.C.; Durkin, A.S.; DeBoy, R.T.; Kolonay, J.F.; Sullivan, S.A.; Zhou, L.; Davidsen, T.M.; Wu, M.; Huston, A.L.; Lewis, M.; Weaver, B.; Weidman, J.F.; Khouri, H.; Utterback, T.R.; Feldblyum, T.V.; Fraser, C.M. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA, 2005, 102, 10913-10918.
[35]
Aono, E.; Baba, T.; Ara, T.; Nishi, T.; Nakamichi, T.; Inamoto, E.; Toyonaga, H.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Tomita, M.; Kato, C.; Oshima, T.; Nakasone, K.; Mori, H. Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments. Mol. Biosyst., 2010, 6, 1216-1226.
[36]
Feng, S.; Powell, S.M.; Wilson, R.; Bowman, J.P. Extensive gene acquisition in the extremely psychrophilic bacterial species Psychroflexus torquis and the link to sea-ice ecosystem specialism. Genome Biol. Evol., 2014, 6, 133-148.
[37]
Truong, L.V.; Tuyen, H.; Helmke, E.; Binh, L.T.; Schweder, T. Cloning of two pectate lyase genes from the marine antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles, 2001, 5, 35-44.
[38]
Pandiyan, A.; Ray, M.K. Draft genome sequence of the Antarctic psychrophilic bacterium Pseudomonas syringae strain Lz4W. Genome Announc., 2013, 1, e00377-e13.
[39]
Margolles, A.; Gueimonde, M.; Sánchez, B. Genome sequence of the Antarctic psychrophile bacterium Planococcus antarcticus DSM 14505. J. Bacteriol., 2012, 194, 16, 4465.
[40]
Pearson, M.D.; Noller, H.F. The draft genome of Planococcus donghaensis MPA1U2 reveals nonsporulation pathways controlled by a conserved Spo0A regulon. J. Bacteriol., 2011, 193(21), 6106
[41]
Feng, S.; Powell, S.M.; Wilson, R.; Bowman J.P. The complete sequence of Psychroflexus torquis an extreme psychrophile from sea-ice that is stimulated by light. Uniprot, 2018, Feb 27.
[42]
Sievers, F.; Wilm, A.; Dineen, D.G.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J.D.; Higgins, D.G. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol., 2011, 7, 539.
[43]
Felsenstein, J. PHYLIP©-Phylogeny inference package (Version 3.2). Cladistics, 1989, 5, 164-166.
[44]
Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 1982, 157, 105-132.
[45]
Bjellqvist, B.; Hughes, G.J.; Pasquali, C.; Paquet, N.; Ravier, F.; Sanchez, J.C. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis, 1993, 14, 1023-1031.
[46]
Gill, S.C.; Hippel, P.H.V. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem., 1989, 182, 319-326.
[47]
Guruprasad, K.; Reddy, B.V.B.; Pandit, M.W. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng., 1990, 4, 155-161.
[48]
Woese, C.R. Bacterial evolution. Microbiol. Rev., 1987, 51, 221-271.
[49]
Rokas, A.; Williams, B.L.; King, N.; Carroll, S.B. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature, 2003, 425, 798-804.
[50]
Lehti, T.A.; Bauchart, P.; Kukkonen, M.; Dobrindt, U.; Korhonen, T.K.; Westerlund-Wikström, B. Phylogenetic group-associated differences in regulation of the common colonization factor Mat fimbria in Escherichia coli. Mol. Microbiol., 2013, 87, 1200-1222.
[51]
Oshima, K.; Ueda, K.; Beppu, T.; Nishida, H. Unique Evolution of Symbiobacterium thermophilum suggested from gene content and orthologous protein sequence comparisons. Int. J. Evol. Biol., 2011, 2011, 376-381.
[52]
Sabu, A.; Chandrasekaran, M.; Pandey, A. Biopotential of microbial glutaminases. Chem. Today, 2000, 18, 21-25.
[53]
Gromiha, M.M.; Suresh, M.X. Discrimination of mesophilic and thermophilic proteins using machine learning algorithms. Proteins, 2008, 20, 1274-1279.
[54]
Zeldovich, K.B.; Berezovsky, I.N.; Shakhnovich, E.I. Protein and DNA sequence determinants of thermophilic adaptation. PLOS Comput. Biol., 2007, 3, e5.
[55]
Perutz, M.F.; Raidt, H. Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature, 1975, 255, 256-259.
[56]
Kumar, S.; Tsai, C.J.; Nussinov, R. Factors enhancing protein thermostability. Protein Eng., 2000, 13, 179-191.
[57]
Xiao, L.; Honig, B. Electrostatic contributions to the stability of hyperthermophilic proteins. J. Mol. Biol., 1999, 289, 1435-1444.
[58]
Atsushi, I. Thermostability and aliphatic index of globular proteins. J. Biochem., 1980, 88, 1895-1898.
[59]
Sharma, N.; Kushwaha, R.; Sodhi, J.S.; Bhalla, T.C. In silico analysis of amino acid sequences in relation to specificity and physiochemical properties of some microbial nitrilases. J. Proteomics Bioinform., 2009, 2, 185-192.
[60]
Requejo, R.; Hurd, T.R.; Costa, N.J.; Murphy, M.P. Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage. FEBS J., 2007, 277, 1465-1480.
[61]
Yan, B.X.; Sun, Y.Q. Glycine residues provide flexibility for enzyme active sites. J. Biol. Chem., 1997, 272, 3190-3194.
[62]
Smole, Z.; Nikolic, N.; Supek, F.; Šmuc, T.; Sbalzarini, I.F.; Krisko, A. Proteome sequence features carry signatures of the environmental niche of prokaryotes. BMC Evol. Biol., 2011, 11, 1-10.
[63]
Madigan, M.T.; Oren, A. Thermophilic and halophilic extremophiles. Curr. Opin. Microbiol., 1999, 2, 265-269.
[64]
Metpally, R.P.R.; Reddy, B.V.B. Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: insights into the molecular basis of cold adaptation of proteins. BMC Genomics, 2009, 10, 11.
[65]
Kumar, V.; Sharma, N.; Bhalla, T.C. In silico analysis of β-galactosidases primary and secondary structure in relation to temperature adaptation. J. Amino Acids, 2014, 2014, 475839.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 3
Year: 2019
Page: [210 - 221]
Pages: 12
DOI: 10.2174/1570164615666180911110606
Price: $58

Article Metrics

PDF: 19
HTML: 1