Endothelial Extracellular Vesicles Produced by Senescent Cells: Pathophysiological Role in the Cardiovascular Disease Associated with all Types of Diabetes Mellitus

Author(s): Julia Carracedo*, Matilde Alique, Rafael Ramírez-Carracedo, Guillermo Bodega, Rafael Ramírez.

Journal Name: Current Vascular Pharmacology

Volume 17 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Endothelial senescence-associated with aging or induced prematurely in pathological situations, such as diabetes, is a first step in the development of Cardiovascular Disease (CVDs) and particularly inflammatory cardiovascular diseases. The main mechanism that links endothelial senescence and the progression of CVDs is the production of altered Extracellular Vesicles (EVs) by senescent endothelial cells among them, Microvesicles (MVs). MVs are recognized as intercellular signaling elements that play a key role in regulating tissue homeostasis. However, MVs produced by damage cell conveyed epigenetic signals, mainly involving microRNAs, which induce many of the injured responses in other vascular cells leading to the development of CVDs. Many studies strongly support that the quantification and characterization of the MVs released by senescent endothelial cells may be useful diagnostic tools in patients with CVDs, as well as a future therapeutic target for these diseases. In this review, we summarize the current knowledge linking senescence-associated MVs to the development of CVDs and discuss the roles of these MVs, in particular, in diabetic-associated increases the risk of CVDs.

Keywords: Cardiovascular diseases, diabetes, endothelial senescence, epigenetic signals, extracellular vesicles, microvesicles, physiopathological mechanisms.

[1]
Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 2015; 6: 1246-58.
[2]
Westermeier F, Riquelme JA, Pavez M, et al. New molecular insights of insulin in diabetic cardiomyopathy. Front Physiol 2016; 7: 125.
[3]
Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: A hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia 2018; 61: 21-8.
[4]
Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: The Framingham study. Circulation 1979; 59: 8-13.
[5]
Anderson TJ, Gerhard MD, Meredith IT, et al. Systemic nature of endothelial dysfunction in atherosclerosis. Am J Cardiol 1995; 75: 71-4.
[6]
Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118: 620-36.
[7]
Cohn JN. Cardiovascular disease progression: A target for therapy? Am J Med 2018; 131: 1170-3.
[8]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153: 1194-217.
[9]
Flatt T. A new definition of aging? Front Genet 2012; 3: 148.
[10]
Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37: 614-36.
[11]
Campisi J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 2001; 11: 27-31.
[12]
Sapieha P, Mallette FA. Cellular senescence in postmitotic cells: Beyond growth arrest. Trends Cell Biol 2018; 28: 595-07.
[13]
Regulski M. Understanding diabetic induction of cellular senescence: A concise review. Wounds 2018; 30: 96-101.
[14]
Kuilman T, Peeper DS. Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 2009; 9: 81-94.
[15]
Bruunsgaard H, Skinhoj P, Pedersen AN, Schroll M, Pedersen BK. Ageing, Tumour Necrosis Factor-alpha (TNF-alpha) and atherosclerosis. Clin Exp Immunol 2000; 121: 255-60.
[16]
Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007; 115: 1285-95.
[17]
Dejana E, Hirschi KK, Simons M. The molecular basis of endothelial cell plasticity. Nat Commun 2017; 9: 14371.
[18]
Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis: Role of telomere in endothelial dysfunction. Circulation 2002; 105: 1541-4.
[19]
Erusalimsky JD, Kurz DJ. Cellular senescence in vivo: Its relevance in ageing and cardiovascular disease. Exp Gerontol 2005; 40: 634-42.
[20]
Katsuumi G, Shimizu I, Yoshida Y, Minamino T. Vascular senescence in cardiovascular and metabolic diseases. Front Cardiovasc Med 2018; 5: 18-31.
[21]
Shanahan CM. Mechanisms of vascular calcification in CKD-evidence for premature ageing? Nat Rev Nephrol 2013; 9: 661-70.
[22]
Grootaert MOJ, Moulis M, Roth L, et al. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res 2018; 114: 622-34.
[23]
Qi Nan W, Ling Z, Bing C. The influence of the telomere-telomerase system on diabetes mellitus and its vascular complications. Expert Opin Ther Targets 2015; 19: 849-64.
[24]
Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL. Cellular senescence in type 2 diabetes: A therapeutic opportunity. Diabetes 2015; 64: 2289-98.
[25]
Chen J, Brodsky SV, Goligorsky DM, et al. Glycated collagen I induces premature senescence-like phenotypic changes in endothelial cells. Circ Res 2002; 90: 1290-8.
[26]
Pardo F, Villalobos-Labra R, Sobrevia B, Toledo F, Sobrevia L. Extracellular vesicles in obesity and diabetes mellitus. Mol Aspects Med 2018; 60: 81-91.
[27]
Yokoi T, Fukuo K, Yasuda O, et al. Apoptosis signal-regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells. Diabetes 2006; 55: 1660-5.
[28]
Matsui-Hirai H, Hayashi T, Yamamoto S, et al. Dose-dependent modulatory effects of insulin on glucose-induced endothelial senescence in vitro and in vivo: A relationship between telomeres and nitric oxide. J Pharmacol Exp Ther 2011; 337: 591-9.
[29]
Basta G, Schmidt AM, de Caterina R. Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 2004; 63: 582-92.
[30]
Ni J, Yuan X, Gu J, et al. Plasma protein pentosidine and carboxymethyllysine, biomarkers for age-related macular degeneration. Mol Cell Proteomics 2009; 8: 1921-33.
[31]
Hayashi T, Kotani H, Yamaguchi T, et al. Endothelial cellular senescence is inhibited by liver X receptor activation with an additional mechanism for its atheroprotection in diabetes. Proc Natl Acad Sci USA 2014; 111: 1168-73.
[32]
Luna C, Alique M, Navalmoral E, et al. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage. Clin Interv Aging 2016; 11: 225-36.
[33]
Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat Med 2015; 21: 1424-35.
[34]
Rogers SC, Zhang X, Azhar G, Luo S, Wei JY. Exposure to high or low glucose levels accelerates the appearance of markers of endothelial cell senescence and induces dysregulation of nitric oxide synthase. J Gerontol A Biol Sci Med Sci 2012; 68: 1469-81.
[35]
Matsui-Hirai H, Hayashi T, Yamamoto S, et al. Dose-dependent modulatory effects of insulin on glucose-induced endothelial senescence in vitro and in vivo: A relationship between telomeres and nitric oxide. J Pharmacol Exp Ther 2011; 337: 591-9.
[36]
Jeremy JY, Mikhailidis DP, Dandona P. Simulating the diabetic environment modifies in vitro prostacyclin synthesis. Diabetes 1983; 32: 217-21.
[37]
Stabley JN, Towler DA. Arterial calcification in diabetes mellitus: Preclinical models and translational implications. Arterioscler Thromb Vasc Biol 2017; 37: 205-17.
[38]
Li Y, Qin R, Yan H, et al. Inhibition of vascular smooth muscle cells premature senescence with rutin attenuates and stabilizes diabetic atherosclerosis. J Nutr Biochem 2018; 51: 91-8.
[39]
Sun X, Han F, Yi J, Hou N, Cao Z. The effect of telomerase activity on vascular smooth muscle cell proliferation in type 2 diabetes in vivo and in vitro. Mol Med Rep 2013; 7: 1636-40.
[40]
Wagner M, Hampel B, Bernhard D, Hala M, Zwerschke W, Jansen-Dürr P. Replicative senescence of human endothelial cells in vitro involves G1 arrest, polyploidization and senescence-associated apoptosis. Exp Gerontol 2001; 36: 1327-47.
[41]
Carracedo J, Buendía P, Merino A, et al. Klotho modulates the stress response in human senescent endothelial cells. Mech Ageing Dev 2012; 133: 647-54.
[42]
Minamino T, Miyauchi H, Yoshida T, Tateno K, Kunieda T, Komuro I. Vascular cell senescence and vascular aging. J Mol Cell Cardiol 2004; 36: 175-83.
[43]
Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G. Aging-induced proinflammatory shift in cytokine expression profile in coronary arteries. FASEB J 2003; 17: 1183-5.
[44]
Wang JC, Bennett M. Aging and atherosclerosis: Mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 2012; 111: 245-59.
[45]
Watanabe S, Kawamoto S, Ohtani N, Hara E. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci 2017; 108: 563-9.
[46]
Urbanelli L, Buratta S, Sagini K, Tancini B, Emiliani C. Extracellular vesicles as new players in cellular senescence. Int J Mol Sci 2016; 17: 1408.
[47]
Weilner S, Schraml E, Redl H, Grillari-Voglauer R, Grillari J. Secretion of microvesicular miRNAs in cellular and organismal aging. Exp Gerontol 2013; 48: 626-33.
[48]
Alique M, Ruíz-Torres MP, Bodega G, et al. Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification. Aging (Albany NY) 2017; 9: 778-89.
[49]
Takasugi M. Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell 2018; 17: 12734-42.
[50]
Kadota T, Fujita Y, Yoshioka Y, Araya J, Kuwano K, Ochiya T. Emerging role of extracellular vesicles as a senescence-associated secretory phenotype: Insights into the pathophysiology of lung diseases. Mol Aspects Med 2018; 60: 92-103.
[51]
Lakhter AJ, Sims EK. Emerging roles for extracellular vesicles in diabetes and related metabolic disorders. Mol Endocrinol 2015; 29: 1535-48.
[52]
Théry C, Ostrowsk M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9: 581-93.
[53]
Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New technologies for analysis of extracellular vesicles. Chem Rev 2018; 118: 1917-50.
[54]
Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles and friends. J Cell Biol 2013; 200: 373-83.
[55]
Yáñez-Mó M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015; 4: 27066.
[56]
Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: Important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20: 1487-95.
[57]
György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles cell. Mol Life Sci 2011; 68: 2667-88.
[58]
Roy S, Hochberg FH, Jones PS. Extracellular vesicles: The growth as diagnostics and therapeutics; A survey. J Extracell Vesicles 2018; 71438720
[59]
Théry C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function. Nat Rev Immunol 2002; 2: 569-79.
[60]
Dreyer F, Baur A. Biogenesis and functions of exosomes and extracellular vesicles. Methods Mol Biol 2016; 1448: 201-16.
[61]
Morel O, Toti F, Hugel B, Freyssinet JM. Cellular microparticles: A disseminated storage pool of bioactive vascular effectors. Curr Opin Hematol 2004; 11: 156-64.
[62]
Barteneva NS, Fasler-Kan E, Bernimoulin M, et al. Circulating microparticles: Square the circle. BMC Cell Biol 2013; 14: 23.
[63]
Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martínez MC. Extracellular vesicles: Mechanisms in human health and disease. Antioxid Redox Signal 2019; 30: 813-56.
[64]
Rautou PE, Vion AC, Amabile N, et al. Microparticles, vascular function, and atherothrombosis. Circ Res 2011; 109: 593-6.
[65]
Sinning JM, Losch J, Walenta K, Bohm M, Nickenig G, Werner N. Circulating CD31+/Annexin V+ microparticles correlate with cardiovascular outcomes. Eur Heart J 2011; 32: 2034-41.
[66]
Azevedo LC, Pedro MA, Laurindo FR. Circulating microparticles as therapeutic targets in cardiovascular diseases. Recent Pat Cardiovasc Drug Discov 2007; 2: 41-51.
[67]
Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 2011; 31: 27-33.
[68]
Yin M, Loyer X, Boulanger CM. Extracellular vesicles as new pharmacological targets to treat atherosclerosis. Eur J Pharmacol 2015; 763: 90-103.
[69]
Ridger VC, Boulanger CM, Angelillo-Scherrer A, et al. Microvesicles in vascular homeostasis and diseases. Position Paper of the European Society of Cardiology (ESC) working group on atherosclerosis and vascular biology. Thromb Haemost 2017; 117: 1296-316.
[70]
Badimon L, Suades R, Arderiu G, Peña E, Chiva-Blanch G, Padró T. Microvesicles in atherosclerosis and angiogenesis: From bench to bedside and reverse. Front Cardiovasc Med 2017; 4: 77.
[71]
Chen Y, Li G, Liu ML. Microvesicles as emerging biomarkers and therapeutic targets in cardiometabolic diseases. Genom Proteom Bioinf 2018; 16: 50-62.
[72]
Anouar H, Daskalopoulou SS. Extracellular vesicles characteristics and emerging roles in atherosclerotic cardiovascular disease. Metabolism 2018; 85: 213-22.
[73]
Jansen F, Yang X, Proebsting S, et al. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc 2014; 3e001249
[74]
Alique M, Ramírez-Carracedo R, Bodega G, Carracedo J, Ramírez R. Senescent microvesicles: A novel advance in molecular mechanisms of atherosclerotic calcification. Int J Mol Sci 2018; 19: 2003.
[75]
Luna C, Carmona A, Alique M, Carracedo J, Ramirez R. TNFα-damaged-HUVECs microparticles modify endothelial progenitor cell functional activity. Front Physiol 2015; 6: 395.
[76]
Bodega G, Alique M, Bohórquez L, Ciordia S, Mena MC, Ramírez R. The antioxidant machinery of young and senescent human umbilical vein endothelial cells and their microvesicles. Oxid Med Cell Longev 2017; 20177094781
[77]
Carmona A, Guerrero F, Buendia P, Obrero T, Aljama P, Carracedo J. Microvesicles derived from indoxyl sulfate treated endothelial cells induce endothelial progenitor cells dysfunction. Front Physiol 2017; 8: 666.
[78]
Carmona A, Agüera ML, Luna-Ruiz C, et al. Markers of endothelial damage in patients with chronic kidney disease on hemodialysis. Am J Physiol Renal Physiol 2017; 312: 673-81.
[79]
Jansen F, Yang X, Hoelscher M, et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 2013; 128: 2026-38.
[80]
Jansen F, Zietzer A, Stumpf T, et al. Endothelial microparticle-promoted inhibition of vascular remodeling is abrogated under hyperglycaemic conditions. Mol Cell Cardiol 2017; 112: 91-4.
[81]
Garcia-Contreras M, Brooks RW, Boccuzzi L, Robbins PD, Ricordi C. Exosomes as biomarkers and therapeutic tools for type 1 diabetes mellitus. Eur Rev Med Pharmacol Sci 2017; 21: 2940-56.
[82]
Chiva-Blanch G, Suades R, Padró T, et al. Microparticle shedding by erythrocytes, monocytes and vascular smooth muscular cells is reduced by aspirin in diabetic patients. Rev Esp Cardiol (Engl Ed) 2016; 69: 672-80.
[83]
Puddu P, Puddu GM, Cravero E, Muscari S, Muscari A. The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol 2010; 26: 140-5.
[84]
Aswad H, Forterre A, Wiklander OPB, et al. Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice. Diabetologia 2014; 57: 2155-64.
[85]
Chen J, Chen S, Chen Y, et al. Circulating endothelial progenitor cells and cellular membrane microparticles in db/db diabetic mouse: Possible implications in cerebral ischemic damage. American Journal of Physiology - Endocrinol Metab 2011; 301: 62.
[86]
Zhang Y, Shi L, Mei H, et al. Inflamed macrophage microvesicles induce insulin resistance in human adipocytes. Nutr Metab 2015; 12: 21.
[87]
Alique M, Luna C, Carracedo J, Ramírez R. LDL biochemical modifications: A link between atherosclerosis and aging. Food Nutr Res 2015; 59: 29240.
[88]
Martínez MC, Andriantsitohaina R. Extracellular vesicles in metabolic syndrome. Circ Res 2017; 120: 1674-86.
[89]
Gustafson D, Veitch S, Fish JE. Extracellular vesicles as protagonists of diabetic cardiovascular pathology. Front Cardiovasc Med 2017; 4: 71.
[90]
Sabatier F, Darmon P, Hugel B, et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes 2002; 51: 2840-5.
[91]
Morel O, Jesel L, Freyssinet JM, Toti F. Elevated levels of procoagulant microparticles in a patient with myocardial infarction, antiphospholipid antibodies and multifocal cardiac thrombosis. Thromb J 2005; 3: 15.
[92]
Freeman DW, Noren Hooten N, Eitan E, et al. Altered extracellular vesicle concentration, cargo and function in diabetes mellitus. Diabetes 2018; 67: 2377-88.
[93]
Li S, Wei J, Zhang C, et al. Cell-derived microparticles in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Cell Physiol Biochem 2016; 39: 2439-50.
[94]
Omoto S, Nomura S, Shouzu A, et al. Significance of platelet-derived microparticles and activated platelets in diabetic nephropathy. Nephron 1999; 81: 271-7.
[95]
Ogata N, Nomura S, Shouzu A, Imaizumi M, Arichi M, Matsumura M. Elevation of monocyte-derived microparticles in patients with diabetic retinopathy. Diabetes Res Clin Pract 2006; 73: 241-8.
[96]
Bernard S, Loffroy R, Serusclat A, et al. Increased levels of endothelial microparticles CD144 (VE-cadherin) positives in type 2 diabetic patients with coronary noncalcified plaques evaluated by Multidetector Computed Tomography (MDCT). Atherosclerosis 2009; 203: 429-35.
[97]
Kobayashi S, Satoh M, Namikoshi T, et al. Blockade of serotonin 2A receptor improves glomerular endothelial function in rats with streptozotocin-induced diabetic nephropathy. Clin Exp Nephrol 2008; 12: 119-25.
[98]
Omoto S, Nomura S, Shouzu A, Nishikawa M, Fukuhara S, Iwasaka T. Detection of monocyte-derived microparticles in patients with type II diabetes mellitus. Diabetologia 2002; 45: 550-5.
[99]
Cohen Z, Gonzales RF, Davis-Gorman GF, Copeland JG, McDonagh PF. Thrombin activity and platelet microparticle formation are increased in type 2 diabetic platelets: A potential correlation with caspase activation. Thromb Res 2002; 107: 217-21.
[100]
Cimmino G, D’Amico C, Vaccaro V, D’Anna M, Golino P. The missing link between atherosclerosis, inflammation and thrombosis: Is it tissue factor. Expert Rev Cardiovasc Ther 2011; 9: 517-23.
[101]
Sáez T, Salsoso R, Leiva A, et al. Human umbilical vein endothelium-derived exosomes play a role in foetoplacental endothelial dysfunction in gestational diabetes mellitus. Biochim Biophys Acta 2018; 1864: 499-508.
[102]
Kerr B, Leiva A, Farías M, et al. Foetoplacental epigenetic changes associated with maternal metabolic dysfunction. Placenta 2018; 69: 146-52.
[103]
Moen GH, Sommer C, Prasad RB, et al. Mechanisms in endocrinology: Epigenetic modifications and gestational diabetes: A systematic review of published literature. Eur J Endocrinol 2017; 176: 247-67.
[104]
Vaishya S, Sarwade RD, Seshadri V. MicroRNA, proteins, and metabolites as novel biomarkers for prediabetes, diabetes, and related complications. Front Endocrinol (Lausanne) 2018; 9: 180.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 5
Year: 2019
Page: [447 - 454]
Pages: 8
DOI: 10.2174/1570161116666180820115726
Price: $58

Article Metrics

PDF: 22