Choline-PET/CT in the Differential Diagnosis Between Cystic Glioblastoma and Intraparenchymal Hemorrhage

Author(s): Pierpaolo Alongi*, Ignazio Gaspare Vetrano, Elisa Fiasconaro, Valerio Alaimo, Riccardo Laudicella, Marina Bellavia, Francesca Rubino, Sergio Bagnato, Giuseppe Galardi.

Journal Name: Current Radiopharmaceuticals

Volume 12 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: Glioblastoma multiforme (GBM) represents the most common and malignant glioma, accounting for 45%-50% of all gliomas. The median survival time for patients with glioblastoma is only 12-15 months after surgical, chemioterapic and radiotherapic treatment; a correct diagnosis is naturally fundamental to establish a rapid and correct therapy. Non-invasive imaging plays a pivotal role in each phase of the diagnostic workup of patients with suspected for diagnosis. The aim of this case report was to describe the potential clinical impact of 18F-fluorocholine (FCH) PET/CT in the assessment of a cystic GBM mimicking a spontaneous hemorrhage.

Methods: a 57 years-old male with intraparenchymal hemorrhage at CT imaging initially in reduction ad serial imaging and suspected right fronto-temporo-parietal lesion at MRI underwent dynamic and static (60' after tracer injection) FCH PET/CT of the brain.

Results: FCH PET/CT showed rapid tracer uptake after few second from injection at dynamic acquisition and consequent incremental mild uptake at static imaging after 60 minutes at the level of oval formation in the right cerebral hemisphere characterized by annular and peripheral high metabolic activity. The central region of the lesion was characterized by the absence 18F-FCH uptake most likely due to blood component. The patient underwent surgery for tumor removal; the histopathological examination confirmed the suspect of GBM. Chemo-radiotherapic adjuvant protocol according to Stupp protocol was therefore administrated; to date the patient is alive without any progression disease at 5 months from treatment.

Conclusion: In this case report FCH PET/CT represented the final diagnostic technique to confirm the suspicious of a cystic GBM. Our case demonstrated the potential role of 18F-FCH PET/CT for discrimination of higher proliferation area over intraparenchymal hemorrhage, supporting the potential use of this imaging biomarker in surgical or radiosurgical approach. Obviously, further prospective studies are needed to confirm this role and to exactly define possible routinely applications.

Keywords: 18F-FCH PET/CT, brain tumor, choline, cystic glioblastoma, GBM, hemorrhage.

[1]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[2]
Ostrom, Q. T.; Gittleman, H.; Liao, P.; Vecchione-Koval, T.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J. S. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro. Oncol., 2017, 19((suppl_5)), v1-v88.
[3]
Ohgaki, H.; Kleihues, P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol., 2005, 64(6), 479-489.
[4]
Zhong, J.; Paul, A.; Kellie, S.J.; O’Neill, G.M. Mesenchymal migration as a therapeutic target in glioblastoma. J. Oncol., 2010, 2010, 1-17.
[5]
Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; DeGroot, J.; Wick, W.; Gilbert, M.R.; Lassman, A.B. et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol., 2010, 28(11), 1963-1972.
[6]
Wong, T.Z.; van der Westhuizen, G.J.; Coleman, R.E. Positron emission tomography imaging of brain tumors. Neuroimaging Clin. N. Am., 2002, 12(4), 615-626.
[7]
Macdonald, D.R.; Cascino, T.L.; Schold, S.C.; Cairncross, J.G. Response criteria for phase ii studies of supratentorial malignant glioma. J. Clin. Oncol., 1990, 8(7), 1277-1280.
[8]
Ricci, P.E.; Karis, J.P.; Heiserman, J.E.; Fram, E.K.; Bice, A.N.; Drayer, B.P. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am. J. Neuroradiol., 1998, 19(3), 407-413.
[9]
Yoshimoto, M.; Waki, A.; Obata, A.; Furukawa, T.; Yonekura, Y.; Fujibayashi, Y. Radiolabeled choline as a proliferation marker: comparison with radiolabeled acetate. Nucl. Med. Biol., 2004, 31(7), 859-865.
[10]
Utriainen, M.; Komu, M.; Vuorinen, V.; Lehikoinen, P.; Sonninen, P.; Kurki, T.; Utriainen, T.; Roivainen, A.; Kalimo, H.; Minn, H. Evaluation of brain tumor metabolism with [11C]Choline PET and 1H-MRS. J. Neurooncol., 2003, 62(3), 329-338.
[11]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[12]
Kaur, G.; Bloch, O.; Jian, B.J.; Kaur, R.; Sughrue, M.E.; Aghi, M.K.; McDermott, M.W.; Berger, M.S.; Chang, S.M.; Parsa, A.T. A critical evaluation of cystic features in primary glioblastoma as a prognostic factor for survival. J. Neurosurg., 2011, 115(4), 754-759.
[13]
Heit, J.J.; Iv, M.; Wintermark, M. Imaging of intracranial hemorrhage. J. Stroke, 2017, 19(1), 11-27.
[14]
Kidwell, C.S.; Wintermark, M. Imaging of intracranial haemorrhage. Lancet Neurol., 2008, 7(3), 256-267.
[15]
Brandsma, D.; Stalpers, L.; Taal, W.; Sminia, P.; van den Bent, M.J. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol., 2008, 9(5), 453-461.
[16]
Ullrich, R.; Backes, H.; Li, H.; Kracht, L.; Miletic, H.; Kesper, K.; Neumaier, B.; Heiss, W-D.; Wienhard, K.; Jacobs, A.H. Glioma proliferation as assessed by 3′-fluoro-3′-deoxy-l-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin. Cancer Res., 2008, 14(7), 2049-2055.
[17]
Falk Delgado, A.; Falk Delgado, A. Discrimination between primary low-grade and high-grade glioma with 11C-methionine PET: A bivariate diagnostic Test accuracy meta-analysis. Br. J. Radiol., 2018, 91(1082), 20170426.
[18]
Kits, A.; Martin, H.; Sanchez-Crespo, A.; Delgado, A.F. Diagnostic accuracy of 11C-methionine PET in detecting neuropathologically confirmed recurrent brain tumor after radiation therapy. Ann. Nucl. Med., 2018, 32(2), 132-141.
[19]
Pauleit, D.; Stoffels, G.; Bachofner, A.; Floeth, F.W.; Sabel, M.; Herzog, H.; Tellmann, L.; Jansen, P.; Reifenberger, G.; Hamacher, K. et al. Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl. Med. Biol., 2009, 36(7), 779-787.
[20]
Galldiks, N.; Rapp, M.; Stoffels, G.; Fink, G.R.; Shah, N.J.; Coenen, H.H.; Sabel, M.; Langen, K-J. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]fluoroethyl-l-tyrosine PET in comparison to MRI. Eur. J. Nucl. Med. Mol. Imaging, 2013, 40(1), 22-33.
[21]
Chen, W.; Silverman, D.H.S.; Delaloye, S.; Czernin, J.; Kamdar, N.; Pope, W.; Satyamurthy, N.; Schiepers, C.; Cloughesy, T. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J. Nucl. Med., 2006, 47(6), 904-911.
[22]
Ramírez de Molina, A.; Rodríguez-González, A.; Gutiérrez, R.; Martínez-Piñeiro, L.; Sánchez, J.; Bonilla, F.; Rosell, R.; Lacal, J. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem. Biophys. Res. Commun., 2002, 296(3), 580-583.
[23]
Kotzerke, J.; Prang, J.; Neumaier, B.; Volkmer, B.; Guhlmann, A.; Kleinschmidt, K.; Hautmann, R.; Reske, S.N. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur. J. Nucl. Med., 2000, 27(9), 1415-1419.
[24]
Ohtani, T.; Kurihara, H.; Ishiuchi, S.; Saito, N.; Oriuchi, N.; Inoue, T.; Sasaki, T. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur. J. Nucl. Med., 2001, 28(11), 1664-1670.
[25]
Kobori, O.; Kirihara, Y.; Kosaka, N.; Hara, T. Positron emission tomography of esophageal carcinoma using (11)C-choline and (18)F-fluorodeoxyglucose: a novel method of preoperative lymph node staging. Cancer, 1999, 86(9), 1638-1648.
[26]
Hara, T.; Inagaki, K.; Kosaka, N.; Morita, T. Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET. J. Nucl. Med., 2000, 41(9), 1507-1513.
[27]
Tian, M.; Zhang, H.; Oriuchi, N.; Higuchi, T.; Endo, K. Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur. J. Nucl. Med. Mol. Imaging, 2004, 31(8), 1064-1072.
[28]
Hara, T. 11C-choline and 2-deoxy-2-[18F]fluoro-D-glucose in tumor imaging with positron emission tomography. Mol. Imaging Biol., 2002, 4(4), 267-273.
[29]
Hara, T.; Kondo, T.; Hara, T.; Kosaka, N. Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J. Neurosurg., 2003, 99(3), 474-479.
[30]
DeGrado, T.R.; Baldwin, S.W.; Wang, S.; Orr, M.D.; Liao, R.P.; Friedman, H.S.; Reiman, R.; Price, D.T.; Coleman, R.E. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J. Nucl. Med., 2001, 42(12), 1805-1814.
[31]
DeGrado, T.R.; Reiman, R.E.; Price, D.T.; Wang, S.; Coleman, R.E. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J. Nucl. Med., 2002, 43(1), 92-96.
[32]
Parashar, B.; Wernicke, A.G.; Rice, S.; Osborne, J.; Singh, P.; Nori, D.; Vallabhajosula, S.; Goldsmith, S.; Chao, K.S.C. Early assessment of radiation response using a novel functional imaging modality -- [18F]fluorocholine PET (FCH-PET): a pilot study. Discov. Med., 2012, 14(74), 13-20.
[33]
Liu, D.; Hutchinson, O.C.; Osman, S.; Price, P.; Workman, P.; Aboagye, E.O. Use of radiolabelled choline as a pharmacodynamic marker for the signal transduction inhibitor geldanamycin. Br. J. Cancer, 2002, 87(7), 783-789.
[34]
Glunde, K.; Jie, C.; Bhujwalla, Z.M. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res., 2004, 64(12), 4270-4276.
[35]
Glunde, K.; Jacobs, M.A.; Bhujwalla, Z.M. Choline metabolism in cancer: implications for diagnosis and therapy. Expert Rev. Mol. Diagn., 2006, 6(6), 821-829.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 12
ISSUE: 1
Year: 2019
Page: [88 - 92]
Pages: 5
DOI: 10.2174/1874471011666180817122427
Price: $65

Article Metrics

PDF: 41
HTML: 2
EPUB: 1
PRC: 1