Isolation and Identification of Certain Phenolic Compounds from Salix mucronata Leaf Extracts and Evaluation Them as Antimicrobial Agents

Author(s): Mortada M. El-Sayed , Maher M. Abdel-Aziz , Salah Abo-Sedra , Heba R. Mohamed , Ezzat E.-S. Abdel-Lateef* .

Journal Name: Current Bioactive Compounds

Volume 15 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: In recent years, plant extracts are considered as an important source of many drug formulations for treatment of human beings from infection diseases. The objective of this study was to evaluate the antimicrobial activity of Salix mucronata leaves extracts and isolate their bioactive phytochemicals.

Methods: The dry powder of Salix mucronata was extracted with different aqueous methanol concentrations. The 85% methanolic extract was further fractionated using different organic solvents. The antimicrobial activity of different extracts and fractions was evaluated. The most bioactive fractions were submitted for chromatographic isolation and structure elucidation of their phytochemicals using chromatographic and spectroscopic methods.

Results: The ethyl acetate and the butanolic fractions derived from 85% MeOH extract gave a high antimicrobial activity with inhibition zones ranging between 10 mm and 26 mm and minimum inhibitory concentration (MIC) value of 8 mg/mL. While the butanolic fraction showed zones of inhibition ranging between 10 mm and 25 mm with MIC 8 mg/mL. Six compounds were isolated from ethyl acetate fraction and their structures were elucidated as; apigenin (1), quercetin (2), quercetrin (3), rhamnazin -3-O-β-D-glucopyranoside (4), Chrysoeriol-7-O-β-D-glucuronoid- 6ʺ -methyl ester (5), and tremuloidin (6). Also, five compounds were isolated from the butanolic fraction and their structures were elucidated as; kaempferol (7), luteolin (8), luteolin-3ʹ - methoxy-4ʹ - O-β-D- glucopyranoside (9), isorhamnetin -3-O-β -D-glucopyranoside (10) and salicin (11).

Conclusion: The results of the present study showed that the ethyl acetate and the butanolic fractions contain high flavonoids and salicinoids compounds which may attribute to their potential as antimicrobial agents.

Keywords: Antimicrobial properties, chromatography, flavonoids, phenolic compounds, salicinoids, Salix mucronata.

Akhtar, N. Ihsan-ul-Haq; Mirza, B. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arab. J. Chem., 2015, 11(8), 1223-1235.
Ganesan, P.; Reegan, A.D.; David, R.H.A.; Gandhi, M.R.; Paulraj, M.G.; Al-Dhabi, N.A.; Ignacimuthu, S. Antimicrobial activity of some actinomycetes from Western Ghats of Tamil Nadu, India. Alex. J. Med., 2017, 53, 101-110.
Sadiq, M.B.; Tarning, J.; Aye Cho, T.Z.; Anal, A.K. Antibacterial activities and possible modes of action of Acacia nilotica (L.) Del. against multidrug-resistant Escherichia coli and Salmonella. Molecules, 2017, 22(1), 1-16.
Aumeeruddy-elalfi, Z.; Gurib-fakim, A.; Mahomoodally, F. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Ind. Crops Prod., 2015, 71, 197-204.
Hemalatha, M.; Thirumalai, T.; Saranya, R.; Elumalai, K.; David, E. A review on antimicrobial efficacy of some traditional medicinal plants in Tamilnadu. J. Acute Dis., 2013, 2(2), 99-105.
Pavase, L.S.; Mane, D.V.; Baheti, K. Synthesis and antibacterial activities of novel sulphonamide cnontaining 1, 3-diarylpyrazolyl Amides. Curr. Bioact. Compd., 2018, 14(2), 163-168.
Khan, U.A.; Rahman, H.; Niaz, Z.; Qasim, M.; Khan, J. Tayyaba; Rehman, B. Antibacterial activity of some medicinal plants against selected human pathogenic bacteria. Eur. J. Microbiol. Immunol. (Bp.), 2013, 3(4), 272-274.
de Camargo, A.C.; Regitano-d’Arce, M.A.B.; Rasera, G.B.; Canniatti-Brazaca, S.G.; do Prado-Silva, L.; Alvarenga, V.O.; Sant’Ana, A.S.; Shahidi, F. Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects. Food Chem., 2017, 237, 538-544.
Al Sherif, E.A.; Amer, W.; Khodary, S.E.A.; Azmy, W. Ecological Studies on Salix distribution in Egypt. Asian J. Plant Sci., 2009, 8(3), 230-234.
El-Sayed, M.M.; El-Hashash, M.M.; Mohamed, H.R.; Abdel-lateef, E.E. Phytochemical investigation and in vitro antioxidant activity of different leaf extracts of Salix mucronata Thunb. J. Appl. Pharm. Sci., 2015, 5(12), 80-85.
Shah, Z.A.; Hameed, A.; Ahmed, A.; Simjee, S.U.; Jabeen, A.; Ullah, A.; Shaheen, F. Cytotoxic and anti-inflammatory salicin glycosides from leaves of Salix acmophylla. Phytochem. Lett., 2016, 17, 107-113.
El-Shazly, A.; El-Sayed, A.; Fikrey, E. Bioactive secondary metabolites from Salix tetrasperma Roxb. Z. Natforsch. C J. Biosci., 2012, 67(7-8), 353-359.
Sulima, P.; Krauze-Baranowska, M.; Przyborowski, J.A. Variations in the chemical composition and content of salicylic glycosides in the bark of Salix purpurea from natural locations and their significance for breeding. Fitoterapia, 2017, 118, 118-125.
Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45(4), 493-496.
Parthasarathy, S.; Bin Azizi, J.; Ramanathan, S.; Ismail, S.; Sasidharan, S.; Said, M.I.M.; Mansor, S.M. Evaluation of antioxidant and antibacterial activities of aqueous, methanolic and alkaloid extracts from Mitragyna speciosa (Rubiaceae family) leaves. Molecules, 2009, 14(10), 3964-3974.
Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother., 2001, 48(1), 5-16.
Akinyemi, K.O.; Oluwa, O.K.; Omomigbehin, E.O. Antimicrobial activity of crude extracts of three medicinal plants used in South-West Nigerian folk medicine on some food borne bacterial pathogens. Afri. J. Trad. Compl. Alter. Med., 2006, 3(4), 13-22.
Huang, H.; Hwang, S.; Liang, Y.; Zhang, L.; Hsu, Y.; Liaw, C.; Kuo, Y. Constituents from Taiwanese Sarcopyramis nepalensis. J. Chin. Med., 2013, 24(1), 1-12.
Barber, O.; Sanz, J.F.; Sanchez-Parareda, J.; Marco, J.A. Further flavonol glycosides from Anthyllisono brychioides. Phytochemistry, 1986, 25(10), 2361-2365.
Orhan, F.; Barış, Ö.; Yanmış, D.; Bal, T.; Güvenalp, Z.; Güllüce, M. Isolation of some luteolin derivatives from Mentha longifolia (L.) Hudson subsp. longifolia and determination of their genotoxic potencies. Food Chem., 2012, 135(2), 764-769.
Mizuno, M.; Kato, M.; Misu, C.; Iinuma, M.; Tanaka, T. Chaenomeloidin: A phenolic glucoside from leaves of Salix chaenomeloides. J. Nat. Prod., 1991, 54(5), 1447-1450.
Lee, M.H.; Son, Y.K.; Han, Y.N. Tissue factor inhibitory flavonoids from the fruits of Chaenomeles sinensis. Arch. Pharm. Res., 2002, 25(6), 842-850.
Wang, D.M.; Pu, W.J.; Wang, Y.H.; Zhang, Y.J.; Wang, S.S. A new isorhamnetin glycoside and other phenolic compounds from Callianthemum taipaicum. Molecules, 2012, 17(4), 4595-4603.
Wei, X.H.; Yang, S.J.; Liang, N.; Hu, D.Y.; Jin, L.H.; Xue, W.; Yang, S. Chemical constituents of Caesalpinia decapetala (Roth) Alston. Molecules, 2013, 18(1), 1325-1336.
Jakhetia, V.; Patel, R.; Khatri, P.; Pahuja, N.; Garg, S.; Pandey, A.; Sharma, S. Cinnamon: A pharmacological review. J. Adv. Sci. Res, 2010, 1(2), 19-23.
Kim, S.; Cho, A.R.; Han, J. Antioxidant and antimicrobial activities of leafy green vegetable extracts and their applications to meat product preservation. Food Control, 2013, 29(1), 112-120.
Karou, D.; Dicko, M.H.; Simpore, J.; Traore, A.S. Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso. Afr. J. Biotechnol., 2005, 4(8), 823-828.
Tintino, S.R.; Souza, C.E.S.; Guedes, G.M.M.; Costa, J.I.V.; Duarte, F.M.; Chaves, M.C.O.; Silva, V.A.; Pessôa, H.L.F.; Lima, M.A.; Garcia, C.A.; Coutinho, H.D.M. Modulatory antimicrobial activity of piper arboreum extracts. Acta Bot. Croat., 2014, 73(1), 281-289.
Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
Nasr, A.; Zhou, X.; Huang, S.P.; Wang, Y.; Li, X.; Zhu, G.P. Comparative effects of some extraction solvents on the antimicrobial activity of Eucalyptus camaldulensis leaf, bud, capsule and seed crude extracts. Nat. Prod. Res., 2018.
Singh, B.; Sharma, R.A. Anti-inflammatory and antimicrobial effects of flavonoids from Heliotropium ellipticum exudate. Curr. Bioact. Compd., 2016, 12(2), 123-131.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [360 - 366]
Pages: 7
DOI: 10.2174/1573407214666180829124509
Price: $58

Article Metrics

PDF: 42