The Protective Effects of Graphene Oxide Against the Stress from Organic Solvent by Covering Hela Cells

Author(s): Haidi Gao, Jia-Hui Liu*, Victoria Arantza León Anchustegui, Yulin Chang, Jichuan Zhang, Yiyang Dong*.

Journal Name: Current Nanoscience

Volume 15 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: In recent years, new nanomaterials have received great attention due to their widespread use in agriculture, food safety and pharmacy. Among them, graphene and graphene oxide (GO) are emerging as promising nanomaterials, which may have far-reaching effects on pharmacy and health.

Objective: In this paper, the living Hela cells were covered by GO (Hela@GO) and the cell viability, reactive oxygen species, membrane integrity and apoptosis of them were compared with the control Hela cells, especially under the stress from four kinds of organic solvent, including dimethyl sulphoxide, ethanol, acetone, and glycerin.

Results: It was suggested that the GO may protect cells by covering the cells, keeping their membrane integrity, reducing the ROS and decreasing the apoptosis.

Conclusion: GO has attracted the tremendous attention of their bioapplications. In this research, the GO adhered to Hela cells. It was observed that the Hela@GO grew well. Besides, it was suggested that the GO would play a protective role to Hela cells against four organic solvents, by maintaining the cell membrane integrity, reducing ROS, and inhibiting the apoptosis.

Keywords: Graphene oxide, an organic solvent, cytotoxicity, reactive oxygen species, synergistic effect, membrane integrity.

[1]
Quan, Q.; Lin, X.; Zhang, N.; Xu, Y.J. Graphene and its derivatives as versatile templates for materials synthesis and functional applications. Nanoscale, 2017, 9(7), 2398-2416.
[2]
Cheng, C.; Li, S.; Thomas, A.; Kotov, N.A.; Haag, R. Functional graphene nanomaterials based architectures: Biointeractions, fabrications, and emerging biological applications. Chem. Rev., 2017, 117(3), 1826-1914.
[3]
Xu, J.H.; Wang, Y.Z.; Hu, S.S. Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta, 2017, 184(1), 1-44.
[4]
Chen, Y.W.; Su, Y.L.; Hu, S.H.; Chen, S.Y. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Deliv. Rev., 2016, 105, 190-204.
[5]
Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H.Y.; Shin, H.S.; Chhowalla, M. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science, 2016, 353(6306), 1413-1416.
[6]
Lee, C.G.; Park, S.; Ruoff, R.S.; Dodabalapur, A. Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl. Phys. Lett., 2009, 95(2), 023304.
[7]
Qu, K.G.; Zheng, Y.; Dai, S.; Qiao, S.Z. Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy, 2016, 19, 373-381.
[8]
Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev., 2016, 116(9), 5464-5519.
[9]
Barahuie, F.; Saifullah, B.; Dorniani, D.; Fakurazi, S.; Karthivashan, G.; Hussein, M.Z.; Elfghi, F.M. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid. Mater. Sci. Eng. C Mater. Biol. Appl, 2017, 74(Supplement. C), 177-185.
[10]
Dong, J.; Wang, K.Q.; Sun, L.P.; Sun, B.L.; Yang, M.F.; Chen, H.Y.; Wang, Y.; Sun, J.Y.; Dong, L.F. Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sens. Actuator B Chem., 2018, 256, 616-623.
[11]
Chen, L.; Zhong, X.Y.; Yi, X.; Huang, M.; Ning, P.; Liu, T.; Ge, C.C.; Chai, Z.F.; Liu, Z.; Yang, K. Radionuclide I-131 labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials, 2015, 66, 21-28.
[12]
Raffa, V.; Ciofani, G.; Nitodas, S.; Karachalios, T.; D’Alessandro, D.; Masini, M.; Cuschieri, A. Can the properties of carbon nanotubes influence their internalization by living cells? Carbon, 2008, 46(12), 1600-1610.
[13]
Rosen, A.B.; Kelly, D.J.; Schuldt, A.J.T.; Lu, J.; Potapova, I.A.; Doronin, S.V.; Robichaud, K.J.; Robinson, R.B.; Rosen, M.R.; Brink, P.R.; Gaudette, G.R.; Cohen, I.S. Finding fluorescent needles in the cardiac haystack: Tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells, 2007, 25(8), 2128-2138.
[14]
Linares, J.; Matesanz, M.C.; Vila, M.; Feito, M.J.; Gonçalves, G.; Vallet-Regí, M.; Marques, P.A.A.P.; Portolés, M.T. Endocytic mechanisms of graphene oxide nanosheets in osteoblasts, hepatocytes and macrophages. ACS Appl. Mater. Interfaces, 2014, 6(16), 13697-13706.
[15]
Chang, Y.L.; Yang, S.T.; Liu, J.H.; Dong, E.; Wang, Y.W.; Cao, A.N.; Liu, Y.F.; Wang, H.F. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett., 2011, 200(3), 201-210.
[16]
Park, S.; Kim, H.; Seol, D.; Park, T.; Leem, M.; Ha, H.; An, H.; Kim, H.Y.; Jeong, S.J.; Park, S.; Kim, H.; Kim, Y. Evenly transferred single-layered graphene membrane assisted by strong substrate adhesion. Nanotechnology, 2017, 28(14), 145706.
[17]
Shadjou, N.; Hasanzadeh, M. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. J. Biomed. Mater. Res. A, 2016, 104(5), 1250-1275.
[18]
Duan, G.X.; Kang, S.G.; Tian, X.; Garate, J.A.; Zhao, L.; Ge, C.C.; Zhou, R.H. Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane. Nanoscale, 2015, 7(37), 15214-15224.
[19]
Hu, X.; Lu, K.; Mu, L.; Kang, J.; Zhou, Q. Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon, 2014, 80(Supplement. C), 665-676.
[20]
Kempaiah, R.; Salgado, S.; Chung, W.L.; Maheshwari, V. Graphene as membrane for encapsulation of yeast cells: Protective and electrically conducting. Chem. Commun., 2011, 47(41), 11480-11482.
[21]
Yang, S.H.; Lee, T.; Seo, E.; Ko, E.H.; Choi, I.S.; Kim, B-S. Interfacing living yeast cells with graphene oxide nanosheaths. Macromol. Biosci., 2012, 12(1), 61-66.
[22]
Valentini, L.; Bittolo Bon, S.; Signetti, S.; Pugno, N.M. Graphene-based bionic composites with multifunctional and repairing properties. ACS Appl. Mater. Interfaces, 2016, 8(12), 7607-7612.
[23]
Seabra, A.B.; Paula, A.J.; de Lima, R.; Alves, O.L.; Duran, N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol., 2014, 27(2), 159-168.
[24]
Tanveer, A.T.; Md Zahidul, I.P.; Hasan, H.; Alma, A.M.R.; Trefa, M.A.; Jacqueline, L.W.; Shaowei, Z. In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells. Nanotechnology, 2017, 28(50), 504001.
[25]
Luo, L.; Xu, L.N.; Zhao, H.B. Biosynthesis of reduced graphene oxide and its in-vitro cytotoxicity against cervical cancer (HeLa) cell lines. Mater. Sci. Eng. C Mater. Biol. Appl, 2017, 78, 198-202.
[26]
Liu, J-H.; Wang, T.; Wang, H.; Gu, Y.; Xu, Y.; Tang, H.; Jia, G.; Liu, Y. Biocompatibility of graphene oxide intravenously administrated in mice-effects of dose, size and exposure protocols. Toxicol. Res., 2015, 4(1), 83-91.
[27]
Radunovic, M.; De Colli, M.; De Marco, P.; Di Nisio, C.; Fontana, A.; Piattelli, A.; Cataldi, A.; Zara, S. Graphene oxide enrichment of collagen membranes improves DPSCs differentiation and controls inflammation occurrence. J. Biomed. Mater. Res. Part A, 2017, 105(8), 2312-2320.
[28]
Wang, K.; Ruan, J.; Song, H.; Zhang, J.L.; Wo, Y.; Guo, S.W.; Cui, D.X. Biocompatibility of graphene oxide. Nanoscale Res. Lett., 2011, 6, 8.
[29]
Zhao, Y.; Gong, J.; Niu, C.; Wei, Z.; Shi, J.; Li, G.; Yang, Y.; Wang, H. A new electrospun graphene-silk fibroin composite scaffolds for guiding Schwann cells. J. Biomater. Sci. Polym. Ed., 2017, 28(18), 2171-2185.
[30]
Ding, Z.J.; Zhang, Z.J.; Ma, H.W.; Chen, Y.Y. In vitro hemocompatibility and toxic mechanism of graphene oxide on human peripheral blood t lymphocytes and serum albumin. ACS Appl. Mater. Interfaces, 2014, 6(22), 19797-19807.
[31]
Das, S.; Singh, S.; Singh, V.; Joung, D.; Dowding, J.M.; Reid, D.; Anderson, J.; Zhai, L.; Khondaker, S.I.; Self, W.T.; Seal, S. Oxygenated functional group density on graphene oxide: its effect on cell toxicity. Part. Part. Syst. Charact., 2013, 30(2), 148-157.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 15
ISSUE: 4
Year: 2019
Page: [412 - 419]
Pages: 8
DOI: 10.2174/1573413714666180821112731
Price: $58

Article Metrics

PDF: 41
HTML: 4
EPUB: 1
PRC: 2