Bioactivity and Functionality of Anthocyanins: A Review

Author(s): Cecilia Dini, Maria J. Zaro, Sonia Z. Viña*.

Journal Name: Current Bioactive Compounds

Volume 15 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Anthocyanins are flavonoid compounds imparting pink, red, blue, and purple colors to fruits, flowers, leaves, and some underground organs. These pigments play an important role in pollination and fruit and seed dispersal and they are related to the protection of plant tissues exposed to biotic and/or abiotic stress. Their consumption has been linked to diverse health benefits such as anti-inflammatory and anti-carcinogenic properties, diminution of cardiovascular disease incidence, obesity control, and diabetes mitigation effects. Also, in vitro studies have revealed certain potential cancer chemopreventive activities of anthocyanins. Reactive oxygen species scavenging as well as metal chelating and direct binding to proteins have been associated with anthocyanin health effects. Recent studies have indicated that these compounds can modulate decisive signaling pathways and gene regulation. Their action contributes to vascular homeostasis and to angiogenesis, inflammation, and platelet aggregation control. Likewise, anthocyanins have been associated with the prevention of a peroxynitrite-mediated disorder in endothelial cells. The potential use of anthocyanins as colorants in food has been extensively analyzed since they are the main hydrosoluble plant pigments. However, their instability and the influence of concentration, pH, temperature, and the presence of other compounds (phenolic acids, metals) on color properties can limit anthocyanin use as food ingredients and additives. Encapsulation has been proposed as an alternative to reduce food-processing damage and to deliver these compounds to their target site in the human body. Likewise, chemical lipophilization of anthocyanins has been assayed to obtain modified compounds with higher lipophilicity, more suitable for lipid-rich matrices.

Keywords: Phenolics, flavonoid pigments, anti-inflammatory and anti-carcinogenic properties, obesity control, encapsulation, esterification, food additives, functional foods.

[1]
Novel Media Nobel Prize in Chemistry 1915 - Presentation (accessed 25 Jun). Available from. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1915/present.html
[2]
Robinson, R. Richard Willstätters Investigations of the Anthocyanins. Naturwissenschaften, 1932, 20(33), 612-618.
[http://dx.doi.org/10.1007/BF01504960]
[3]
Burton-Freeman, B.; Sandhu, A.; Edirisinghe, I. Anthocyanins A2.Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Boston, 2016, pp. 489-500.
[http://dx.doi.org/10.1016/B978-0-12-802147-7.00035-8]
[4]
Cronk, Q.; Ojeda, I. Bird-pollinated flowers in an evolutionary and molecular context. J. Exp. Bot., 2008, 59(4), 715-727.
[http://dx.doi.org/10.1093/jxb/ern009] [PMID: 18326865]
[5]
Santos, E.L.; Sales Maia, B.H.L.N.; Ferriani, A.P.; Dias Teixeira, S. Flavonoids: Classification, Biosynthesis and Chemical Ecology.Flavonoids - From Biosynthesis to Human Health; Justino, D.J., Ed.; InTech, 2017.
[http://dx.doi.org/10.5772/67861]
[6]
Landi, M.; Tattini, M.; Gould, K.S. Multiple functional roles of anthocyanins in plant-environment interactions. Environ. Exp. Bot., 2015, 119(Suppl. C), 4-17.
[http://dx.doi.org/10.1016/j.envexpbot.2015.05.012]
[7]
Gould, K.S. Nature’s Swiss Army Knife: The diverse protective roles of anthocyanins in leaves. J. Biomed. Biotechnol., 2004, 2004(5), 314-320.
[http://dx.doi.org/10.1155/S1110724304406147] [PMID: 15577195]
[8]
Li, P.; Li, Y-J.; Zhang, F-J.; Zhang, G-Z.; Jiang, X-Y.; Yu, H-M.; Hou, B-K. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J., 2017, 89(1), 85-103.
[http://dx.doi.org/10.1111/tpj.13324] [PMID: 27599367]
[9]
Kim, J.; Lee, W.J.; Vu, T.T.; Jeong, C.Y.; Hong, S-W.; Lee, H. High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L. Plant Cell Rep., 2017, 36(8), 1215-1224.
[http://dx.doi.org/10.1007/s00299-017-2147-7] [PMID: 28444442]
[10]
Majetic, C.J.; Fetters, A.M.; Beck, O.M.; Stachnik, E.F.; Beam, K.M. Petunia floral trait plasticity in response to soil nitrogen content and subsequent impacts on insect visitation. Flora, 2017, 232(Suppl. C), 183-193.
[http://dx.doi.org/10.1016/j.flora.2016.08.002]
[11]
Nicotra, A.B.; Atkin, O.K.; Bonser, S.P.; Davidson, A.M.; Finnegan, E.J.; Mathesius, U.; Poot, P.; Purugganan, M.D.; Richards, C.L.; Valladares, F.; van Kleunen, M. Plant phenotypic plasticity in a changing climate. Trends Plant Sci., 2010, 15(12), 684-692.
[http://dx.doi.org/10.1016/j.tplants.2010.09.008] [PMID: 20970368]
[12]
Wang, L-J.; Su, S.; Wu, J.; Du, H.; Li, S-S.; Huo, J-W.; Zhang, Y.; Wang, L-S. Variation of anthocyanins and flavonols in Vaccinium uliginosum berry in Lesser Khingan Mountains and its antioxidant activity. Food Chem., 2014, 160(Suppl. C), 357-364.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.081] [PMID: 24799249]
[13]
Dar, T.A.; Uddin, M.; Ali, A.; Khan, M.M.A.; ul Hassan Dar,, T. Understanding the dynamics of phosphorus starvation and plant growth. In essential plant nutrients: Uptake, use efficiency, and management.Naeem, M.; Ansari, A.A.; Gill, S.S. Springer International Publishing: Cham, 2017, pp. 147-154.
[14]
Steyn, W.J.; Wand, S.J.E.; Holcroft, D.M.; Jacobs, G. Anthocyanins in vegetative tissues: A proposed unified function in photoprotection. New Phytol., 2002, 155(3), 349-361.
[http://dx.doi.org/10.1046/j.1469-8137.2002.00482.x]
[15]
Chiou, A.; Panagopoulou, E.A.; Gatzali, F.; De Marchi, S.; Karathanos, V.T. Anthocyanins content and antioxidant capacity of Corinthian currants (Vitis vinifera L., var. Apyrena). Food Chem., 2014, 146(Suppl. C), 157-165.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.062] [PMID: 24176327]
[16]
Abad-García, B.; Berrueta, L.A.; Garmón-Lobato, S.; Gallo, B.; Vicente, F. A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry. J. Chromatogr. A, 2009, 1216(28), 5398-5415.
[http://dx.doi.org/10.1016/j.chroma.2009.05.039] [PMID: 19500791]
[17]
Stalmach, A. Bioavailability of dietary anthocyanins and hydroxycinnamic acids. Polyphenols in Human Health and Disease; Watson, R.R.; Preedy, V.R; Zibadi, S., Ed.; Academic Press: San Diego, 2014, pp. 561-576.
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00042-6]
[18]
He, J.; Giusti, M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol., 2010, 1(1), 163-187.
[http://dx.doi.org/10.1146/annurev.food.080708.100754] [PMID: 22129334]
[19]
Jamar, G.; Estadella, D.; Pisani, L.P. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. Biofactors, 2017, 43(4), 507-516.
[http://dx.doi.org/10.1002/biof.1365] [PMID: 28504479]
[20]
Ali, H.M.; Almagribi, W.; Al-Rashidi, M.N. Antiradical and reductant activities of anthocyanidins and anthocyanins, structure-activity relationship and synthesis. Food Chem., 2016, 194(Suppl. C), 1275-1282.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.003] [PMID: 26471682]
[21]
Chaves, V.C.; Calvete, E.; Reginatto, F.H. Quality properties and antioxidant activity of seven strawberry (Fragaria x ananassa duch) cultivars. Sci. Hortic. (Amsterdam), 2017, 225(Suppl. C), 293-298.
[http://dx.doi.org/10.1016/j.scienta.2017.07.013]
[22]
Thilavech, T.; Abeywardena, M.Y.; Adams, M.; Dallimore, J.; Adisakwattana, S. Naturally occurring anthocyanin cyanidin-3-rutinoside possesses inherent vasorelaxant actions and prevents methylglyoxal-induced vascular dysfunction in rat aorta and mesenteric arterial bed. Biomed. Pharmacother., 2017, 95(Suppl. C), 1251-1259.
[http://dx.doi.org/10.1016/j.biopha.2017.09.053] [PMID: 28938516]
[23]
Bowsher, C.; Steer, M.W.; Tobin, A.K. Plant Biochemistry; Garland Science: New York, 2008.
[24]
Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 2012, 3, 222.
[http://dx.doi.org/10.3389/fpls.2012.00222] [PMID: 23060891]
[25]
Jain, G.; Gould, K.S. Are betalain pigments the functional homologues of anthocyanins in plants? Environ. Exp. Bot., 2015, 119(Suppl. C), 48-53.
[http://dx.doi.org/10.1016/j.envexpbot.2015.06.002]
[26]
Miguel, M.G. Anthocyanins: Antioxidant and/or anti-inflammatory activities. J. Appl. Pharm. Sci., 2011, 1(6), 7-15.
[27]
Tsuda, T. Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants, 2016, 5(2), 13.
[http://dx.doi.org/10.3390/antiox5020013] [PMID: 27058561]
[28]
Lee, S.G.; Kim, B.; Yang, Y.; Pham, T.X.; Park, Y-K.; Manatou, J.; Koo, S.I.; Chun, O.K.; Lee, J-Y. Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NF-κB independent of NRF2-mediated mechanism. J. Nutr. Biochem., 2014, 25(4), 404-411.
[http://dx.doi.org/10.1016/j.jnutbio.2013.12.001] [PMID: 24565673]
[29]
Wu, T.; Tang, Q.; Yu, Z.; Gao, Z.; Hu, H.; Chen, W.; Zheng, X.; Yu, T. Inhibitory effects of sweet cherry anthocyanins on the obesity development in C57BL/6 mice. Int. J. Food Sci. Nutr., 2014, 65(3), 351-359.
[http://dx.doi.org/10.3109/09637486.2013.854749] [PMID: 24224922]
[30]
Noratto, G.D.; Angel-Morales, G.; Talcott, S.T.; Mertens-Talcott, S.U. Polyphenolics from açaí (Euterpe oleracea Mart.) and red muscadine grape (Vitis rotundifolia) protect human umbilical vascular Endothelial cells (HUVEC) from glucose- and lipopolysaccharide (LPS)-induced inflammation and target microRNA-126. J. Agric. Food Chem., 2011, 59(14), 7999-8012.
[http://dx.doi.org/10.1021/jf201056x] [PMID: 21682256]
[31]
Speciale, A.; Virgili, F.; Saija, A.; Cimino, F. Anthocyanins in Vascular Diseases. Polyphenols in Human Health and Disease; Watson, R.R.; Preedy, V.R; Zibadi, S., Ed.; Academic Press: San Diego, 2014, pp. 923-941.
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00072-4]
[32]
Zhang, H.; Hassan, Y.I.; Renaud, J.; Liu, R.; Yang, C.; Sun, Y.; Tsao, R. Bioaccessibility, bioavailability, and anti-inflammatory effects of anthocyanins from purple root vegetables using mono- and co-culture cell models. Mol. Nutr. Food Res., 2017, 61(10)1600928
[http://dx.doi.org/10.1002/mnfr.201600928] [PMID: 28691370]
[33]
Venancio, V.P.; Cipriano, P.A.; Kim, H.; Antunes, L.M.G.; Talcott, S.T.; Mertens-Talcott, S.U. Cocoplum (Chrysobalanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells. Food Funct., 2017, 8(1), 307-314.
[http://dx.doi.org/10.1039/C6FO01498D] [PMID: 28009871]
[34]
Alvarez-Suarez, J.M.; Carrillo-Perdomo, E.; Aller, A.; Giampieri, F.; Gasparrini, M.; González-Pérez, L.; Beltrán-Ayala, P.; Battino, M. Anti-inflammatory effect of Capuli cherry against LPS-induced cytotoxic damage in RAW 264.7 macrophages. Food Chem. Toxicol., 2017, 102(Suppl. C), 46-52.
[http://dx.doi.org/10.1016/j.fct.2017.01.024] [PMID: 28137607]
[35]
Winter, A.N.; Brenner, M.C.; Punessen, N.; Snodgrass, M.; Byars, C.; Arora, Y.; Linseman, D.A. Comparison of the neuroprotective and anti-inflammatory effects of the anthocyanin metabolites, protocatechuic acid and 4-Hydroxybenzoic acid. Oxid. Med. Cell. Longev., 2017. 20176297080
[http://dx.doi.org/10.1155/2017/6297080] [PMID: 28740571]
[36]
Oghumu, S.; Knobloch, T.; Ahn-Jarvis, J.; Weghorst, L.; Horvath, K.; Geuy, P.; Weghorst, C. Abstract 5264: Chemoprevention of rat oral carcinogenesis by black raspberry phytochemicals. Cancer Res., 2017, 77(13)(Suppl.), 5264-5264.
[37]
Lin, B-W.; Gong, C-C.; Song, H-F.; Cui, Y-Y. Effects of anthocyanins on the prevention and treatment of cancer. Br. J. Pharmacol., 2017, 174(11), 1226-1243.
[http://dx.doi.org/10.1111/bph.13627] [PMID: 27646173]
[38]
Kuntz, S.; Kunz, C.; Rudloff, S. Inhibition of pancreatic cancer cell migration by plasma anthocyanins isolated from healthy volunteers receiving an anthocyanin-rich berry juice. Eur. J. Nutr., 2017, 56(1), 203-214.
[http://dx.doi.org/10.1007/s00394-015-1070-3] [PMID: 26476633]
[39]
Lippert, E.; Ruemmele, P.; Obermeier, F.; Goelder, S.; Kunst, C.; Rogler, G.; Dunger, N.; Messmann, H.; Hartmann, A.; Endlicher, E. Anthocyanins prevent colorectal cancer development in a mouse model. Digestion, 2017, 95(4), 275-280.
[http://dx.doi.org/10.1159/000475524] [PMID: 28494451]
[40]
Wang, L-S.; Hecht, S.S.; Carmella, S.G.; Yu, N.; Larue, B.; Henry, C.; McIntyre, C.; Rocha, C.; Lechner, J.F.; Stoner, G.D. Anthocyanins in black raspberries prevent esophageal tumors in rats. Cancer Prev. Res. (Phila.), 2009, 2(1), 84-93.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0155] [PMID: 19139022]
[41]
Mazewski, C.; Liang, K.; Gonzalez de Mejia, E. Inhibitory potential of anthocyanin-rich purple and red corn extracts on human colorectal cancer cell proliferation in vitro. J. Funct. Foods, 2017, 34(Suppl. C), 254-265.
[http://dx.doi.org/10.1016/j.jff.2017.04.038]
[42]
Limsitthichaikoon, S.; Priprem, A.; Damrongrungruang, T.; Limphirat, W.; Kukhetpitakwong, R. Improvement of chemical stability and activities of anthocyanins by complexation. Curr. Bioact. Compd., 2016, 12(1), 17-24.
[http://dx.doi.org/10.2174/1573407212666160210225758]
[43]
Priprem, A.; Limsitthichaikoon, S.; Sukkhamduang, W.; Limphirat, W.; Thapphasaraphong, S.; Nualkaew, N. Anthocyanin complex improves stability with in vitro localized UVA protective effect. Curr. Bioact. Compd., 2017, 13(4), 333-339.
[http://dx.doi.org/10.2174/1573407212666160916155958]
[44]
Cassidy, A. Berry anthocyanin intake and cardiovascular health. Mol. Aspects Med., 2018, 61, 76-82.
[http://dx.doi.org/10.1016/j.mam.2017.05.002] [PMID: 28483533]
[45]
Bobinaitė, R.; Viškelis, J. Anthocyanins: Occurrence, bioactivity and bioavailability, with special reference to the anthocyanins of raspberries (a review). Sodinink. Darzinink., 2013, 32(1/2), 39-47.
[46]
Bhaswant, M.; Shafie, S.R.; Mathai, M.L.; Mouatt, P.; Brown, L. Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats. Nutrition, 2017, 41(Suppl. C), 24-31.
[http://dx.doi.org/10.1016/j.nut.2016.12.009] [PMID: 28760424]
[47]
Jennings, A.; Welch, A.A.; Spector, T.; Macgregor, A.; Cassidy, A. Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J. Nutr., 2014, 144(2), 202-208.
[http://dx.doi.org/10.3945/jn.113.184358] [PMID: 24336456]
[48]
Fernandes, I.; Faria, A.; Calhau, C.; de Freitas, V.; Mateus, N. Bioavailability of anthocyanins and derivatives. J. Funct. Foods, 2014, 7(Suppl. C), 54-66.
[http://dx.doi.org/10.1016/j.jff.2013.05.010]
[49]
Scholz, S.; Williamson, G. Interactions affecting the bioavailability of dietary polyphenols in vivo. Int. J. Vitam. Nutr. Res., 2007, 77(3), 224-235.
[http://dx.doi.org/10.1024/0300-9831.77.3.224] [PMID: 18214024]
[50]
Goszcz, K.; Deakin, S.J.; Duthie, G.G.; Stewart, D.; Megson, I.L. Bioavailable concentrations of delphinidin and its metabolite, gallic acid, induce antioxidant protection associated with increased intracellular glutathione in cultured endothelial cells. Oxid. Med. Cell. Longev., 2017, 2017 9260701
[http://dx.doi.org/10.1155/2017/9260701] [PMID: 29081896]
[51]
Talavéra, S.; Felgines, C.; Texier, O.; Besson, C.; Lamaison, J-L.; Rémésy, C. Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. J. Nutr., 2003, 133(12), 4178-4182.
[http://dx.doi.org/10.1093/jn/133.12.4178] [PMID: 14652368]
[52]
Atnip, A.A.; Sigurdson, G.T.; Bomser, J.; Giusti, M.M. Time, concentration, and pH-dependent transport and uptake of anthocyanins in a human gastric epithelial (NCI-N87) cell line. Int. J. Mol. Sci., 2017, 18(2), 446.
[http://dx.doi.org/10.3390/ijms18020446] [PMID: 28218720]
[53]
Matuschek, M.C.; Hendriks, W.H.; McGhie, T.K.; Reynolds, G.W. The jejunum is the main site of absorption for anthocyanins in mice. J. Nutr. Biochem., 2006, 17(1), 31-36.
[http://dx.doi.org/10.1016/j.jnutbio.2005.04.005] [PMID: 16098729]
[54]
Mueller, D.; Jung, K.; Winter, M.; Rogoll, D.; Melcher, R.; Richling, E. Human intervention study to investigate the intestinal accessibility and bioavailability of anthocyanins from bilberries. Food Chem., 2017, 231(Suppl. C), 275-286.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.130] [PMID: 28450007]
[55]
Pan, P.; Lam, V.; Salzman, N.; Huang, Y-W.; Yu, J.; Zhang, J.; Wang, L-S. Black raspberries and their anthocyanin and fiber fractions alter the composition and diversity of gut microbiota in F-344 rats. Nutr. Cancer, 2017, 69(6), 943-951.
[http://dx.doi.org/10.1080/01635581.2017.1340491] [PMID: 28718724]
[56]
Tsuda, T. Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies. Mol. Nutr. Food Res., 2012, 56(1), 159-170.
[http://dx.doi.org/10.1002/mnfr.201100526] [PMID: 22102523]
[57]
Leong, S.Y.; Burritt, D.J.; Hocquel, A.; Penberthy, A.; Oey, I. The relationship between the anthocyanin and vitamin C contents of red-fleshed sweet cherries and the ability of fruit digests to reduce hydrogen peroxide-induced oxidative stress in Caco-2 cells. Food Chem., 2017, 227(Suppl. C), 404-412.
[http://dx.doi.org/10.1016/j.foodchem.2017.01.110] [PMID: 28274450]
[58]
Mazza, G.; Miniati, E. Anthocyanins in fruits, vegetables, and grains; CRC Press: Boca Raton, Florida, 1993.
[59]
da Costa, C.T.; Horton, D.; Margolis, S.A. Analysis of anthocyanins in foods by liquid chromatography, liquid chromatography-mass spectrometry and capillary electrophoresis. J. Chromatogr. A, 2000, 881(1-2), 403-410.
[http://dx.doi.org/10.1016/S0021-9673(00)00328-9] [PMID: 10905723]
[60]
Cacace, J.E.; Mazza, G. Optimization of extraction of anthocyanins from black currants with aqueous ethanol. J. Food Sci., 2003, 68(1), 240-248.
[http://dx.doi.org/10.1111/j.1365-2621.2003.tb14146.x]
[61]
Paunović, S.M.; Mašković, P.; Nikolić, M.; Miletić, R. Bioactive compounds and antimicrobial activity of black currant (Ribes nigrum L.) berries and leaves extract obtained by different soil management system. Sci. Hortic. (Amsterdam), 2017, 222(Suppl. C), 69-75.
[http://dx.doi.org/10.1016/j.scienta.2017.05.015]
[62]
Veberic, R.; Jakopic, J.; Stampar, F.; Schmitzer, V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem., 2009, 114(2), 511-515.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.080]
[63]
Lee, J.; Dossett, M.; Finn, C.E. Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chem., 2012, 130(4), 785-796.
[http://dx.doi.org/10.1016/j.foodchem.2011.08.022]
[64]
Colak, N.; Primetta, A.K.; Riihinen, K.R.; Jaakola, L.; Grúz, J.; Strnad, M.; Torun, H.; Ayaz, F.A. Phenolic compounds and antioxidant capacity in different-colored and non-pigmented berries of bilberry (Vaccinium myrtillus L.). Food Biosci., 2017, 20(Suppl. C), 67-78.
[http://dx.doi.org/10.1016/j.fbio.2017.06.004]
[65]
Tolić, M-T.; Jurčević, I.L.; Krbavčić, I.P.; Marković, K.; Vahčić, N. Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technol. Biotechnol., 2015, 53(2), 171-179.
[PMID: 27904346]
[66]
Cesa, S.; Carradori, S.; Bellagamba, G.; Locatelli, M.; Casadei, M.A.; Masci, A.; Paolicelli, P. Evaluation of processing effects on anthocyanin content and colour modifications of blueberry (Vaccinium spp.) extracts: Comparison between HPLC-DAD and CIELAB analyses. Food Chem., 2017, 232(Suppl. C), 114-123.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.153] [PMID: 28490054]
[67]
de Cássia Rodrigues Batista, C.; de Oliveira, M.S.; Araújo, M.E.; Rodrigues, A.M.C.; Botelho, J.R.S.; da Silva Souza Filho, A.P.; Machado, N.T.; Carvalho, R.N. Supercritical CO2 extraction of açaí (Euterpe oleracea) berry oil: Global yield, fatty acids, allelopathic activities, and determination of phenolic and anthocyanins total compounds in the residual pulp. J. Supercrit. Fluids, 2016, 107(Suppl. C), 364-369.
[http://dx.doi.org/10.1016/j.supflu.2015.10.006]
[68]
Rumalla, C.S.; Avula, B.; Wang, Y.H.; Smillie, T.J.; Khan, I.A. Method development and analysis of anthocyanins from Acai (Euterpe oleracea Mart.) berries and dietary supplements using HPTLC. Planta Med., 2011, 77(05), 70.
[http://dx.doi.org/10.1055/s-0031-1273599]
[69]
Schulz, M.; da Silva Campelo Borges, G.; Gonzaga, L.V.; Oliveira Costa, A.C.; Fett, R. Juçara fruit (Euterpe edulis Mart.): Sustainable exploitation of a source of bioactive compounds. Food Res. Int., 2016, 89(Pt 1), 14-26.
[http://dx.doi.org/10.1016/j.foodres.2016.07.027] [PMID: 28460899]
[70]
Ludwig, I.A.; Mena, P.; Calani, L.; Borges, G.; Pereira-Caro, G.; Bresciani, L.; Del Rio, D.; Lean, M.E.J.; Crozier, A. New insights into the bioavailability of red raspberry anthocyanins and ellagitannins. Free Radic. Biol. Med., 2015, 89(Suppl. C), 758-769.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.10.400] [PMID: 26475039]
[71]
Teng, H.; Fang, T.; Lin, Q.; Song, H.; Liu, B.; Chen, L. Red raspberry and its anthocyanins: Bioactivity beyond antioxidant capacity. Trends Food Sci. Technol., 2017, 66(Suppl. C), 153-165.
[http://dx.doi.org/10.1016/j.tifs.2017.05.015]
[72]
Wiesenborn, D.P.; Xu, M.; Chang, K.C.; Schwarz, J.G. Pigment removal and pectin loss during the continuous, countercurrent washing of sunflower heads. Trans. ASAE, 1996, 39(5), 1781-1787.
[http://dx.doi.org/10.13031/2013.27654]
[73]
Faramarzi, S.; Pacifico, S.; Yadollahi, A.; Lettieri, A.; Nocera, P.; Piccolella, S. Red-fleshed apples: Old autochthonous fruits as a novel source of anthocyanin antioxidants. Plant Foods Hum. Nutr., 2015, 70(3), 324-330.
[http://dx.doi.org/10.1007/s11130-015-0497-2] [PMID: 26134879]
[74]
Mazza, G.; Francis, F.J. Anthocyanins in grapes and grape products. Crit. Rev. Food Sci. Nutr., 1995, 35(4), 341-371.
[http://dx.doi.org/10.1080/10408399509527704] [PMID: 7576162]
[75]
Giusti, M.M.; Rodríguez-Saona, L.E.; Baggett, J.R.; Reed, G.L.; Durst, R.W.; Wrolstad, R.E. Anthocyanin pigment composition of red radish cultivars as potential food colorants. J. Food Sci., 1998, 63(2), 219-224.
[http://dx.doi.org/10.1111/j.1365-2621.1998.tb15713.x]
[76]
Niño-Medina, G.; Urías-Orona, V.; Muy-Rangel, M.D.; Heredia, J.B. Structure and content of phenolics in eggplant (Solanum melongena) - A review. S. Afr. J. Bot., 2017, 111(Suppl. C), 161-169.
[http://dx.doi.org/10.1016/j.sajb.2017.03.016]
[77]
Zaro, M.J.; Keunchkarian, S.; Chaves, A.R.; Vicente, A.R.; Concellón, A. Changes in bioactive compounds and response to postharvest storage conditions in purple eggplants as affected by fruit developmental stage. Postharvest Biol. Technol., 2014, 96(Suppl. C), 110-117.
[http://dx.doi.org/10.1016/j.postharvbio.2014.05.012]
[78]
Ahmadiani, N.; Robbins, R.J.; Collins, T.M.; Giusti, M.M. Anthocyanins contents, profiles, and color characteristics of red cabbage extracts from different cultivars and maturity stages. J. Agric. Food Chem., 2014, 62(30), 7524-7531.
[http://dx.doi.org/10.1021/jf501991q] [PMID: 24991694]
[79]
Usenik, V.; Štampar, F.; Veberič, R. Anthocyanins and fruit colour in plums (Prunus domestica L.) during ripening. Food Chem., 2009, 114(2), 529-534.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.083]
[80]
Lopes da Silva, F.; Escribano-Bailón, M.T.; Pérez Alonso, J.J.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Anthocyanin pigments in strawberry. Lebensm. Wiss. Technol., 2007, 40(2), 374-382.
[http://dx.doi.org/10.1016/j.lwt.2005.09.018]
[81]
Ivanova-Petropulos, V.; Ricci, A.; Nedelkovski, D.; Dimovska, V.; Parpinello, G.P.; Versari, A.; Dörnyei, Á.; Kilár, F. Targeted analysis of bioactive phenolic compounds and antioxidant activity of Macedonian red wines. Food Chem., 2015, 171(Suppl. C), 412-420.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.014] [PMID: 25308688]
[82]
Romero, C.; Brenes, M.; García, P.; García, A.; Garrido, A. Polyphenol changes during fermentation of naturally black olives. J. Agric. Food Chem., 2004, 52(7), 1973-1979.
[http://dx.doi.org/10.1021/jf030726p] [PMID: 15053538]
[83]
Goulas, V.; Charisiadis, P.; Gerothanassis, I.P.; Manganaris, G.A. Classification, biotransformation and antioxidant activity of olive fruit biophenols: A review. Curr. Bioact. Compd., 2012, 8(3), 232-239.
[http://dx.doi.org/10.2174/157340712802762465]
[84]
Moro, L.; Hassimotto, N.M.A.; Purgatto, E. Postharvest auxin and methyl jasmonate effect on anthocyanin biosynthesis in red raspberry (Rubus idaeus L.). J. Plant Growth Regul., 2017, 36(3), 773-782.
[http://dx.doi.org/10.1007/s00344-017-9682-x]
[85]
Ferreyra, R.M.; Viña, S.Z.; Mugridge, A.; Chaves, A.R. Growth and ripening season effects on antioxidant capacity of strawberry cultivar Selva. Sci. Hortic. (Amsterdam), 2007, 112(1), 27-32.
[http://dx.doi.org/10.1016/j.scienta.2006.12.001]
[86]
Zhu, Y-f.; Su, J.; Yao, G-f.; Liu, H-n.; Gu, C.; Qin, M-f.; Bai, B.; Cai, S-s.; Wang, G-m.; Wang, R-z.; Shu, Q.; Wu, J. Different light-response patterns of coloration and related gene expression in red pears (Pyrus L.). Sci. Hortic. (Amsterdam), 2018, 229(Suppl. C), 240-251.
[http://dx.doi.org/10.1016/j.scienta.2017.11.002]
[87]
Giribaldi, M.; Gény, L.; Delrot, S.; Schubert, A. Proteomic analysis of the effects of ABA treatments on ripening Vitis vinifera berries. J. Exp. Bot., 2010, 61(9), 2447-2458.
[http://dx.doi.org/10.1093/jxb/erq079] [PMID: 20388747]
[88]
Koyama, K.; Sadamatsu, K.; Goto-Yamamoto, N. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct. Integr. Genomics, 2010, 10(3), 367-381.
[http://dx.doi.org/10.1007/s10142-009-0145-8] [PMID: 19841954]
[89]
Oh, H.D.; Yu, D.J.; Chung, S.W.; Chea, S.; Lee, H.J. Abscisic acid stimulates anthocyanin accumulation in ‘Jersey’ highbush blueberry fruits during ripening. Food Chem., 2018, 244(Suppl. C), 403-407.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.051] [PMID: 29120800]
[90]
Jiang, Y.; Joyce, D.C. ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regul., 2003, 39(2), 171-174.
[http://dx.doi.org/10.1023/A:1022539901044]
[91]
Sousa, C.; Mateus, N.; Silva, A.M.S.; González-Paramás, A.M.; Santos-Buelga, C.; Freitas, V.d. Structural and chromatic characterization of a new Malvidin 3-glucoside-vanillyl-catechin pigment. Food Chem., 2007, 102(4), 1344-1351.
[http://dx.doi.org/10.1016/j.foodchem.2006.04.050]
[92]
Moreno-Arribas, M.V.; Polo, C. Wine Chemistry and Biochemistry; Springer: New York, 2008.
[93]
Escribano-Bailón, M.T.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Anthocyanins in cereals. J. Chromatogr. A, 2004, 1054(1-2), 129-141.
[http://dx.doi.org/10.1016/j.chroma.2004.08.152] [PMID: 15553138]
[94]
Su, X.; Rhodes, D. wang, w.; Yu, M.; Katz, B.; Tomich, J. Phenotypic diversity of anthocyanins in 25 sorghum accessions. FASEB J., 2015, 29(1)(Suppl.)
[95]
Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; Scalbert, A. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database (Oxford), 2010, 2010bap024
[http://dx.doi.org/10.1093/database/bap024]
[96]
Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remón, A.; M’Hiri, N.; García-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; Scalbert, A. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database (Oxford), 2013, 2013bat070
[97]
Grajeda-Iglesias, C.; Salas, E.; Barouh, N.; Baréa, B.; Figueroa-Espinoza, M.C. Lipophilization and MS characterization of the main anthocyanins purified from hibiscus flowers. Food Chem., 2017, 230(Suppl. C), 189-194.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.140] [PMID: 28407900]
[98]
Howard, L.R.; Brownmiller, C.; Mauromoustakos, A.; Prior, R.L. Improved stability of blueberry juice anthocyanins by acidification and refrigeration. J. Berry Res., 2016, 6(2), 189-201.
[http://dx.doi.org/10.3233/JBR-160133]
[99]
Delgado-Vargas, F.; Paredes-Lopez, O. Natural Colorants for Food and Nutraceutical Uses; CRC Press: Boca Ratón, 2002.
[http://dx.doi.org/10.1201/9781420031713]
[100]
de Vargas, E.F.; Jablonsky, A.; Flores, S.H.; de Oliveira Rios, A. Pelargonidin 3-Glucoside Extraction from the Residue from Strawberry Processing (Fragaria X Ananassa). Curr. Bioact. Compd., 2016, 12(4), 269-275.
[http://dx.doi.org/10.2174/1573407212666160512120242]
[101]
Wiczkowski, W.; Szawara-Nowak, D.; Topolska, J. Changes in the content and composition of anthocyanins in red cabbage and its antioxidant capacity during fermentation, storage and stewing. Food Chem., 2015, 167(Suppl. C), 115-123.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.087] [PMID: 25148967]
[102]
Robert, P.; Fredes, C. The encapsulation of anthocyanins from berry-type fruits. Trends in foods. Molecules, 2015, 20(4), 5875-5888.
[http://dx.doi.org/10.3390/molecules20045875] [PMID: 25854753]
[103]
Honda, T.; Saito, N. Recent Progress in the Chemistry of Polyacylated Anthocyanins as Flower Color Pigments. Heterocycles, 2002, 56(1-2), 633-692.
[http://dx.doi.org/10.3987/REV-01-SR(K)2]
[104]
Zhao, C-L.; Yu, Y-Q.; Chen, Z-J.; Wen, G-S.; Wei, F-G.; Zheng, Q.; Wang, C-D.; Xiao, X-L. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chem., 2017, 214(Suppl. C), 119-128.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.073] [PMID: 27507456]
[105]
Giusti, M.M.; Wrolstad, R.E. Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J., 2003, 14(3), 217-225.
[http://dx.doi.org/10.1016/S1369-703X(02)00221-8]
[106]
Bakowska-Barczak, A. Acylated anthocyanins as stable, natural food colorants - a review. Pol. J. Food Nutr. Sci., 2005, 14/55(2), 107-116.
[107]
Malien-Aubert, C.; Dangles, O.; Amiot, M.J. Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra- and intermolecular copigmentation. J. Agric. Food Chem., 2001, 49(1), 170-176.
[http://dx.doi.org/10.1021/jf000791o] [PMID: 11170573]
[108]
Nakayama, T.; Suzuki, H.; Nishino, T. Anthocyanin acyltransferases: specificities, mechanism, phylogenetics, and applications. J. Mol. Catal., B Enzym., 2003, 23(2), 117-132.
[http://dx.doi.org/10.1016/S1381-1177(03)00078-X]
[109]
Suzuki, H.; Nakayama, T.; Yonekura-Sakakibara, K.; Fukui, Y.; Nakamura, N.; Yamaguchi, M.A.; Tanaka, Y.; Kusumi, T.; Nishino, T. cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme a:anthocyanidin 3-o-glucoside-6”-o-malonyltransferase from dahlia flowers. Plant Physiol., 2002, 130(4), 2142-2151.
[http://dx.doi.org/10.1104/pp.010447] [PMID: 12481098]
[110]
de Castro, V.C.; da Silva, P.H.A.; de Oliveira, E.B.; Desobry, S.; Humeau, C. Extraction, identification and enzymatic synthesis of acylated derivatives of anthocyanins from jaboticaba (Myrciaria cauliflora) fruits. Int. J. Food Sci. Technol., 2014, 49(1), 196-204.
[http://dx.doi.org/10.1111/ijfs.12298]
[111]
Sari, P.; Setiawan, A.; Siswoyo, T.A. Stability and antioxidant activity of acylated jambolan (Syzygium cumini) anthocyanins synthesized by lipase-catalyzed transesterification. Int. Food Res. J., 2015, 22(2), 671-676.
[112]
Yan, Z.; Li, C.; Zhang, L.; Liu, Q.; Ou, S.; Zeng, X. Enzymatic acylation of anthocyanin isolated from black rice with methyl aromatic acid ester as donor: stability of the acylated derivatives. J. Agric. Food Chem., 2016, 64(5), 1137-1143.
[http://dx.doi.org/10.1021/acs.jafc.5b05031] [PMID: 26766135]
[113]
Cruz, L.; Fernandes, V.C.; Araújo, P.; Mateus, N.; de Freitas, V. Synthesis, characterisation and antioxidant features of procyanidin B4 and malvidin-3-glucoside stearic acid derivatives. Food Chem., 2015, 174(Suppl. C), 480-486.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.062] [PMID: 25529709]
[114]
Shaddel, R.; Hesari, J.; Azadmard-Damirchi, S.; Hamishehkar, H.; Fathi-Achachlouei, B.; Huang, Q. Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. Int. J. Biol. Macromol., 2017, 107(Part B), 1800-1810.
[115]
de Moura, S.C.S.R.; Berling, C.L.; Germer, S.P.M.; Alvim, I.D.; Hubinger, M.D. Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles. Food Chem., 2018, 241(Suppl. C), 317-327.
[http://dx.doi.org/10.1016/j.foodchem.2017.08.095] [PMID: 28958534]
[116]
Ge, J.; Yue, P.; Chi, J.; Liang, J.; Gao, X. Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocoll., 2018, 74(Suppl. C), 23-31.
[http://dx.doi.org/10.1016/j.foodhyd.2017.07.029]
[117]
He, B.; Ge, J.; Yue, P.; Yue, X.; Fu, R.; Liang, J.; Gao, X. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. Food Chem., 2017, 221(Suppl. C), 1671-1677.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.120] [PMID: 27979145]
[118]
Moser, P.; Telis, V.R.N.; de Andrade Neves, N.; García-Romero, E.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chem., 2017, 214(Suppl. C), 308-318.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.081] [PMID: 27507480]
[119]
Pereira Souza, A.C.; Deyse Gurak, P.; Damasceno Ferreira Marczak, L. Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins-rich extract from jaboticaba pomace. Food Bioprod. Process., 2017, 102(Suppl. C), 186-194.
[http://dx.doi.org/10.1016/j.fbp.2016.12.012]
[120]
Guldiken, B.; Gibis, M.; Boyacioglu, D.; Capanoglu, E.; Weiss, J. Impact of liposomal encapsulation on degradation of anthocyanins of black carrot extract by adding ascorbic acid. Food Funct., 2017, 8(3), 1085-1093.
[http://dx.doi.org/10.1039/C6FO01385F] [PMID: 28154868]
[121]
Wang, W.; Jung, J.; Zhao, Y. Chitosan-cellulose nanocrystal microencapsulation to improve encapsulation efficiency and stability of entrapped fruit anthocyanins. Carbohydr. Polym., 2017, 157(Suppl. C), 1246-1253.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.005] [PMID: 27987829]
[122]
Shi, M.; Bai, J.; Zhao, L.; Yu, X.; Liang, J.; Liu, Y.; Nord, W.; Li, Y. Co-loading and intestine-specific delivery of multiple antioxidants in pH-responsive microspheres based on TEMPO-oxidized polysaccharides. Carbohydr. Polym., 2017, 157(Suppl. C), 858-865.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.057] [PMID: 27988000]
[123]
Amin, F.U.; Shah, S.A.; Badshah, H.; Khan, M.; Kim, M.O. Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ1-42-induced oxidative stress. J. Nanobiotechnology, 2017, 15(1), 12.
[http://dx.doi.org/10.1186/s12951-016-0227-4] [PMID: 28173812]
[124]
Ko, A.; Lee, J.-S.; Sop Nam, H.; Gyu Lee, H. Stabilization of black soybean anthocyanin by chitosan nanoencapsulation and copigmentation. J. Food Biochem., 2017, 41(2) e12316-n/a
[http://dx.doi.org/10.1111/jfbc.12316]
[125]
Tan, C.; Selig, M.J.; Abbaspourrad, A. Anthocyanin stabilization by chitosan-chondroitin sulfate polyelectrolyte complexation integrating catechin co-pigmentation. Carbohydr. Polym., 2018, 181(Suppl. C), 124-131.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.034] [PMID: 29253954]
[126]
Weber, F.; Boch, K.; Schieber, A. Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. Lebensm. Wiss. Technol., 2017, 75(Suppl. C), 72-77.
[http://dx.doi.org/10.1016/j.lwt.2016.08.042]
[127]
Yingngam, B.; Tantiraksaroj, K.; Taweetao, T.; Rungseevijitprapa, W.; Supaka, N.; Brantner, A.H. Modeling and stability study of the anthocyanin-rich maoberry fruit extract in the fast-dissolving spray-dried microparticles. Powder Technol., 2018, 325(Suppl. C), 261-270.
[http://dx.doi.org/10.1016/j.powtec.2017.10.059]
[128]
Ortiz-Basurto, R.I.; Rubio-Ibarra, M.E.; Ragazzo-Sanchez, J.A.; Beristain, C.I.; Jiménez-Fernández, M. Microencapsulation of Eugenia uniflora L. juice by spray drying using fructans with different degrees of polymerisation. Carbohydr. Polym., 2017, 175(Suppl. C), 603-609.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.030] [PMID: 28917907]
[129]
Kalušević, A.; Lević, S.; Čalija, B.; Pantić, M.; Belović, M.; Pavlović, V.; Bugarski, B.; Milić, J.; Žilić, S.; Nedović, V. Microencapsulation of anthocyanin-rich black soybean coat extract by spray drying using maltodextrin, gum Arabic and skimmed milk powder. J. Microencapsul., 2017, 34(5), 475-487.
[http://dx.doi.org/10.1080/02652048.2017.1354939] [PMID: 28715926]
[130]
Begum, Y.A.; Deka, S.C. Stability of spray-dried microencapsulated anthocyanins extracted from culinary banana bract. Int. J. Food Prop., 2017, 20(12), 3135-3148.
[http://dx.doi.org/10.1080/10942912.2016.1277739]
[131]
Ratanapoompinyo, J.; Nguyen, L.T.; Devkota, L.; Shrestha, P. The effects of selected metal ions on the stability of red cabbage anthocyanins and total phenolic compounds subjected to encapsulation process. J. Food Process. Pres., 2017, 41(6) e13234-n/a
[http://dx.doi.org/10.1111/jfpp.13234]
[132]
Luna-Vital, D.; Cortez, R.; Ongkowijoyo, P.; Gonzalez de Mejia, E. Protection of color and chemical degradation of anthocyanin from purple corn (Zea mays L.) by zinc ions and alginate through chemical interaction in a beverage model. Food Res. Int., 2018, 105(Suppl. C), 169-177.
[http://dx.doi.org/10.1016/j.foodres.2017.11.009] [PMID: 29433204]
[133]
Fernandes, A.; Rocha, M.A.A.; Santos, L.M.N.B.F.; Brás, J.; Oliveira, J.; Mateus, N.; de Freitas, V. Blackberry anthocyanins: β-Cyclodextrin fortification for thermal and gastrointestinal stabilization. Food Chem., 2018, 245(Suppl. C), 426-431.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.109] [PMID: 29287391]
[134]
Chikhoune, A.; Gagaoua, M.; Nanema, K.D.; Souleymane, A.S.; Hafid, K.; Aliane, K.; Hadjal, S.; Madani, K.; Sentandreu, E.; Sentandreu, M.Á.; Boudjellal, A.; Križman, M.; Vovk, I. Antioxidant activity of Hibiscus sabdariffa extracts incorporated in an emulsion system containing whey proteinS: Oxidative stability and polyphenol-whey proteins interactions. Arab. J. Sci. Eng., 2017, 42(6), 2247-2260.
[http://dx.doi.org/10.1007/s13369-017-2428-z]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 5
Year: 2019
Page: [507 - 523]
Pages: 17
DOI: 10.2174/1573407214666180821115312
Price: $65

Article Metrics

PDF: 26
HTML: 3