Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Commentary

Interindividual Variability in Drug Metabolizing Enzymes

Author(s): Donna A. Volpe*

Volume 20, Issue 13, 2019

Page: [1041 - 1043] Pages: 3

DOI: 10.2174/1389200219666180817144411

[1]
Wilkinson, G.R. Drug metabolism and variability among patients in drug response. N. Engl. J. Med., 2005, 352, 2211-2221.
[2]
Yang, X.; Zhang, B.; Molony, C.; Chudin, E.; Hao, K.; Zhu, J.; Gaedigk, A.; Suver, C.; Zhong, H.; Leeder, J.S.; Guengerich, F.P.; Strom, S.C.; Schuetz, E.; Rushmore, T.H.; Ulrich, R.G.; Slatter, J.G.; Schadt, E.E.; Kasarskis, A.; Lum, P.Y. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res., 2010, 20, 1020-1036.
[3]
Yang, L.; Price, E.T.; Chang, C.W.; Li, Y.; Huang, Y.; Guo, L.W.; Guo, Y.; Kaput, J.; Shi, L. Gene expression variability in human hepatic drug metabolizing enzymes and transporters. PLoS One, 2013, 8e60368
[4]
Walter-Sack, I.; Klotz, U. Influence of diet and nutritional status on drug metabolism. Clin. Pharmacokinet., 1996, 31, 47-64.
[5]
Jones, A.E.; Brown, K.C.; Werner, R.E.; Gotzkowsky, K.; Gaedigk, A.; Blake, M.; Hein, D.W.; Van Der Horst, C.; Kashuba, A.D. Variability in drug metabolizing enzyme activity in HIV-infected patients. Eur. J. Clin. Pharmacol., 2010, 66, 475-485.
[6]
Kinirons, M.T.; O’Mahony, M.S. Drug metabolism and ageing. Br. J. Clin. Pharmacol., 2004, 57, 540-544.
[7]
Sherman, M.; Smith, C.; Rollins, H.; Fogarty, J.; Sahi, J. Influence of gender and ethnicity on drug metabolizing enzyme activity in human hepatocytes. Drug Metab. Rev., 2010, 42(Suppl. 1), 89-90.
[8]
Shimada, T.; Yamazaki, H.; Mimura, M.; Inui, Y.; Guengerich, F.P. Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther., 1994, 270, 414-423.
[9]
Prasad, B.; Bhatt, D.K.; Johnson, K.; Chapa, R.; Chu, X.; Salphati, L.; Xiao, G.; Lee, C.; Hop, C.E.C.A.; Mathias, A.; Lai, Y.; Liao, M.; Humphreys, W.G.; Kumer, S.C.; Unadkat, J.D. Abundance of phase 1 and 2 drug-metabolizing enzymes in alcoholic and hepatitis C cirrhotic livers: A quantitative targeted proteomics study. Drug Metab. Dispos., 2018, 46, 943-952.
[10]
Lang, C.C.; Brown, R.M.; Kinirons, M.T.; Deathridge, M.A.; Guengerich, F.P.; Kelleher, D.; O’Briain, D.S.; Ghishan, F.K.; Wood, A.J.J. Decreased intestinal CYP3A in celiac disease: Reversal after successful gluten-free diet: A potential source of interindividual variability in first-pass drug metabolism. Clin. Pharmacol. Ther., 1996, 59, 41-46.
[11]
Margaillan, G.; Rouleau, M.; Fallon, J.K.; Caron, P.; Villeneuve, L.; Turcotte, V.; Smith, P.C.; Joy, M.S.; Guillemette, C. Quantitative profiling of human renal UDP-glucuronosyltransferases and glucuronidation activity: A comparison of normal and tumoral kidney tissues. Drug Metab. Dispos., 2015, 43, 611-619.
[12]
Urquhart, B.L.; Tirona, R.G.; Kim, R.B. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J. Clin. Pharmacol., 2007, 47, 566-578.
[13]
Ingelman-Sundberg, M.; Sim, S.C.; Gomez, A.; Rodriguez-Antona, C. Influence of cytochrome P450 polymorphisms on drug therapies: Pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol. Ther., 2007, 116, 496-526.
[14]
Den Braver-Sewradj, S.P.; Den Braver, M.W.; Van Dijk, M.; Zhang, Y.; Dekker, S.J.; Wijaya, L.; Vermeulen, N.P.E.; Richert, L.; Commandeur, J.N.M.; Vos, J.C. Inter-individual variability in activity of the major drug metabolizing enzymes in liver homogenates of 20 individuals. Curr. Drug Metab., 2018, 19, 370-381.
[15]
Nakamura, K.; Hirayama-Kurogi, M.; Ito, S.; Kuno, T.; Yoneyama, T.; Obuchi, W.; Terasaki, T.; Ohtsuki, S. Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: comparison with MRM/SRM and HR-MRM/PRM. Proteomics, 2016, 16, 2106-2117.
[16]
Ohtsuki, S.; Schaefer, O.; Kawakami, H.; Inoue, T.; Liehner, S.; Sato, A.; Ishiguro, N.; Kishimoto, W.; Ludwig-Schwellinger, E.; Ebner, T.; Terasaki, T. Simultaneous absolute protein quantification of transporters, cytochrome P450s and UDP glucuronosyltransferases as a novel approach for the characterization of individual human liver: Comparison with mRNA levels and activities. Drug Metab. Dispos., 2012, 40, 83-92.
[17]
Gröer, C.; Busch, D.; Patrzyk, M.; Beyer, K.; Busemann, A.; Heidecke, C.D.; Drozdzik, M.; Siegmund, W.; Oswald, S. Absolute protein quantification of clinically relevant cytochrome P450 enzymes and UDP-glucuronosyltransferases by mass spectrometry-based targeted proteomics. J. Pharm. Biomed. Anal., 2014, 100, 393-401.
[18]
Lindell, M.; Karlsson, M.O.; Lennernäs, H.; Påhlman, L.; Lang, M.A. Variable expression of CYP and P-gp genes in the human small intestine. Eur. J. Clin. Invest., 2003, 33, 493-499.
[19]
Clermont, V.; Grangeon, A.; Gaudette, F.; Barama, A.; Michaud, V. Characterization of CYP450 drug metabolism enzymes activities in human small intestine. Clin. Pharmacol. Ther., 2017, 101(Suppl. 1), S61.
[20]
Gabriele, M.; Puccini, P.; Lucchi, M.; Vizziello, A.; Gervasi, P.G.; Longo, V. Presence and inter-individual variability of carboxylesterases (CES1 and CES2) in human lung. Biochem. Pharmacol., 2018, 150, 64-71.
[21]
Yengi, L.G.; Xiang, Q.; Pan, J.; Scatina, J.; Kao, J.; Ball, S.E.; Fruncillo, R.; Ferron, G.; Roland, W.C. Quantitation of cytochrome P450 mRNA levels in human skin. Anal. Biochem., 2003, 316, 103-110.
[22]
Achour, B.; Dantonio, A.; Niosi, M.; Novak, J.J.; Fallon, J.K.; Barber, J.; Smith, P.C.; Rostami-Hodjegan, A.; Goosen, T.C. Quantitative characterization of major hepatic UDP-glucuronosyltransferase enzymes in human liver microsomes: Comparison of two proteomic methods and correlation with catalytic activity. Drug Metab. Dispos., 2017, 45, 1102-1112.
[23]
Snawder, J.E.; Lipscomb, J.C. Interindividual variance of cytochrome P450 forms in human hepatic microsomes: Correlation of individual forms with xenobiotic metabolism and implications in risk assessment. Regul. Toxicol. Pharmacol., 2000, 32, 200-209.
[24]
Rodriguez-Antona, C.; Donato, M.T.; Pareja, E.; Gomez-Lechon, M.J.; Castell, J.V. Cytochrome P-450 mRNA expression in human liver and its relationship with enzyme activity. Arch. Biochem. Biophys., 2001, 393, 308-315.
[25]
Jetten, M.J.; Claessen, S.M.; Dejong, C.H.; Lahoz, A.; Castell, J.V.; Van Delft, J.H.; Kleinjans, J.C. Interindividual variation in response to xenobiotic exposure established in precision-cut human liver slices. Toxicology, 2014, 323, 61-69.
[26]
Rhodes, S.P.; Otten, J.N.; Hingorani, G.P.; Hartley, D.P.; Franklin, R.B. Simultaneous assessment of cytochrome P450 activity in cultured human hepatocytes for compound-mediated induction of CYP3A4, CYP2B6, and CYP1A2. J. Pharmacol. Toxicol. Methods, 2011, 63, 223-226.
[27]
Gao, N.; Tian, X.; Fang, Y.; Zhou, J.; Zhang, H.; Wen, Q.; Jia, L.; Gao, J.; Sun, B.; Wei, J.; Zhang, Y.; Cui, M.; Qiao, H. Gene polymorphisms and contents of cytochrome P450s have only limited effects on metabolic activities in human liver microsomes. Eur. J. Pharm. Sci., 2016, 92, 86-97.
[28]
Rostami-Hodjegan, A.; Tucker, G.T. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat. Rev. Drug Discov., 2007, 6, 140-148.

© 2024 Bentham Science Publishers | Privacy Policy