Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Chemical Compounds Produced by Bacillus sp. Factories and Their Role in Nature

Author(s): Aurelio Ortiz and Estibaliz Sansinenea*

Volume 19, Issue 5, 2019

Page: [373 - 380] Pages: 8

DOI: 10.2174/1389557518666180829113612

Price: $65

Abstract

Microorganisms are able to produce hundreds of unique chemical structures that can be effectively used by the human beings on their own benefit using the products in the chemical industry. Bacteria belonging to Bacillus genera are very good chemical factories capable to synthesize different compounds with a wide variety of activities. In this review, we try to review the compounds with their respective biological activities produced by different species of Bacillus.

Keywords: Secondary metabolites, Antibiotics, Antifungals, Growth promoters, Bacillus sp, natural compounds.

Graphical Abstract
[1]
Sansinenea, E. Bacillus thuringiensis biotechnology; Springer, Netherlands, 2012.
[2]
Sansinenea, E.; Ortiz, A. Secondary metabolites of soil Bacillus sp. Biotechnol. Lett., 2011, 33, 1523-1538.
[3]
Demain, A.L.; Fang, A. The natural functions of secondary metabolites. In: Scheper T (ed) Advances in biochemical engineering/biotechnology; vol 69. Springer, Berlin, 2000; pp. 1-39.
[4]
Pattnaik, P.; Kaushik, J.K.; Grover, S.; Batish, V.K. Purification and characterization of a bacteriocin-like compound (lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo. J. Appl. Microbiol., 2001, 91, 636-645.
[5]
Lisboa, M.P.; Bonatto, D.; Bizani, D.; Henriques, J.A.P.; Brandelli, A. Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic forest. Int. Microbiol., 2006, 9, 111-118.
[6]
Le Marrec, C.; Hyronimus, B.; Bressollier, P.; Verneuil, B.; Urdaci, M.C. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4. Appl. Environ. Microbiol., 2000, 66, 5213-5220.
[7]
Lee, K.H.; Jun, K.D.; Kim, W.S.; Paik, H.D. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol., 2001, 32, 46-151.
[8]
a)Bizani, D.; Dominguez, A.P.M.; Brandelli, A. Purification and partial chemical characterization of the antimicrobial peptide cerein 8A. Lett. Appl. Microbiol., 2005, 41, 269-273.
b)Bizani, D.; Motta, A.S.; Morrissy, J.A.C.; Terra, R.M.S.; Souto, A.A.; Brandelli, A. Antibacterial activity of cerein 8A, a bacteriocin-like peptide produced by Bacillus cereus. Int. Microbiol., 2005, 8, 125-131.
[9]
Liu, Q.; Gao, G.; Xu, H.; Qiao, M. Identification of the bacteriocin subtilosin A and loss of purL results in its high-level production in Bacillus amyloliquefaciens. Res. Microbiol., 2012, 163, 470-478.
[10]
Halimi, B.; Dortu, C.; Arguelles-Arias, A.; Thonart, P.; Joris, B.; Fickers, P. Antilisterial Activity on Poultry Meat of Amylolysin, a Bacteriocin from Bacillus amyloliquefaciens GA1. Probiot. Antimicrob., 2010, 2, 120-125.
[11]
Ayed, H.B.; Maalej, H.; Hmidet, N.; Nasri, M. Isolation and biochemical characterisation of a bacteriocin-like substance produced by Bacillus amyloliquefaciens An6. J. Glob. Antimicrob. Resist., 2015, 3, 255-261.
[12]
Salazar, F.; Ortiz, A.; Sansinenea, E. Characterization of two novel bacteriocin-like substances produced by Bacillus amyloliquefaciens ELI149 with broad spectrum antimicrobial activity. Global antimicrob. Resistan., 2017, 11, 177-182.
[13]
Favret, M.E.; Yousten, A.A. Thuricin: The bacteriocin produced by Bacillus thuringiensis. J. Invert. Pathol., 1989, 53, 206-216.
[14]
Paik, H.D.; Bae, S.S.; Park, S.H.; Pan, J.G. Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J. Ind. Microbiol. Biotechnol., 1997, 19, 294-298.
[15]
Hathout, Y.; Ho, Y-P.; Ryzhov, V.; Demirev, P.; Fenselau, C. Kurstakin: A new class of lipopeptides isolated from Bacillus thuringiensis. J. Nat. Prod., 2000, 63, 1492-1496.
[16]
Cherif, A.; Ouzari, H.; Daffonchio, D.; Cherif, H.; Slama, K.B.; Hassen, A.; Jaoua, S.; Boudabous, A. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol., 2001, 32, 243-247.
[17]
Cherif, A.; Chehimi, S.; Limem, F.; Hansen, B.M.; Hendriksen, N.B.; Daffonchio, D.; Boudabous, A. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis subsp. Entomocidus HD9. J. Appl. Microbiol., 2003, 95, 990-1000.
[18]
Kamoun, F.; Mejdoub, H.; Aouissaoui, H.; Reinbolt, J.; Hammami, A.; Jaoua, S. Purification, amino acid sequence and characterization of bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol., 2005, 98, 881-888.
[19]
Chehimi, S.; Delalande, F.; Sable, S.; Hajlaoui, M-R.; Van Dorsselaer, A.; Limam, F.; Pons, A-M. Purification and partial amino acid sequence of thuricin S, a new anti- Listeria bacteriocin from Bacillus thuringiensis. Can. J. Microbiol., 2007, 53, 284-290.
[20]
Rea, M.C.; Sit, C.S.; Claytona, E.; O’Connor, P.M.; Whittal, R.M.; Zheng, J.; Vederas, J.C.; Ross, R.P.; Hill, C. Thuricin CD, a post-translationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl. Acad. Sci. USA, 2010, 107, 9352-9357.
[21]
Chaaboni, I.; Guesmi, A.; Cherif, A. Secondary metabolites of Bacillus: potentials in biotechnology. In: Sansinenea E (Ed.) Bacillus thuringiensis biotechnology; Springer, 2012; pp. 347-366.
[22]
Carrillo, C.; Teruel, J.A.; Aranda, F.J.; Ortiz, A. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim. Biophys. Acta, 2003, 1611, 91-97.
[23]
Tendulkar, S.R.; Saikuman, Y.K.; Patel, V.; Raghotama, S.; Munshi, T.K.; Balaram, P.; Chattoo, B.B. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J. Appl. Microbiol., 2007, 103, 2331-2339.
[24]
Wulff, E.G.; Mguni, C.M.; Mansfeld-Giese, K.; Fels, J.; Lübeck, M.; Hockenhull, J. Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Patholo., 2002, 51, 574-584.
[25]
Moyne, A.L.; Cleveland, T.E.; Tuzun, S. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol. Lett., 2004, 234, 43-49.
[26]
Pyoung, I.K.; Ryu, J.; Kim, Y.H.; Chi, Y.T. Production of biosurfactant lipopeptides iturin A, fengycin and surfactin from Bacillus subtilis CMB32 for control of Colletotrichum gloespriodes. J. Microbiol. Biotechnol., 2010, 20, 138-145.
[27]
Espinasse, S.; Gohar, M.; Lereclus, D.; Sanchis, V. An ABC transporter from Bacillus thuringiensis is essential for β-exotoxin I production. J. Bacteriol., 2002, 184, 5848-5854.
[28]
Zawadzka, A.M.; Abergel, R.J.; Nichiporuk, R.; Andersen, U.N.; Raymond, K.N. Siderophore-mediated iron acquisition system in Bacillus cereus: identification of receptors for anthrax virulence-associated petrobactin. Biochemistry, 2009, 48, 3645-3657.
[29]
Sansinenea, E.; Salazar, F.; Jimenez, J.; Ortiz, A. Diketopiperazines derivatives isolated from Bacillus thuringiensis and Bacillus endophyticus, establishment of their configuration by X-ray and their synthesis. Tetrahedron Lett., 2016, 57, 2604-2607.
[30]
Ortiz-Castro, R.; Díaz-Pérez, C.; Martínez-Trujillo, M.; del Río, R.E.; Campos-García, J.; López-Bucio, J. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc. Natl. Acad. Sci. USA, 2011, 108, 7253-7258.
[31]
Martinez-Luis, S.; Gomez, J.F.; Spadafora, C.; Guzman, H.M.; Gutierrez, M. Antitrypansomal alkaloids from the marine bacterium Bacillus pumilus. Molecules, 2012, 17, 11146-11155.
[32]
Stein, T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol., 2005, 56, 845-857.
[33]
Arguelles-Arias, A.; Ongena, M.; Halimi, B.; Lara, Y.; Brans, A.; Joris, B.; Fickers, P. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact., 2009, 8, 63-74.
[34]
Jaruchoktaweechai, C.S.; Suwanboriux, K.; Tanasupawatt, S.; Kittakoop, P.; Menasveta, P. New macrolactins from a marine Bacillus sp. Sc026. J. Nat. Prod., 2000, 63, 984-986.
[35]
Romero-Tabarez, M.; Jansen, R.; Sylla, M.; Lünsdorf, H.; Häußler, S.; Santosa, D.A.; Timmis, K.N.; Molinari, G. 7-OMalonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis-active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci and a small-colony variant of Burkholderia cepacia. Antimicrob. Agents Chemother., 2006, 50, 1701-1709.
[36]
Sansinenea, E.; Ortiz, A.; Zwittermicin, A. A promising aminopolyol antibiotic from biocontrol bacteria. Curr. Org. Chem., 2012, 16, 978-987.
[37]
Pinchuk, I.V.; Bressollier, P.; Sorokulova, I.B.; Verneuil, B.; Urdaci, M.C. Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res. Microbiol., 2002, 153, 269-276.
[38]
Azumi, M.; Ogawa, K-I.; Fujita, T.; Takeshita, M.; Yoshida, R.; Furumai, T.; Igarashi, Y. Bacilosarcins A and B, novel bioactive isocoumarins with unusual heterocyclic cores from the marine-derived bacterium Bacillus subtilis. Tetrahedron, 2008, 64, 6420-6425.
[39]
Li, Y.; Xu, Y.; Liu, L.; Han, Z.; Lai, P.Y.; Guo, X.; Zhang, X.; Lin, W.; Qian, P-Y. Five new amicoumacins isolated from a marine-derived bacterium Bacillus subtilis. Mar. Drugs, 2012, 10, 319-328.
[40]
Pal, S.; Chatare, V.; Pal, M. Isocoumarin and its derivatives: an overview on their synthesis and applications. Curr. Org. Chem., 2011, 15, 782-800.
[41]
Liu, S-W.; Jin, J.; Chen, C.; Liu, J-M.; Li, J-Y.; Wang, F-F.; Jiang, Z-K.; Hu, J-H.; Gao, Z-X.; Yao, F.; You, X-F.; Si, S-Y.; Sun, C-H. PJS, a novel isocoumarin with hexahydropyrimidine ring from Bacillus subtilis PJS. J. Antibio., 2013, 66, 281-284.
[42]
Sansinenea, E.; Salazar, F.; Ramirez, M.; Ortiz, A. An ultraviolet tolerant wild-type strain of melanin-producing Bacillus thuringiensis. Jundishapur J. Microbiol., 2015, 8, e20910.
[43]
Khaneja, R.; Perez-Fons, L.; Fakhry, S.; Baccigalupi, L.; Steiger, S.; To, E.; Sandmann, G.; Dong, T.C.; Ricca, E.P.; Fraser, D.; Cutting, S.M. Carotenoids found in Bacillus. J. Appl. Microbiol., 2010, 108, 1889-1902.
[44]
Numan, M.; Bashir, S.; Mumtaz, R; Tayyab, S.; Rehman, N. U.; Khan, A. L.; Shinwari, Z. K.; Al-Harrasi, A. Therapeutic applications of bacterial pigments: A review of current status and future opportunities. 3 Biotech, 2018, 8, 207.
[45]
Inaoka, T.; Ochi, K. Glucose uptake pathway-specific regulation of synthesis of neotrehalosadiamine, a novel autoinducer produced in Bacillus subtilis. J. Bacteriol., 2007, 189, 65-75.
[46]
Steinborn, G.; Hajirezaei, M.R.; Hofemeister, J. Bac genes for recombinant bacilysin and anticapsin production in Bacillus host strains. Arch. Microbiol., 2005, 183, 71-79.
[47]
Tamehiro, N.; Okamoto-Hosoya, Y.; Okamoto, S.; Ubukata, M.; Hamada, M.; Naganawa, H.; Ochi, K. Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrob. Agents Chemother., 2002, 46, 315-320.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy