c-Myc Inhibitor 10074-G5 Induces Murine and Human Hematopoietic Stem and Progenitor Cell Expansion and HDR Modulator Rad51 Expression

Author(s): Merve Aksoz, Esra Albayrak, Galip Servet Aslan, Raife Dilek Turan, Lamia Yazgi Alyazici, Pınar Siyah, Emre Can Tuysuz, Serli Canikyan, Dogacan Yucel, Neslihan Meric, Zafer Gulbas, Fikrettin Sahin, Fatih Kocabas*.

Journal Name: Current Cancer Drug Targets

Volume 19 , Issue 6 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: c-Myc plays a major role in the maintenance of glycolytic metabolism and hematopoietic stem cell (HSC) quiescence.

Objective: Targeting modulators of HSC quiescence and metabolism could lead to HSC cell cycle entry with concomitant expansion.

Methods and Results: Here we show that c-Myc inhibitor 10074-G5 treatment leads to 2-fold increase in murine LSKCD34low HSC compartment post 7 days. In addition, c-Myc inhibition increases CD34+ and CD133+ human HSC number. c-Myc inhibition leads to downregulation of glycolytic and cyclindependent kinase inhibitor (CDKI) gene expression ex vivo and in vivo. In addition, c-Myc inhibition upregulates major HDR modulator Rad51 expression in hematopoietic cells. Besides, c-Myc inhibition does not alter proliferation kinetics of endothelial cells, fibroblasts or adipose-derived mesenchymal stem cells, however, it limits bone marrow derived mesenchymal stem cell proliferation. We further demonstrate that a cocktail of c-Myc inhibitor 10074-G5 along with tauroursodeoxycholic acid (TUDCA) and i-NOS inhibitor L-NIL provides a robust HSC maintenance and expansion ex vivo as evident by induction of all stem cell antigens analyzed. Intriguingly, the cocktail of c-Myc inhibitor 10074-G5, TUDCA and L-NIL improves HDR related gene expression.

Conclusion: These findings provide tools to improve ex vivo HSC maintenance and expansion, autologous HSC transplantation and gene editing through modulation of HSC glycolytic and HDR pathways.

Keywords: Hematopoietic stem cells, mesenchymal stem cells, small molecules, bone marrow, c-myc, homology-directed repair.

[1]
Dahlberg, A.; Delaney, C.; Bernstein, I.D. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood, 2011, 117(23), 6083-6090.
[2]
Aggarwal, R.; Lu, J.; Pompili, V.J.; Das, H. Hematopoietic stem cells: Transcriptional regulation, ex vivo expansion and clinical application. Curr. Mol. Med., 2012, 12(1), 34-49.
[3]
Pietras, E.M.; Warr, M.R.; Passegue, E. Cell cycle regulation in hematopoietic stem cells. J. Cell Biol., 2011, 195(5), 709-720.
[4]
Oelke, M.; Maus, M.V.; Didiano, D.; June, C.H.; Mackensen, A.; Schneck, J.P. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat. Med., 2003, 9(5), 619-624.
[5]
Nishino, T.; Wang, C.; Mochizuki-Kashio, M.; Osawa, M.; Nakauchi, H.; Iwama, A. Ex vivo expansion of human hematopoietic stem cells by garcinol, a potent inhibitor of histone acetyltransferase. PLoS One, 2011, 6(9)e24298
[6]
Zheng, J.; Umikawa, M.; Zhang, S.; Huynh, H.; Silvany, R.; Chen, B.P.; Chen, L.; Zhang, C.C. Ex vivo expanded hematopoietic stem cells overcome the MHC barrier in allogeneic transplantation. Cell Stem Cell, 2011, 9(2), 119-130.
[7]
Kocabas, F.; Zheng, J.; Thet, S.; Copeland, N.G.; Jenkins, N.A.; DeBerardinis, R.J.; Zhang, C.; Sadek, H.A. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood, 2012, 120(25), 4963-4672.
[8]
Walasek, M.A.; van Os, R.; de Haan, G. Hematopoietic stem cell expansion: challenges and opportunities. Ann. N. Y. Acad. Sci., 2012, 1266, 138-150.
[9]
Miharada, K.; Sigurdsson, V.; Karlsson, S. Dppa5 improves hematopoietic stem cell activity by reducing endoplasmic reticulum stress. Cell Rep., 2014, 7(5), 1381-1392.
[10]
Maciejewski, J.P.; Selleri, C.; Sato, T.; Cho, H.J.; Keefer, L.K.; Nathan, C.F.; Young, N.S. Nitric oxide suppression of human hematopoiesis in vitro. Contribution to inhibitory action of interferon-gamma and tumor necrosis factor-alpha. J. Clin. Invest., 1995, 96(2), 1085-1092.
[11]
Nogueira-Pedro, A.; Barbosa, C.M.; Segreto, H.R.; Lungato, L.; D’Almeida, V.; Moraes, A.A.; Miranda, A.; Paredes-Gamero, E.J.; Ferreira, A.T. Alpha-tocopherol induces hematopoietic stem/progenitor cell expansion and ERK1/2-mediated differentiation. J. Leukoc. Biol., 2011, 90(6), 1111-1117.
[12]
Pelengaris, S.; Khan, M.; Evan, G. c-MYC: More than just a matter of life and death. Nat. Rev. Cancer, 2002, 2(10), 764-776.
[13]
Vennstrom, B.; Sheiness, D.; Zabielski, J.; Bishop, J.M. Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J. Virol., 1982, 42(3), 773-779.
[14]
Laurenti, E.; Varnum-Finney, B.; Wilson, A.; Ferrero, I.; Blanco-Bose, W.E.; Ehninger, A.; Knoepfler, P.S.; Cheng, P.F.; MacDonald, H.R.; Eisenman, R.N. Bernstein, Trumpp A. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell, 2008, 3(6), 611-624.
[15]
Murphy, M.J.; Wilson, A.; Trumpp, A. More than just proliferation: Myc function in stem cells. Trends Cell Biol., 2005, 15(3), 128-137.
[16]
Eisenman, R.N. Deconstructing myc. Genes Dev., 2001, 15(16), 2023-2030.
[17]
Wilson, A.; Murphy, M.J.; Oskarsson, T.; Kaloulis, K.; Bettess, M.D.; Oser, G.M.; Pasche, A.C.; Knabenhans, C.; Macdonald, H.R.; Trumpp, A. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev., 2004, 18(22), 2747-2763.
[18]
Spangrude, G.J.; Brooks, D.M. Mouse strain variability in the expression of the hematopoietic stem cell antigen Ly-6A/E by bone marrow cells. Blood, 1993, 82(11), 3327-3332.
[19]
Vazquez, S.E.; Inlay, M.A.; Serwold, T. CD201 and CD27 identify hematopoietic stem and progenitor cells across multiple murine strains independently of Kit and Sca-1. Exp. Hematol., 2015, 43(7), 578-585.
[20]
Leonova, K.I.; Shneyder, J.; Antoch, M.P.; Toshkov, I.A.; Novototskaya, L.R.; Komarov, P.G.; Komarova, E.A.; Gudkov, A.V. A small molecule inhibitor of p53 stimulates amplification of hematopoietic stem cells but does not promote tumor development in mice. Cell Cycle, 2010, 9(7), 1434-1443.
[21]
Simsek, T.; Kocabas, F.; Zheng, J.; DeBerardinis, R.J.; Mahmoud, A.I.; Olson, E.N.; Schneider, J.W.; Zhang, C.C.; Sadek, H.A. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell, 2010, 7(3), 380-390.
[22]
Kocabas, F.; Zheng, J.; Zhang, C.; Sadek, H.A. Metabolic characterization of hematopoietic stem cells. Methods Mol. Biol., 2014, 1185, 155-164.
[23]
Zheng, J.; Lu, Z.; Kocabas, F.; Böttcher, R.T.; Costell, M.; Kang, X.; Liu, X.; DeBerardinis, R.J.; Wang, Q.; Chen, G.Q.; Sadek, H. Profilin 1 is essential for retention and metabolism of mouse hematopoietic stem cells in bone marrow. Blood, 2014, 123(7), 992-1001.
[24]
Rimmelé, P.; Liang, R.; Bigarella, C.L.; Kocabas, F.; Xie, J.; Serasinghe, M.N.; Chipuk, J.; Sadek, H.; Zhang, C.C.; Ghaffari, S. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep., 2015, 16(9), 1164-1176.
[25]
Kocabas, F.; Xie, L.; Xie, J.; Yu, Z.; DeBerardinis, R.J.; Kimura, W.; Thet, S.; Elshamy, A.F.; Abouellail, H.; Muralidhar, S.; Liu, X. Hypoxic metabolism in human hematopoietic stem cells. Cell Biosci., 2015, 5, 39.
[26]
Soleimani, M.; Nadri, S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat. Protoc., 2009, 4(1), 102-106.
[27]
Boztas, A.O.; Karakuzu, O.; Galante, G.; Ugur, Z.; Kocabas, F.; Altuntas, C.Z.; Yazaydin, A.O. Synergistic interaction of paclitaxel and curcumin with cyclodextrin polymer complexation in human cancer cells. Mol. Pharm., 2013, 10(7), 2676-2683.
[28]
Osthus, R.C.; Shim, H.; Kim, S.; Li, Q.; Reddy, R.; Mukherjee, M.; Xu, Y.; Wonsey, D.; Lee, L.A.; Dang, C.V. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem., 2000, 275(29), 21797-21800.
[29]
Kim, J.W.; Zeller, K.I.; Wang, Y.; Jegga, A.G.; Aronow, B.J.; O’Donnell, K.A.; Dang, C.V. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol. Cell. Biol., 2004, 24(13), 5923-5936.
[30]
Kim, J.W.; Tchernyshyov, I.; Semenza, G.L.; Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab., 2006, 3(3), 177-185.
[31]
Dang, C.V.; Le, A.; Gao, P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin. Cancer Res., 2009, 15(21), 6479-6483.
[32]
Dang, C.V.; O’Donnell, K.A.; Zeller, K.I.; Nguyen, T.; Osthus, R.C.; Li, F. The c-Myc target gene network. Semin. Cancer Biol., 2006, 16(4), 253-264.
[33]
Calvi, L.M.; Adams, G.B.; Weibrecht, K.W.; Weber, J.M.; Olson, D.P.; Knight, M.C.; Martin, R.P.; Schipani, E.; Divieti, P.; Bringhurst, F.R.; Milner, L.A. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 2003, 425(6960), 841-846.
[34]
Barančík, M.; Boháčová, V.; Kvačkajová, J.; Hudecová, S.; Križanová Og, B.A. SB203580, a specific inhibitor of p38-MAPK pathway, is a new reversal agent of P-glycoprotein-mediated multidrug resistance. Eur. J. Pharm. Sci., 2001, 14(1), 29-36.
[35]
Özcan, U.; Yilmaz, E.; Özcan, L.; Furuhashi, M.; Vaillancourt, E.; Smith, R.O.; Görgün, C.Z.; Hotamisligil, G.S. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science, 2006, 313(5790), 1137-1140.
[36]
Ozcan, L.; Ergin, A.S.; Lu, A.; Chung, J.; Sarkar, S.; Nie, D. Myers Jr.; M.G.; Ozcan, U. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab., 2009, 9(1), 35-51.
[37]
Berger, E.; Haller, D. Structure-function analysis of the tertiary bile acid TUDCA for the resolution of endoplasmic reticulum stress in intestinal epithelial cells. Biochem. Biophys. Res. Commun., 2011, 409(4), 610-615.
[38]
Reykdal, S.; Abboud, C.; Liesveld, J. Effect of nitric oxide production and oxygen tension on progenitor preservation in ex vivo culture. Exp. Hematol., 1999, 27(3), 441-450.
[39]
Shinohara, A.; Ogawa, H.; Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell, 1992, 69(3), 457-470.
[40]
Anand, R.; Beach, A.; Li, K.; Haber, J. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates. Nature, 2017, 544(7650), 377.
[41]
Lukaszewicz, A.; Howard-Till, R.A.; Novatchkova, M.; Mochizuki, K.; Loid, J. MRE11 and COM1/SAE2 are required for double-strand break repair and efficient chromosome pairing during meiosis of the protist Tetrahymena. Chromosoma, 2010, 119(5), 505-518.
[42]
Stracker, T.H.; Theunissen, J.W.; Morales, M.; Petrini, J.H. The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair , 2004, 3(8-9), 845-854.
[43]
Pruitt, S.C.; Qin, M.; Wang, J.; Kunnev, D.; Freeland, A. A signature of genomic instability resulting from deficient replication licensing. PLoS Genet., 2017, 13(1)e1006547
[44]
Maher, R.L.; Branagan, A.M.; Morrical, S.W. Coordination of DNA replication and recombination activities in the maintenance of genome stability. J. Cell. Biochem., 2011, 112(10), 2672-2682.
[45]
Mincheva, A.; Todorov, I.; Werner, D.; Fink, T.M.; Lichter, P. The human gene for nuclear protein BM28 (CDCL1), a new member of the early S-phase family of proteins, maps to chromosome band 3q21. Cytogenet. Cell Genet., 1994, 65(4), 276-277.
[46]
Eide, T.; Taskén, K.A.; Carlson, C.; Williams, G.; Jahnsen, T.; Taskén, K.; Collas, P. Protein kinase A-anchoring protein AKAP95 interacts with MCM2, a regulator of DNA replication. J. Biol. Chem., 2003, 278(29), 26750-26756.
[47]
Komor, A.C.; Badran, A.H.; Liu, D.R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 2017, 168(1-2), 20-36.
[48]
Kim, J.S. Genome editing comes of age. Nat. Protoc., 2016, 11(9), 1573-1578.
[49]
Booth, C.; Gaspar, H.B.; Thrasher, A.J. Treating immunodeficiency through HSC gene therapy. Trends Mol. Med., 2016, 22(4), 317-327.
[50]
Hütter, G.; Bodor, J.; Ledger, S.; Boyd, M.; Millington, M.; Tsie, M.; Symonds, G. CCR5 targeted cell therapy for HIV and prevention of viral escape. Viruses, 2015, 7(8), 4186-4203.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 6
Year: 2019
Page: [479 - 494]
Pages: 16
DOI: 10.2174/1568009618666180905100608
Price: $58

Article Metrics

PDF: 41
HTML: 3
EPUB: 1
PRC: 1