Host Restriction Factors and Human Immunodeficiency Virus (HIV-1): A Dynamic Interplay Involving All Phases of the Viral Life Cycle

Author(s): Vanessa D`Urbano, Elisa De Crignis, Maria Carla Re*.

Journal Name: Current HIV Research

Volume 16 , Issue 3 , 2018

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Mammalian cells have evolved several mechanisms to prevent or block lentiviral infection and spread. Among the innate immune mechanisms, the signaling cascade triggered by type I interferon (IFN) plays a pivotal role in limiting the burden of HIV-1. In the presence of IFN, human cells upregulate the expression of a number of genes, referred to as IFN-stimulated genes (ISGs), many of them acting as antiviral restriction factors (RFs). RFs are dominant proteins that target different essential steps of the viral cycle, thereby providing an early line of defense against the virus. The identification and characterization of RFs have provided unique insights into the molecular biology of HIV-1, further revealing the complex host-pathogen interplay that characterizes the infection. The presence of RFs drove viral evolution, forcing the virus to develop specific proteins to counteract their activity. The knowledge of the mechanisms that prevent viral infection and their viral counterparts may offer new insights to improve current antiviral strategies. This review provides an overview of the RFs targeting HIV-1 replication and the mechanisms that regulate their expression as well as their impact on viral replication and the clinical course of the disease.

Keywords: HIV-1, immune response, restriction factors, IFN, RFs, ISGs.

[1]
Wilen CB, Tilton JC, Doms RW. HIV: Cell binding and entry. Cold Spring Harb Perspect Med 2012; 2(8): 1-14.
[2]
Swanstrom R, Coffin J. HIV-1 pathogenesis. The virus 2012; 2(12): a007443.
[3]
Naif HM. Pathogenesis of HIV infection. Infect Dis Rep 2013; 5(Suppl. 1): 26-30.
[4]
Boulougoura A, Sereti I. HIV infection and immune activation: The role of coinfections. Curr Opin HIV AIDS 2016; 11(2): 191-200.
[5]
Borderi M, Angarano G, Antinori A, et al. Managing the long surviving HIV patient: a proposal for a multidimensional first-level diagnostic assessment. New Microbiol 2018; 41(2): 112-7.
[6]
Antinori A, Di Biagio A, Marcotullio S, et al. Italian guidelines for the use of antiretroviral agents and the diagnostic-clinical management of HIV-1 infected persons. Update 2016. New Microbiol 2017; 40(2): 86-98.
[7]
Deeks SG, Lewin SR, Havlir DV. The end of AIDS: HIV infection as a chronic disease. Lancet 2013; 382: 1525-33.
[8]
Romani B, Allahbakhshi E. Underlying mechanisms of HIV-1 latency. Virus Genes 2017; 53(3): 329-39.
[9]
Malim MH, Bieniasz PD. HIV restriction factors and mechanisms of evasion. Cold Spring Harb Perspect Med 2012; 2(5)
[10]
Imran M, Manzoor S, Saalim M, et al. HIV-1 and hijacking of the host immune system: the current scenario. Apmis 2016; 124(10): 817-31.
[11]
Altfeld M, Gale Jr M. Innate immunity against HIV-1 infection. Nat Immunol 2015; 16(6): 554-62.
[12]
Guha D, Ayyavoo V. Innate immune evasion strategies by human immunodeficiency virus type 1. Isrn Aids 2013; 2013: 954806.
[13]
Simon V, Bloch N, Landau NR. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol 2015; 16(6): 546-53.
[14]
Soliman M, Srikrishna G, Balagopal A. Mechanisms of HIV-1 control. Curr HIV/AIDS Rep 2017; 14(3): 101-9.
[15]
Hotter D, Kirchhoff F. Interferons and beyond: induction of antiretroviral restriction factors. J Leukoc Biol 2018; 103(3): 465-77.
[16]
Van Pesch V, Lanaya H, Renauld JC, Michiels T. Characterization of the murine alpha interferon gene family. J Virol 2004; 78(15): 8219-28.
[17]
Raftery N, Stevenson NJ. Advances in anti-viral immune defence: revealing the importance of the IFN JAK/STAT pathway. Cell Mol Life Sci 2017; 74(14): 2525-35.
[18]
Antonucci JM, Gelais CS, Wu L. The dynamic interplay between HIV-1, SAMHD1, and the innate antiviral response. Front Immunol 2017; 8: 1-9.
[19]
Jin C, Li J, Cheng L, Liu F, Wu N. Gp120 binding with DC-SIGN induces reactivation of HIV-1 provirus via the NF-κB signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2015; 48(3): 275-81.
[20]
Maartens G, Celum C, Lewin SR. HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet 2014; 384(9939): 258-71.
[21]
Schoenborn JR, Wilson CB. Regulation of interferon-γ during innate and adaptive immune responses. Adv Immunol 2007; 96: 41-101.
[22]
Krapp C, Hotter D, Gawanbacht A, et al. guanylate binding protein (gbp) 5 is an interferon-inducible inhibitor of hiv-1 infectivity. Cell Host Microbe 2016; 19(4): 504-14.
[23]
Wack A, Terczyńska-Dyla E, Hartmann R. Guarding the frontiers: The biology of type III interferons. Nat Immunol 2015; 16: 802-9.
[24]
Hou W, Wang X, Ye L, et al. Lambda interferon inhibits human immunodeficiency virus type 1 infection of macrophages. J Virol 2009; 83(8): 3834-42.
[25]
Noël N, Jacquelin B, Huot N, Goujard C, Lambotte O, Müller-Trutwin M. Interferon-associated therapies toward HIV control: the back and forth. Cytokine Growth Factor Rev 2018; 40: 99-112.
[26]
Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 2015; 14(1): 36-49.
[27]
Sauter D, Kirchhoff F. HIV replication: a game of hide and sense. Curr Opin HIV AIDS 2016; 11(2): 173-81.
[28]
Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded rna via toll-like receptor 7 and 8. Science 2004; 303(5663): 1526-9.
[29]
Bauer S, Kirschning CJ, Hacker H, et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 2001; 98(16): 9237-42.
[30]
Beignon AS, McKenna K, Skoberne M, et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest 2005; 115(11): 3265-75.
[31]
Solis M, Nakhaei P, Jalalirad M, et al. RIG-I-mediated antiviral signaling is inhibited in HIV-1 infection by a protease-mediated sequestration of RIG-I. J Virol 2011; 85(3): 1224-36.
[32]
Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. Pattern recognition receptors and the innate immune responde to viral infection. Viruses 2011; 3(6): 920-40.
[33]
Thompson MR, Sharma S, Atianand M, et al. Interferon gamma inducible protein (ifi)16 transcriptionally regulates type I interferons and other interferon stimulated genes and controls the interferon response to both DNA and rna viruses. J Biol Chem 2014; 23568-82.
[34]
Paludan SR. Activation and regulation of dna-driven immune responses. Microbiol Mol Biol Rev 2015; 79(2): 225-41.
[35]
Khiar S, Lucas-Hourani M, Nisole S, et al. Identification of a small molecule that primes the type i interferon response to cytosolic DNA. Sci Rep 2017; 7(1): 2561.
[36]
Luecke S, Holleufer A, Christensen MH, et al. cGAS is activated by DNA in a length‐dependent manner. EMBO Rep 2017; e201744017.
[37]
Zhang X, Shi H, Wu J, et al. Cyclic GMP-AMP containing mixed Phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 2013; 51(2): 226-35.
[38]
Monroe KM, Yang Z, Johnson JR, et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 2014; 343(6169): 428-32.
[39]
Orzalli MH, DeLuca NA, Knipe DM. Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci USA 2012; 109(44): E3008-17.
[40]
Holmes M, Zhang F, Bieniasz PD. Single-cell and single-cycle analysis of HIV-1 replication. PLoS Pathog 2015; 11(6): e1004961.
[41]
Oladipo EK. AE. Pathogenesis of HIV : pathway to eradication. Adv Appl Sci Res 2015; 6(5): 81-7.
[42]
Craigie R, Bushman FD. HIV DNA integration. Cold Spring Harb Perspect Med 2012; 2(7): a006890.
[43]
Li G, De Clercq E. HIV genome-wide protein associations: a review of 30 years of research. Microbiol Mol Biol Rev 2016; 80(3): 679-731.
[44]
Bracq L, Xie M, Benichou S, Bouchet J. Mechanisms for cell-to-cell transmission of HIV-1. Front Immunol 2018; 9: 260.
[45]
Dong C, Janas AM, Wang J-H, Olson WJ, Wu L. Characterization of human immunodeficiency virus type 1 replication in immature and mature dendritic cells reveals dissociable cis- and trans-infection. J Virol 2007; 81(20): 11352-62.
[46]
Arrighi J-F, Pion M, Garcia E, et al. DC-SIGN-mediated infectious synapse formation enhances x4 hiv-1 transmission from dendritic cells to t cells. J Exp Med 2004; 200(10): 1279-88.
[47]
Ambrose Z, Aiken C. HIV-1 uncoating: Connection to nuclear entry and regulation by host proteins. Virology 2014; 454-455: 371-9.
[48]
Forshey BM, von Schwedler U, Sundquist WI, Aiken C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 2002; 76(11): 5667-77.
[49]
Burdick RC, Delviks-Frankenberry KA, Chen J, et al. Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes. PLoS Pathog 2017; 13(8): e1006570.
[50]
Cosnefroy O, Murray PJ, Bishop KN. HIV-1 capsid uncoating initiates after the first strand transfer of reverse transcription. Retrovirology 2016; 13(1): 1-17.
[51]
Francis AC, Marin M, Shi J, Aiken C, Melikyan GB. Time-resolved imaging of single hiv-1 uncoating in vitro and in living cells. PLoS Pathog 2016; 12(6): e1005709.
[52]
Aiken C. Viral and cellular factors that regulate HIV-1 uncoating. Curr Opin HIV AIDS 2006; 1(3): 194-9.
[53]
Campbell EM, Hope TJ. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat Rev Microbiol 2015; 13(8): 471-83.
[54]
Hulme AE, Kelley Z, Foley D, Hope TJ. Complementary assays reveal a low level of ca associated with viral complexes in the nuclei of hiv-1-infected cells. J Virol 2015; 89(10): 5350-61.
[55]
Arhel N. Revisiting HIV-1 uncoating. Retrovirology 2010; 7: 96.
[56]
Le Sage V, Mouland AJ, Valiente-Echeverría F. Roles of HIV-1 capsid in viral replication and immune evasion. Virus Res 2014; 193: 116-29.
[57]
Celerino da Silva R, Coelho AVC, Arraes LC, Brandão LAC, Crovella S, Guimarães RL. TRIM5 gene polymorphisms in HIV-1-infected patients and healthy controls from Northeastern Brazil. Immunol Res 2016; 64(5-6): 1237-42.
[58]
Hulme AE, Perez O, Hope TJ. Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. Proc Natl Acad Sci USA 2011; 108(24): 9975-80.
[59]
Bai R, Zhang XJ, Li YL, et al. SJP-L-5, a novel small-molecule compound, inhibits HIV-1 infection by blocking viral DNA nuclear entry. BMC Microbiol 2015; 15: 274.
[60]
Zhang X-J, Wang R-R, Chen H, et al. SJP-L-5 inhibits HIV-1 polypurine tract primed plus-strand DNA elongation, indicating viral DNA synthesis initiation at multiple sites under drug pressure. Sci Rep 2018; 8(1): 2574.
[61]
Pawlica P, Berthoux L. Cytoplasmic dynein promotes HIV-1 uncoating. Viruses 2014; 6(11): 4195-211.
[62]
Pawlica P, Dufour C, Berthoux L. Inhibition of microtubules and dynein rescues human immunodeficiency virus type 1 from owl monkey TRIMCyp-mediated restriction in a cellular context-specific fashion. J Gen Virol 2015; 96(4): 874-86.
[63]
Malikov V, Naghavi MH. Localized phosphorylation of a kinesin-1 adaptor by a capsid-associated kinase regulates hiv-1 motility and uncoating. Cell Reports 2017; 20(12): 2792-9.
[64]
Mamede JI, Cianci GC, Anderson MR, Hope TJ. Early cytoplasmic uncoating is associated with infectivity of HIV-1. Proc Natl Acad Sci USA 2017; 114(34): E7169-78.
[65]
Brass AL, Huang I-C, Benita Y, et al. The ifitm proteins mediate cellular resistance to influenza a h1n1 virus, west nile virus, and dengue virus. Cell 2009; 139(7): 1243-54.
[66]
Huang IC, Bailey CC, Weyer JL, et al. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog 2011; 7(1): e1001258.
[67]
Lu J, Pan Q, Rong L, Liu S-L, Liang C. The IFITM proteins inhibit hiv-1 infection. J Virol 2011; 85(5): 2126-37.
[68]
Siegrist F, Ebeling M, Certa U. The Small interferon-induced transmembrane genes and proteins. J Interferon Cytokine Res 2011; 31(1): 183-97.
[69]
Jia X, Singh R, Homann S, Yang H, Guatelli J, Xiong Y. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef. Nat Struct Mol Biol 2012; 19(7): 701-6.
[70]
Bailey CC, Kondur HR, Huang I-C, Farzan M. Interferon-induced transmembrane protein 3 is a type II transmembrane protein. J Biol Chem 2013; 288(45): 32184-93.
[71]
Li K, Markosyan RM, Zheng YM, et al. IFITM proteins restrict viral membrane hemifusion. PLoS Pathog 2013; 9(1): e1003124.
[72]
Chernomordik LV, Frolov VA, Leikina E, Bronk P, Zimmerberg J. The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J Cell Biol 1998; 140(6): 1369-82.
[73]
Amini-Bavil-Olyaee S, Choi YJ, Lee JH, et al. The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry. Cell Host Microbe 2013; 13(4): 452-64.
[74]
Desai TM, Marin M, Chin CR, Savidis G, Brass AL, Melikyan GB. IFITM3 restricts influenza a virus entry by blocking the formation of fusion pores following virus-endosome hemifusion. PLoS Pathog 2014; 10(4): e1004048.
[75]
Foster TL, Pickering S, Neil SJD. Inhibiting the Ins and Outs of HIV replication: Cell-intrinsic antiretroviral restrictions at the plasma membrane. Front Immunol 2017; 8: 1853.
[76]
Tartour K, Appourchaux R, Gaillard J, et al. IFITM proteins are incorporated onto HIV-1 virion particles and negatively imprint their infectivity. Retrovirology 2014; 11(1): 103.
[77]
Yu J, Li M, Wilkins J, et al. IFITM proteins restrict hiv-1 infection by antagonizing the envelope glycoprotein. Cell Reports 2015; 13(1): 145-56.
[78]
Fu B, Wang L, Li S, Dorf ME. ZMPSTE24 defends against influenza and other pathogenic viruses. J Exp Med 2017; 214(4): 919-29.
[79]
Shi G, Schwartz O, Compton AA. More than meets the I: the diverse antiviral and cellular functions of interferon-induced transmembrane proteins. Retrovirology 2017; 14(1): 53.
[80]
Tartour K, Nguyen XN, Appourchaux R, et al. Interference with the production of infectious viral particles and bimodal inhibition of replication are broadly conserved antiviral properties of IFITMs. PLoS Pathog 2017; 13(9): e1006610.
[81]
Compton AA, Bruel T, Porrot F, et al. IFITM proteins incorporated into HIV-1 virions impair viral fusion and spread. Cell Host Microbe 2014; 16(6): 736-47.
[82]
Foster TL, Wilson H, Iyer SS, et al. Resistance of transmitted founder hiv-1 to ifitm-mediated restriction. Cell Host Microbe 2016; 20(4): 429-42.
[83]
Wang Y, Pan Q, Ding S, et al. The V3-loop of HIV-1 Env determines viral susceptibility to IFITM3 impairment of viral infectivity. J Virol 2017; 91(7): pii: e02441-.
[84]
Wu WL, Grotefend CR, Tsai M-T, et al. Δ20 IFITM2 differentially restricts X4 and R5 HIV-1. Proc Natl Acad Sci 2017; 114(27): 7112-7.
[85]
Inuzuka M, Hayakawa M, Ingi T. Serine, an activity-regulated protein family, incorporates serine into membrane lipid synthesis. J Biol Chem 2005; 280(42): 35776-83.
[86]
Usami Y, Wu Y, Göttlinger HG. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef. Nature 2015; 526(7572): 218-23.
[87]
Rosa A, Chande A, Ziglio S, et al. HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature 2015; 526(7572): 212-7.
[88]
Aiken C. HIV: Antiviral action countered by Nef. Nature 2015; 526: 202-3.
[89]
Sood C, Marin M, Chande A, Pizzato M, Melikyan GB. SERINC5 protein inhibits HIV-1 fusion pore formation by promoting functional inactivation of envelope glycoproteins. J Biol Chem 2017; 292(14): 6014-26.
[90]
Beitari S, Ding S, Pan Q, Finzi A, Liang C. Effect of HIV-1 Env on SERINC5 Antagonism. J Virol 2017; 91(4): e02214-6.
[91]
Schulte B, Selyutina A, Opp S, et al. Localization to detergent-resistant membranes and HIV-1 core entry inhibition correlate with HIV-1 restriction by SERINC5. Virology 2018; 515: 52-65.
[92]
Trautz B, Wiedemann H, Lüchtenborg C, et al. The host-cell restriction factor SERINC5 restricts HIV-1 infectivity without altering the lipid composition and organization of viral particles. J Biol Chem 2017; 292(33): 13702-13.
[93]
Park K, Scott AL. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons. J Leukoc Biol 2010; 88(6): 1081-7.
[94]
Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang G, Russell DW. 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proc Natl Acad Sci USA 2009; 106(39): 16764-9.
[95]
Liu SY, Aliyari R, Chikere K, et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity 2013; 38(1): 92-105.
[96]
Trabattoni D, Gnudi F, Ibba SV, et al. Thiazolides elicit anti-viral innate immunity and reduce hiv replication. Sci Rep 2016; 6: 27148.
[97]
Li C, Deng YQ, Wang S, et al. 25-Hydroxycholesterol protects host against zika virus infection and its associated microcephaly in a mouse model. Immunity 2017; 46(3): 446-56.
[98]
Chen Y, Wang S, Yi Z, et al. Interferon-inducible cholesterol-25-hydroxylase inhibits hepatitis C virus replication via distinct mechanisms. Sci Rep 2014; 4: 7242.
[99]
Gomes B, Gonçalves S, Disalvo A, Hollmann A, Santos NC. Effect of 25-hydroxycholesterol in viral membrane fusion: Insights on HIV inhibition. Biochim Biophys Acta - Biomembr 2018; 1860(5): 1171-8.
[100]
Cowan S, Hatziioannou T, Cunningham T, Muesing MA, Gottlinger HG, Bieniasz PD. Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc Natl Acad Sci USA 2002; 99(18): 11914-9.
[101]
Pryciak PM, Varmus HE. Fv-1 restriction and its effects on murine leukemia virus integration in vivo and in vitro. J Virol 1992; 66(10): 5959-66.
[102]
Besnier C, Takeuchi Y, Towers G. Restriction of lentivirus in monkeys. Proc Natl Acad Sci USA 2002; 99(18): 11920-5.
[103]
Bieniasz PD. Restriction factors: a defense against retroviral infection. Trends Microbiol 2003; 11(6): 286-91.
[104]
Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004; 427(6977): 848-53.
[105]
Hatziioannou T, Perez-Caballero D, Yang A, Cowan S, Bieniasz PD. Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. Proc Natl Acad Sci USA 2004; 101(29): 10774-9.
[106]
Keckesova Z, Ylinen LMJ, Towers GJ. The human and African green monkey TRIM5 genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci USA 2004; 101(29): 10780-5.
[107]
Perron MJ, Stremlau M, Song B, Ulm W, Mulligan RC, Sodroski J. TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc Natl Acad Sci USA 2004; 101(32): 11827-32.
[108]
Yap MW, Nisole S, Lynch C, Stoye JP. Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci USA 2004; 101(29): 10786-91.
[109]
Johnson WE, Sawyer SL. Molecular evolution of the antiretroviral TRIM5 gene. Immunogenetics 2009; 61(3): 163-76.
[110]
Jia X, Zhao Q, Xiong Y. HIV suppression by host restriction factors and viral immune evasion. Curr Opin Struct Biol 2015; 31: 106-14.
[111]
Grütter MG, Luban J. TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Curr Opin Virol 2012; 2(2): 142-50.
[112]
Pertel T, Hausmann S, Morger D, et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 2011; 472(7343): 361-5.
[113]
Li YL, Chandrasekaran V, Carter SD, et al. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. eLife 2016; 5: pii: e16269.
[114]
Yang Y, Brandariz-Nuñez A, Fricke T, Ivanov DN, Sarnak Z, Diaz-Griffero F. Binding of the rhesus TRIM5α PRYSPRY domain to capsid is necessary but not sufficient for HIV-1 restriction. Virology 2014; 448: 217-28.
[115]
Ganser-Pornillos BK, Chandrasekaran V, Pornillos O, Sodroski JG, Sundquist WI, Yeager M. Hexagonal assembly of a restricting TRIM5 protein. Proc Natl Acad Sci USA 2011; 108(2): 534-9.
[116]
Roganowicz MD, Komurlu S, Mukherjee S, et al. TRIM5α SPRY/coiled-coil interactions optimize avid retroviral capsid recognition. PLoS Pathog 2017; 13(10): 121.
[117]
Goldstone DC, Walker PA, Calder LJ, et al. Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice. Proc Natl Acad Sci USA 2014; 111(26): 9609-14.
[118]
Zhao G, Ke D, Vu T, et al. Rhesus TRIM5α disrupts the HIV-1 capsid at the inter-hexamer interfaces. PLoS Pathog 2011; 7(3): e1002009.
[119]
Morger D, Zosel F, Bühlmann M, et al. The three-fold axis of the HIV-1 capsid lattice is the species-specific binding interface for TRIM5α. J Virol 2017; 92(5): pii: e01541-.
[120]
Schaller T, Ocwieja KE, Rasaiyaah J, et al. HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog 2011; 7(12)
[121]
Wagner JM, Christensen DE, Bhattacharya A, et al. A general model for retroviral capsid pattern recognition by TRIM5 proteins. J Virol 2018; 92(4): pii: e01563-.
[122]
Nakayama EE, Miyoshi H, Nagai Y, Shioda T. A specific region of 37 amino acid residues in the SPRY (B30.2) domain of African green monkey TRIM5alpha determines species-specific restriction of simian immunodeficiency virus SIVmac infection. J Virol 2005; 79(14): 8870-7.
[123]
Towers G, Bock M, Martin S, Takeuchi Y, Stoye JP, Danos O. A conserved mechanism of retrovirus restriction in mammals. Proc Natl Acad Sci USA 2000; 97(22): 12295-9.
[124]
Hatziioannou T, Princiotta M, Piatak M, et al. Generation of simian-tropic HIV-1 by restriction factor evasion. Science (80- ) 2006; 314(5796): 95.
[125]
Hatziioannou T, Cowan S, Goff SP, Bieniasz PD, Towers GJ. Restriction of multiple divergent retroviruses by Lv1 and Ref1. EMBO J 2003; 22(3): 385-94.
[126]
Yap MW, Nisole S, Stoye JP. A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol 2005; 15(1): 73-8.
[127]
Li Y, Li X, Stremlau M, Lee M, Sodroski J. Removal of arginine 332 allows human trim5 to bind human immunodeficiency virus capsids and to restrict infection. J Virol 2006; 80(14): 6738-44.
[128]
Biris N, Tomashevski A, Bhattacharya A, Diaz-Griffero F, Ivanov DN. Rhesus monkey TRIM5α SPRY domain recognizes multiple epitopes that span several capsid monomers on the surface of the HIV-1 mature viral core. J Mol Biol 2013; 425(24): 5032-44.
[129]
Yang H, Ji X, Zhao G, et al. Structural insight into HIV-1 capsid recognition by rhesus TRIM5. Proc Natl Acad Sci USA 2012; 109(45): 18372-7.
[130]
Rahm N, Gfeller D, Snoeck J, et al. Susceptibility and adaptation to human TRIM5α alleles at positive selected sites in HIV-1 capsid. Virology 2013; 441(2): 162-70.
[131]
Roa A, Hayashi F, Yang Y, et al. RING domain mutations uncouple trim5 restriction of hiv-1 from inhibition of reverse transcription and acceleration of uncoating. J Virol 2012; 86(3): 1717-27.
[132]
Kutluay SB, Perez-Caballero D, Bieniasz PD. Fates of retroviral core components during unrestricted and TRIM5-restricted infection. PLoS Pathog 2013; 9(3)
[133]
Anderson JL, Campbell EM, Wu X, Vandegraaff N, Engelman A, Hope TJ. Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse trim5 proteins. J Virol 2006; 80(19): 9754-60.
[134]
O’Connor C, Pertel T, Gray S, et al. p62/Sequestosome-1 associates with and sustains the expression of retroviral restriction factor trim5. J Virol 2010; 84(12): 5997-6006.
[135]
Imam S, Talley S, Nelson RS, et al. TRIM5α degradation via autophagy is not required for retroviral restriction. J Virol 2016; 90(7): 3400-10.
[136]
Ribeiro CMS, Sarrami-Forooshani R, Setiawan LC, et al. Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets. Nature 2016; 540(7633): 448-52.
[137]
Nepveu-Traversy MÉ, Berthoux L. The conserved sumoylation consensus site in TRIM5α modulates its immune activation functions. Virus Res 2014; 184: 30-8.
[138]
Dutrieux J, Portilho DM, Arhel NJ, Hazan U, Nisole S. TRIM5α is a SUMO substrate. Retrovirology 2015; 12: 28.
[139]
Portilho DM, Fernandez J, Ringeard M, et al. Endogenous TRIM5α function is regulated by sumoylation and nuclear sequestration for efficient innate sensing in dendritic cells. Cell Reports 2016; 14(2): 355-69.
[140]
Raposo RAS, Abdel-Mohsen M, Bilska M, Montefiori DC, Nixon DF, Pillai SK. Effects of cellular activation on anti-HIV-1 restriction factor expression profile in primary cells. J Virol 2013; 87(21): 11924-9.
[141]
Yuan T, Yao W, Tokunaga K, Yang R, Sun B. An HIV-1 capsid binding protein TRIM11 accelerates viral uncoating. Retrovirology 2016; 13(1)
[142]
Hu W-S, Hughes SH. HIV-1 Reverse transcription. Cold Spring Harb Perspect Med 2012; 2(10): a006882.
[143]
Freed EO. HIV-1 replication. Somat Cell Mol Genet 2001; 26(1-6): 13-33.
[144]
Hughes SH. Reverse transcription of retroviruses and ltr retrotransposons. Microbiol Spectr 2015; 3(2)
[145]
Liu R, Wu J, Shao R, Xue Y. Mechanism and factors that control HIV-1 transcription and latency activation. J Zhejiang Univ Sci B 2014; 15(5): 455-65.
[146]
Abram ME, Ferris AL, Das K, et al. Mutations in HIV-1 reverse transcriptase affect the errors made in a single cycle of viral replication. J Virol 2014; 88(13): 7589-601.
[147]
Menéndez-Arias L. Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses 2009; 1: 1137-65.
[148]
Smyth RP, Davenport MP, Mak J. The origin of genetic diversity in HIV-1. Virus Res 2012; 169(2): 415-29.
[149]
Svarovskaia ES, Cheslock SR, Zhang W-H, Hu W-S, Pathak VK. Retroviral mutation rates and reverse transcriptase fidelity. Front Biosci 2003; 8: d117-34.
[150]
Tekeste SS, Wilkinson TA, Weiner EM, et al. Interaction between reverse transcriptase and integrase is required for reverse transcription during hiv-1 replication. J Virol 2015; 89(23): 12058-69.
[151]
Goldstone DC, Ennis-Adeniran V, Hedden JJ, et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 2011; 480(7377): 379-82.
[152]
Buzovetsky O, Tang C, Knecht KM, et al. The SAM domain of mouse SAMHD1 is critical for its activation and regulation. Nat Commun 2018; 9(1): 411.
[153]
Yan J, Kaur S, DeLucia M, et al. Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection. J Biol Chem 2013; 288(15): 10406-17.
[154]
Kretschmer S, Wolf C, König N, et al. SAMHD1 prevents autoimmunity by maintaining genome stability. Ann Rheum Dis 2015; 74(3)
[155]
Fu W, Qiu C, Zhou M, et al. Immune activation influences samhd1 expression and vpx-mediated samhd1 degradation during chronic hiv-1 infection. Sci Rep 2016; 6: 38162.
[156]
Czubala MA, Finsterbusch K, Ivory MO, et al. TGFβ induces a samhd1-independent post-entry restriction to hiv-1 infection of human epithelial langerhans cells. J Invest Dermatol 2016; 136(10): 1981-9.
[157]
Ordonez P, Kunzelmann S, Groom HCT, et al. SAMHD1 enhances nucleoside-analogue efficacy against HIV-1 in myeloid cells. Sci Rep 2017; 7: 42824.
[158]
Jáuregui P, Landau NR. DNA damage induces a SAMHD1- mediated block to the infection of macrophages by HIV-1. Sci Rep 2018; 8: 4153.
[159]
Valle-Casuso JC, Allouch A, David A, et al. p21 restricts HIV-1 in monocyte-derived dendritic cells through the reduction of dNTP biosynthesis and regulation of SAMHD1 antiviral activity. J Virol 2017; 91(23): pii: e01324-.
[160]
Bonifati S, Daly MB, St. Gelais C, et al. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells. Virology 2016; 495: 92-100.
[161]
Pauls E, Ruiz A, Badia R, et al. Cell cycle control and hiv-1 susceptibility are linked by cdk6-dependent cdk2 phosphorylation of samhd1 in myeloid and lymphoid cells. J Immunol 2014; 193(4): 1988-97.
[162]
Yan J, Hao C, DeLucia M, et al. CyclinA2-Cyclin-dependent kinase regulates SAMHD1 protein phosphohydrolase domain. J Biol Chem 2015; 290(21): 13279-92.
[163]
Yan J, Hao C, DeLucia M, et al. Cyclin A2 - CDK regulates SAMHD1 phosphohydrolase domain. J Biol Chem 2015; 290(21): 13279-92.
[164]
Coiras M, Bermejo M, Descours B, et al. IL-7 induces samhd1 phosphorylation in cd4+ t lymphocytes, improving early steps of hiv-1 life cycle. Cell Reports 2016; 14(9): 2100-7.
[165]
Cribier A, Descours B, Valadão ALC, Laguette N, Benkirane M. Phosphorylation of samhd1 by cyclin a2/cdk1 regulates its restriction activity toward hiv-1. Cell Reports 2013; 3(4): 1036-43.
[166]
Tang C, Ji X, Wu L, Xiong Y. Impaired dNTPase activity of SAMHD1 by phosphomimetic mutation of Thr-592. J Biol Chem 2015; 290(44): 26352-9.
[167]
Bhattacharya A, Wang Z, White T, et al. Effects of T592 phosphomimetic mutations on tetramer stability and dNTPase activity of SAMHD1 can not explain the retroviral restriction defect. Sci Rep 2016; 6.
[168]
White TE, Brandariz-Nuñez A, Valle-Casuso JC, et al. The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 2013; 13(4): 441-51.
[169]
Studdard L, Barré-sinoussi F, Müller-trutwin M, Kim B. crossm Dendritic Cells through the Reduction of Deoxynucleoside Triphosphate Biosynthesis and Regulation of SAMHD1 Antiviral Activity 2017; 91(23): 1-18.
[170]
Ryoo J, Choi J, Oh C, et al. The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 2014; 20(8): 936-41.
[171]
Seamon KJ, Sun Z, Shlyakhtenko LS, Lyubchenko YL, Stivers JT. SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity. Nucleic Acids Res 2015; 43(13): 6486-99.
[172]
Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 2016; 42: 63-71.
[173]
Zhang J, Scadden DT, Crumpacker CS. Primitive hematopoietic cells resist HIV-1 infection via p21 Waf1/Cip1/Sdi1. J Clin Invest 2007; 117(2): 473-81.
[174]
Leng J, Ho HP, Buzon MJ, et al. A cell-intrinsic inhibitor of HIV-1 reverse transcription in CD4 + T cells from elite controllers. Cell Host Microbe 2014; 15(6): 717-28.
[175]
Bergamaschi A, David A, Le Rouzic E, Nisole S, Barré-Sinoussi F, Pancino G. The CDK inhibitor p21Cip1/WAF1 is induced by FcgammaR activation and restricts the replication of human immunodeficiency virus type 1 and related primate lentiviruses in human macrophages. J Virol 2009; 83(23): 12253-65.
[176]
Allouch A, David A, Amie SM, et al. p21-mediated RNR2 repression restricts HIV-1 replication in macrophages by inhibiting dNTP biosynthesis pathway. Proc Natl Acad Sci USA 2013; 110(42): E3997-4006.
[177]
Pauls E, Ruiz A, Riveira-Munoz E, et al. p21 regulates the HIV-1 restriction factor SAMHD1. Proc Natl Acad Sci USA 2014; 111(14): E1322-4.
[178]
Shi B, Sharifi HJ, Digrigoli S, et al. Inhibition of HIV early replication by the p53 and its downstream gene p21. Virol J 2018; 15(1): 1-13.
[179]
Allouch A, David A, Amie SM, et al. Reply to Pauls et al.: p21 is a master regulator of HIV replication in macrophages through dNTP synthesis block. Proc Natl Acad Sci USA 2014; 111(14): E1325-6.
[180]
Harris RS, Dudley JP. APOBECs and virus restriction. Virology 2015; 479-480: 131-45.
[181]
Bogerd HP, Wiegand HL, Hulme AE, et al. Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci USA 2006; 103(23): 8780-5.
[182]
Vartanian JP, Henry M, Marchio A, et al. Massive APOBEC3 editing of hepatitis B viral DNA in cirrhosis. PLoS Pathog 2010; 6(5): 1-9.
[183]
Apolonia L, Schulz R, Curk T, et al. Promiscuous RNA binding ensures effective encapsidation of APOBEC3 proteins by HIV-1. PLoS Pathog 2015; 11(1): 1-22.
[184]
Khan MA, Goila-Gaur R, Kao S, Miyagi E, Walker RC, Strebel K. Encapsidation of APOBEC3G into HIV-1 virions involves lipid raft association and does not correlate with APOBEC3G oligomerization. Retrovirology 2009; 6: 99.
[185]
Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002; 418(6898): 646-50.
[186]
Anderson ER, Hope DA. A review of the tripartite model for understanding the link between anxiety and depression in youth. Clin Psychol Rev 2008; 28: 276-88.
[187]
Sheehy AM, Gaddis NC, Malim MH. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 2003; 9(11): 1404-7.
[188]
Lecossier D, Bouchonnet F, Clavel F, Hance AJ. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science (80- ) 2003; 300(5622): 1112.
[189]
Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 2003; 424(6944): 94-8.
[190]
Suspène R, Sommer P, Henry M, et al. APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res 2004; 32(8): 2421-9.
[191]
Kobayashi T, Koizumi Y, Takeuchi JS, et al. Quantification of deaminase activity-dependent and -independent restriction of hiv-1 replication mediated by apobec3f and apobec3g through experimental-mathematical investigation. J Virol 2014; 88(10): 5881-7.
[192]
Harris RS, Bishop KN, Sheehy AM, et al. DNA deamination mediates innate immunity to retroviral infection. Cell 2003; 113(6): 803-9.
[193]
Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 2003; 424(6944): 99-103.
[194]
Rawson JMO, Landman SR, Reilly CS, Mansky LM. HIV-1 and HIV-2 exhibit similar mutation frequencies and spectra in the absence of G-to-A hypermutation. Retrovirology 2015; 12(1): 60.
[195]
Nowarski R, Prabhu P, Kenig E, Smith Y, Britan-Rosich E, Kotler M. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element. J Mol Biol 2014; 426(15): 2840-53.
[196]
Langlois M-A, Neuberger MS. Human APOBEC3G can restrict retroviral infection in avian cells and acts independently of both UNG and SMUG1. J Virol 2008; 82(9): 4660-4.
[197]
Kaiser SM, Emerman M. Uracil DNA glycosylase is dispensable for human immunodeficiency virus type 1 replication and does not contribute to the antiviral effects of the cytidine deaminase Apobec3G. J Virol 2006; 80(2): 875-82.
[198]
Yang B, Chen K, Zhang C, Huang S, Zhang H. Virion-associated uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in the degradation of APOBEC3G-edited nascent HIV-1 DNA. J Biol Chem 2007; 282(16): 11667-75.
[199]
Pollpeter D, Parsons M, Sobala AE, et al. Deep sequencing of HIV-1 reverse transcripts reveals the multifaceted antiviral functions of APOBEC3G. Nat Microbiol 2018; 3(2): 220-33.
[200]
Guo F, Cen S, Niu M, Yang Y, Gorelick RJ, Kleiman L. The interaction of apobec3g with human immunodeficiency virus type 1 nucleocapsid inhibits trna3lys annealing to viral RNA. J Virol 2007; 81(20): 11322-31.
[201]
Bishop KN, Verma M, Kim EY, Wolinsky SM, Malim MH. APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog 2008; 4(12): e1000231.
[202]
Chaurasiya KR, McCauley MJ, Wang W, et al. Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein. Nat Chem 2014; 6(1): 28-33.
[203]
Gillick K, Pollpeter D, Phalora P, Kim E-Y, Wolinsky SM, Malim MH. Suppression of HIV-1 infection by apobec3 proteins in primary human cd4+ t cells is associated with inhibition of processive reverse transcription as well as excessive cytidine deamination. J Virol 2013; 87(3): 1508-17.
[204]
Newman ENC, Holmes RK, Craig HM, et al. Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol 2005; 15(2): 166-70.
[205]
Holmes RK, Koning FA, Bishop KN, Malim MH. APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation: comparisons with APOBEC3G. J Biol Chem 2007; 282(4): 2587-95.
[206]
Morse M, Huo R, Feng Y, Rouzina I, Chelico L, Williams MC. Dimerization regulates both deaminase-dependent and deaminase-independent HIV-1 restriction by APOBEC3G. Nat Commun 2017; 8(1): 597.
[207]
Wiegand HL, Doehle BP, Bogerd HP, Cullen BR. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J 2004; 23(12): 2451-8.
[208]
Zheng Y-H, Irwin D, Kurosu T, Tokunaga K, Sata T, Peterlin BM. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol 2004; 78(11): 6073-6.
[209]
Ara A, Love RP, Chelico L. Different mutagenic potential of hiv-1 restriction factors apobec3g and apobec3f is determined by distinct single-stranded dna scanning mechanisms. PLoS Pathog 2014; 10(3): e1004024.
[210]
Chaipan C, Smith JL, Hu W-S, Pathak VK. APOBEC3G restricts hiv-1 to a greater extent than apobec3f and apobec3de in human primary cd4+ t cells and macrophages. J Virol 2013; 87(1): 444-53.
[211]
Desimmie BA, Burdick RC, Izumi T, et al. APOBEC3 proteins can copackage and comutate HIV-1 genomes. Nucleic Acids Res 2016; 44(16): 7848-65.
[212]
Ara A, Love RP, Follack TB, Ahmed KA, Adolph MB, Chelico L. Mechanism of enhanced HIV restriction by virion coencapsidated cytidine deaminases APOBEC3F and APOBEC3G. J Virol 2016; 91(3): pii: e02230-.
[213]
Arjan-Odedra S, Swanson CM, Sherer NM, Wolinsky SM, Malim MH. Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses. Retrovirology 2012; 9: 53.
[214]
Goodier JL, Cheung LE, Kazazian HH. MOV10 RNA Helicase Is a Potent Inhibitor of Retrotransposition in Cells. PLoS Genet 2012; 8(10): e1002941.
[215]
Burdick R, Smith JL, Chaipan C, et al. P Body-associated protein Mov10 inhibits HIV-1 replication at multiple stages. J Virol 2010; 84(19): 10241-53.
[216]
Furtak V, Mulky A, Rawlings SA, et al. Perturbation of the P-body component Mov10 inhibits HIV-1 infectivity. PLoS One 2010; 5(2)
[217]
Wang X, Han Y, Dang Y, et al. Moloney leukemia virus 10 (MOV10) protein inhibits retrovirus replication. J Biol Chem 2010; 285(19): 14346-55.
[218]
Chen C, Ma X, Hu Q, et al. Moloney leukemia virus 10 (MOV10) inhibits the degradation of APOBEC3G through interference with the Vif-mediated ubiquitin-proteasome pathway. Retrovirology 2017; 14(1): 56.
[219]
Katz RA, Greger JG, Boimel P, Skalka AM. Human immunodeficiency virus type 1 DNA nuclear import and integration are mitosis independent in cycling cells. J Virol 2003; 77(24): 13412-7.
[220]
Depienne C. Mousnier a, Leh H, et al. Characterization of the nuclear import pathway for HIV-1 integrase. J Biol Chem 2001; 276(21): 18102-7.
[221]
Van Maele B, Busschots K, Vandekerckhove L, Christ F, Debyser Z. Cellular co-factors of HIV-1 integration. Trends Biochem Sci 2006; 31(2): 98-105.
[222]
Debyser Z, Christ F, De Rijck J, Gijsbers R. Host factors for retroviral integration site selection. Trends Biochem Sci 2015; 40: 108-16.
[223]
Ghavami A, Van Der Giessen E, Onck PR. Energetics of transport through the nuclear pore complex. PLoS One 2016; 11(2): e0148876.
[224]
Bukrinsky MI, Sharova N, Dempsey MP, et al. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci USA 1992; 89(14): 6580-4.
[225]
Lee KE, Ambrose Z, Martin TD, et al. Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe 2010; 7(3): 221-33.
[226]
Christ F, Thys W, De Rijck J, et al. Transportin-SR2 Imports HIV into the Nucleus. Curr Biol 2008; 18(16): 1192-202.
[227]
Brass AL, Dykxhoorn DM, Benita Y, et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science (80- ) 2008; 319(5865): 921-6.
[228]
Ocwieja KE, Brady TL, Ronen K, et al. HIV integration targeting: A pathway involving transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog 2011; 7(3): e1001313.
[229]
König R, Zhou Y, Elleder D, et al. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 Replication. Cell 2008; 135(1): 49-60.
[230]
Krishnan L, Matreyek KA, Oztop I, et al. The requirement for cellular transportin 3 (tnpo3 or trn-sr2) during infection maps to human immunodeficiency virus type 1 capsid and not integrase. J Virol 2010; 84(1): 397-406.
[231]
Holman AG, Coffin JM. Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. Proc Natl Acad Sci USA 2005; 102(17): 6103-7.
[232]
Grandgenett DP. Symmetrical recognition of cellular DNA target sequences during retroviral integration. Proc Natl Acad Sci USA 2005; 102(17): 5903-4.
[233]
Hamid F. Bin, Kim J, Shin CG. Distribution and fate of HIV-1 unintegrated DNA species: a comprehensive update. AIDS Res Ther 2017; 14(1): 1-8.
[234]
Sloan RD, Wainberg MA. The role of unintegrated DNA in HIV infection. Retrovirology 2011; 8(1): 52.
[235]
Woodward CL, Prakobwanakit S, Mosessian S, Chow SA. Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1. J Virol 2009; 83(13): 6522-33.
[236]
Di Nunzio F, Fricke T, Miccio A, et al. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication. Virology 2013; 440(1): 8-18.
[237]
Koh Y, Wu X, Ferris AL, et al. Differential effects of human immunodeficiency virus type 1 capsid and cellular factors nucleoporin 153 and ledgf/p75 on the efficiency and specificity of viral dna integration. J Virol 2013; 87(1): 648-58.
[238]
Bhargava A, Lahaye X, Manel N. Let me in: Control of HIV nuclear entry at the nuclear envelope. Cytokine Growth Factor Rev 2018; 40: 59-67.
[239]
Sowd GA, Serrao E, Wang H, et al. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc Natl Acad Sci USA 2016; 113(8): E1054-63.
[240]
Chin CR, Perreira JM, Savidis G, et al. Direct visualization of hiv-1 replication intermediates shows that capsid and cpsf6 modulate hiv-1 intra-nuclear invasion and integration. Cell Reports 2015; 13(8): 1717-31.
[241]
Rasheedi S, Shun MC, Serrao E, et al. The Cleavage and polyadenylation specificity factor 6 (CPSF6) subunit of the capsid-recruited pre-messenger RNA cleavage factor I (CFIm) complex mediates HIV-1 integration into genes. J Biol Chem 2016; 291(22): 11809-19.
[242]
Rennie ML, McKelvie SA, Bulloch EMM, Kingston RL. Transient dimerization of human MxA promotes GTP hydrolysis, resulting in a mechanical power stroke. Structure 2014; 22(10): 1433-45.
[243]
Haller O, Staeheli P, Schwemmle M, Kochs G. Mx GTPases: Dynamin-like antiviral machines of innate immunity. Trends Microbiol 2015; 23: 154-63.
[244]
Wang X, Wang H, Liu MQ, et al. IFN-λ inhibits drug-resistant HIV infection of macrophages. Front Immunol 2017; 8: 210.
[245]
Kane M, Yadav SS, Bitzegeio J, et al. MX2 is an interferoninduced inhibitor of HIV-1 infection. Nature 2013; 502(7472): 563- 6.
[246]
Goujon C, Moncorgé O, Bauby H, et al. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 2013; 502(7472): 559-62.
[247]
schulte b, buffone c, opp s, et al. restriction of hiv-1 requires the nterminal region of mxb as a capsid-binding motif but not as a nuclear localization signal. J Virol 2015; 89(16): 8599-610.
[248]
Liu Z, Pan Q, Ding S, et al. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 2013; 14(4): 398-410.
[249]
Dicks MDJ, Goujon C, Pollpeter D, et al. Oligomerization requirements for MX2 mediated suppression of HIV-1 infection. J Virol 2015; 90(1): 22-32.
[250]
Fricke T, White TE, Schulte B, et al. MxB binds to the HIV-1 core and prevents the uncoating process of HIV-1. Retrovirology 2014; 11(1): 68.
[251]
Buffone C, Schulte B, Opp S, Diaz-Griffero F. Contribution of MxB oligomerization to hiv-1 capsid binding and restriction. J Virol 2015; 89(6): 3285-94.
[252]
Alvarez FJD, He S, Perilla JR, et al. CryoEM structure of MxB reveals a novel oligomerization interface critical for HIV restriction. Sci Adv 2017; 3(9): e1701264.
[253]
Matreyek KA, Wang W, Serrao E, Singh KP, Levin HL, Engelman A. Host and viral determinants for MxB restriction of HIV-1 infection. Retrovirology 2014; 11(1): 90.
[254]
Cammas F, Herzog M, Lerouge T, Chambon P, Losson R. Association of the transcriptional corepressor TIF1beta with heterochromatin protein 1 (HP1): an essential role for progression through differentiation. Genes Dev 2004; 18(17): 2147-60.
[255]
Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev 2009; 23(7): 837-48.
[256]
Iyengar S, Farnham PJ. KAP1 protein: An enigmatic master regulator of the genome. J Biol Chem 2011; 286: 26267-76.
[257]
Ivanov AV, Peng H, Yurchenko V, et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell 2007; 28(5): 823-37.
[258]
Lechner MS, Begg GE, Speicher DW, Rauscher FJ. Molecular determinants for targeting heterochromatin protein 1-mediated gene silencing: direct chromoshadow domain-kap-1 corepressor interaction is essential. Mol Cell Biol 2000; 20(17): 6449-65.
[259]
Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell 2007; 131(1): 46-57.
[260]
Fasching L, Kapopoulou A, Sachdeva R, et al. TRIM28 represses transcription of endogenous retroviruses in neural progenitor cells. Cell Reports 2015; 10(1): 20-8.
[261]
Suzuki Y, Chew ML, Suzuki Y. Role of host-encoded proteins in restriction of retroviral integration. Front Microbiol 2012; 3: 227.
[262]
Allouch A, Di Primio C, Alpi E, et al. The TRIM family protein KAP1 inhibits HIV-1 integration. Cell Host Microbe 2011; 9(6): 484-95.
[263]
Cereseto A, Manganaro L, Gutierrez MI, et al. Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J 2005; 24(17): 3070-81.
[264]
Guerrero S, Batisse J, Libre C, Bernacchi S, Marquet R, Paillart JC. Hiv-1 replication and the cellular eukaryotic translation apparatus. Viruses 2015; 7: 199-218.
[265]
Kharytonchyk S, Monti S, Smaldino PJ, et al. Transcriptional start site heterogeneity modulates the structure and function of the HIV-1 genome. Proc Natl Acad Sci USA 2016; 113(47): 13378-83.
[266]
Sunshine S, Kirchner R, Amr SS, et al. HIV integration site analysis of cellular models of hiv latency with a probe-enriched next-generation sequencing assay. J Virol 2016; 90(9): 4511-9.
[267]
Sherrill-Mix S, Lewinski MK, Famiglietti M, et al. HIV latency and integration site placement in five cell-based models. Retrovirology 2013; 10(1): 90.
[268]
Elleder D, Pavlíček A, Pačes J, Hejnar J. Preferential integration of human immunodeficiency virus type 1 into genes, cytogenetic R bands and GC-rich DNA regions: Insight from the human genome sequence. FEBS Lett 2002; 517: 285-6.
[269]
Mitchell RS, Beitzel BF, Schroder ARW, et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2004; 2(8): E234.
[270]
Ho YC, Shan L, Hosmane NN, et al. XReplication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 2013; 155(3): 540-51.
[271]
Schröder ARW, Shinn P, Chen H, et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110(4): 521-9.
[272]
Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD. HIV integration site selection: Analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 2007; 17(8): 1186-94.
[273]
Cohn LB, Silva IT, Oliveira TY, et al. HIV-1 integration landscape during latent and active infection. Cell 2015; 160(3): 420-32.
[274]
Shan L, Yang H-C, Rabi SA, et al. Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. J Virol 2011; 85(11): 5384-93.
[275]
Lenasi T, Contreras X, Peterlin BM. Transcriptional interference antagonizes proviral gene expression to promote hiv latency. Cell Host Microbe 2008; 4(2): 123-33.
[276]
Han Y, Lin YB, An W, et al. Orientation-dependent regulation of integrated hiv-1 expression by host gene transcriptional readthrough. Cell Host Microbe 2008; 4(2): 134-46.
[277]
Barton K, Winckelmann A, Palmer S. HIV-1 Reservoirs During Suppressive Therapy. Trends Microbiol 2016; 24: 345-55.
[278]
Razooky BS, Pai A, Aull K, Rouzine IM, Weinberger LS. A hardwired HIV latency program. Cell 2015; 160(5): 990-1001.
[279]
Chavez L, Calvanese V, Verdin E. HIV latency is established directly and early in both resting and activated primary cd4 t cells. PLoS Pathog 2015; 11(6): e1004955.
[280]
Pereira LA, Bentley K, Peeters A, Churchill MJ, Deacon NJ. A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res 2000; 28(3): 663-8.
[281]
Clark L, Matthews J. Interaction of enhancer-binding protein EBP1 (NF-kappa B) with the human immunodeficiency virus type 1 enhancer. J Virol 1990; 64(3): 1335-44.
[282]
Canonne-Hergaux F, Aunis D, Schaeffer E. Interactions of the transcription factor AP-1 with the long terminal repeat of different human immunodeficiency virus type 1 strains in Jurkat, glial, and neuronal cells. J Virol 1995; 69(11): 6634-42.
[283]
Coiras M, López-Huertas MR, Rullas J, Mittelbrunn M, Alcamí J. Basal shuttle of NF-κB/IκBα in resting T lymphocytes regulates HIV-1 LTR dependent expression. Retrovirology 2007; 4: 56.
[284]
Chomont N, El-Far M, Ancuta P, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 2009; 15(8): 893-900.
[285]
Siliciano JD, Kajdas J, Finzi D, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+T cells. Nat Med 2003; 9(6): 727-8.
[286]
Pan X, Baldauf HM, Keppler OT, Fackler OT. Restrictions to HIV-1 replication in resting CD4 + T lymphocytes. Cell Res 2013; 23: 876-85.
[287]
Siliciano RF, Greene WC. HIV latency. Cold Spring Harb Perspect Med 2011; 1(1): a007096.
[288]
Donahue DA, Wainberg MA. Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology 2013; 10: 11.
[289]
Forlani G, Accolla RS. Tripartite motif 22 and class II transactivator restriction factors: Unveiling their concerted action against retroviruses. Front Immunol 2017; 8: 1362.
[290]
Singh R, Gaiha G, Werner L, et al. Association of TRIM22 with the type 1 interferon response and viral control during primary hiv-1 infection. J Virol 2011; 85(1): 208-16.
[291]
Kajaste-Rudnitski A, Marelli SS, Pultrone C, et al. TRIM22 inhibits HIV-1 transcription independently of its E3 ubiquitin ligase activity, Tat, and NF-kappaB-responsive long terminal repeat elements. J Virol 2011; 85(10): 5183-96.
[292]
Herr AM, Dressel R, Walter L. Different subcellular localisations of TRIM22 suggest species-specific function. Immunogenetics 2009; 61(4): 271-80.
[293]
Turrini F, Marelli S, Kajaste-Rudnitski A, et al. HIV-1 transcriptional silencing caused by TRIM22 inhibition of Sp1 binding to the viral promoter. Retrovirology 2015; 12: 104.
[294]
Gao G, Guo X, Goff SP. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 2002; 297(5587): 1703-6.
[295]
Muller S, Moller P, Bick MJ, et al. Inhibition of filovirus replication by the zinc finger antiviral protein. J Virol 2007; 81(5): 2391-400.
[296]
Mao R, Nie H, Cai D, et al. Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog 2013; 9(7): e1003494.
[297]
Bick MJ, Carroll J-WN, Gao G, Goff SP, Rice CM, MacDonald MR. Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J Virol 2003; 77(21): 11555-62.
[298]
Zhu Y, Wang X, Goff SP, Gao G. Translational repression precedes and is required for ZAP-mediated mRNA decay. EMBO J 2012; 31(21): 4236-46.
[299]
Zhu Y, Chen G, Lv F, et al. Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci USA 2011; 108(38): 15834-9.
[300]
Guo X, Carroll J-WN, Macdonald MR, Goff SP, Gao G. The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J Virol 2004; 78(23): 12781-7.
[301]
Guo X, Ma J, Sun J, Gao G. The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci USA 2007; 104(1): 151-6.
[302]
Chen G, Guo X, Lv F, Xu Y, Gao G. p72 DEAD box RNA helicase is required for optimal function of the zinc-finger antiviral protein. Proc Natl Acad Sci USA 2008; 105(11): 4352-7.
[303]
Erazo A, Goff SP. Nuclear matrix protein Matrin 3 is a regulator of ZAP-mediated retroviral restriction. Retrovirology 2015; 12(1): 57.
[304]
Yedavalli VSRK, Jeang KT. Matrin 3 is a co-factor for HIV-1 Rev in regulating post-transcriptional viral gene expression. Retrovirology 2011; 8: 61.
[305]
Li M, Kao E, Gao X, et al. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature 2012; 491(7422): 125-8.
[306]
Van Weringh A, Ragonnet-Cronin M, Pranckeviciene E, Pavon-Eternod M, Kleiman L, Xia X. HIV-1 modulates the tRNA pool to improve translation efficiency. Mol Biol Evol 2011; 28(6): 1827-34.
[307]
Stabell AC, Hawkins J, Li M, et al. Non-human primate schlafen11 inhibits production of both host and viral proteins. PLoS Pathog 2016; 12(12): e1006066.
[308]
Lin YZ, Sun LK, Zhu DT, et al. Equine schlafen 11 restricts the production of equine infectious anemia virus via a codon usage-dependent mechanism. Virology 2016; 495: 112-21.
[309]
Ono A. Relationships between plasma membrane microdomains and HIV-1 assembly. Biol Cell 2010; 102(6): 335-50.
[310]
Aloia RC, Tian H, Jensen FC. Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci USA 1993; 90(11): 5181-5.
[311]
Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krausslich H-G. The HIV lipidome: A raft with an unusual composition. Proc Natl Acad Sci USA 2006; 103(8): 2641-6.
[312]
Spearman P. HIV-1 Gag as an antiviral target: development of assembly and maturation inhibitors. Curr Top Med Chem 2016; 16(10): 1154-66.
[313]
Zhang Y, Barklis E. Nucleocapsid protein effects on the specificity of retrovirus RNA encapsidation. J Virol 1995; 69(9): 5716-22.
[314]
Sherer NM, Swanson CM, Papaioannou S, Malim MH. matrix mediates the functional link between human immunodeficiency virus type 1 rna nuclear export elements and the assembly competency of gag in murine cells. J Virol 2009; 83(17): 8525-35.
[315]
Chukkapalli V, Inlora J, Todd GC, Ono A. Evidence in support of rna-mediated inhibition of phosphatidylserine-dependent hiv-1 gag membrane binding in cells. J Virol 2013; 87(12): 7155-9.
[316]
Spearman P, Horton R, Ratner L, Kuli-Zade I. Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism. J Virol 1997; 71(9): 6582-92.
[317]
Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, Summers MF. Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc Natl Acad Sci USA 2004; 101(2): 517-22.
[318]
Karacostas V, Wolffe EJ, Nagashima K, Gonda MA, Moss B. Overexpression of the hiv-1 gag-pol polyprotein results in intracellular activation of hiv-1 protease and inhibition of assembly and budding of virus-like particles. Virology 1993; 193: 661-71.
[319]
Okumura A, Lu G, Pitha-Rowe I, Pitha PM. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc Natl Acad Sci USA 2006; 103(5): 1440-5.
[320]
Villarroya-Beltri C, Guerra S, Sánchez-Madrid F. ISGylation - a key to lock the cell gates for preventing the spread of threats. J Cell Sci 2017; 130(18): 2961-9.
[321]
Malakhova OA, Zhang DE. ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response. J Biol Chem 2008; 283(14): 8783-7.
[322]
Pincetic A, Kuang Z, Seo EJ, Leis J. The interferon-induced gene isg15 blocks retrovirus release from cells late in the budding process. J Virol 2010; 84(9): 4725-36.
[323]
Wong JJY, Pung YF, Sze NS-K, Chin K-C. HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc Natl Acad Sci USA 2006; 103(28): 10735-40.
[324]
Woods MW, Kelly JN, Hattlmann CJ, et al. Human HERC5 restricts an early stage of HIV-1 assembly by a mechanism correlating with the ISGylation of Gag. Retrovirology 2011; 8(1): 95.
[325]
Koths K, Taylor E, Halenbeck R, Casipit C, Wang A. Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain. J Biol Chem 1993; 268(19): 14245-9.
[326]
Lodermeyer V, Suhr K, Schrott N, et al. 90K, an interferon-stimulated gene product, reduces the infectivity of HIV-1. Retrovirology 2013; 10(1): 111.
[327]
Wang Q, Zhang X, Han Y, Wang X, Gao G. M2BP inhibits HIV-1 virion production in a vimentin filaments-dependent manner. Sci Rep 2016; 6: 32736.
[328]
McLaren PJ, Gawanbacht A, Pyndiah N, et al. Identification of potential HIV restriction factors by combining evolutionary genomic signatures with functional analyses. Retrovirology 2015; 12(1): 41.
[329]
Kim BH, Shenoy AR, Kumar P, Bradfield CJ, MacMicking JD. IFN-inducible GTPases in host cell defense. Cell Host Microbe 2012; 12: 432-44.
[330]
Vestal DJ, Jeyaratnam JA. The guanylate-binding proteins: emerging insights into the biochemical properties and functions of this family of large interferon-induced guanosine triphosphatase. J Interferon Cytokine Res 2011; 31(1): 89-97.
[331]
McLaren PJ, Gawanbacht A, Pyndiah N, et al. Identification of potential HIV restriction factors by combining evolutionary genomic signatures with functional analyses. Retrovirology 2015; 12(1): 41.
[332]
Richards KH, Clapham PR. Effects of vpu start-codon mutations on human immunodeficiency virus type 1 replication in macrophages. J Gen Virol 2007; 88(Pt 10): 2780-92.
[333]
Hotter D, Sauter D, Kirchhoff F. Guanylate binding protein 5: Impairing virion infectivity by targeting retroviral envelope glycoproteins. Small GTPases 2017; 8: 31-7.
[334]
Neil SJD, Eastman SW, Jouvenet N, Bieniasz PD. HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog 2006; 2(5): 354-67.
[335]
Klimkait T, Strebel K, Hoggan MD, Martin MA, Orenstein JM. The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J Virol 1990; 64(2): 621-9.
[336]
Neil SJD, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 2008; 451(7177): 425-30.
[337]
Strauss JD, Hammonds JE, Yi H, Ding L, Spearman P, Wright ER. Three-dimensional structural characterization of hiv-1 tethered to human cells. J Virol 2016; 90(3): 1507-21.
[338]
Kmiec D, Iyer SS, Stürzel CM, Sauter D, Hahn BH, Kirchhoff F. Vpu-mediated counteraction of tetherin is a major determinant of HIV-1 interferon resistance. MBio 2016; 7(4): pii: e00934-.
[339]
Madjo U, Leymarie O, Frémont S, et al. LC3C contributes to vpu-mediated antagonism of bst2/tetherin restriction on HIV-1 Release through a non-canonical autophagy pathway. Cell Reports 2016; 17(9): 2221-33.
[340]
Kupzig S, Korolchuk V, Rollason R, Sugden A, Wilde A, Banting G. Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic 2003; 4: 694-709.
[341]
Perez-Caballero D, Zang T, Ebrahimi A, et al. tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 2009; 139(3): 499-511.
[342]
Venkatesh S, Bieniasz PD. Mechanism of HIV-1 virion entrapment by tetherin. PLoS Pathog 2013; 9(7): e1003483.
[343]
Hammonds J, Wang JJ, Yi H, Spearman P. Immunoelectron microscopic evidence for tetherin/BST2 as the physical bridge between HIV-1 virions and the plasma membrane. PLoS Pathog 2010; 6(2): e1000749.
[344]
Cocka LJ, Bates P. Identification of alternatively translated tetherin isoforms with differing antiviral and signaling activities. PLoS Pathog 2012; 8(9): e1002931.
[345]
Tokarev A, Suarez M, Kwan W, Fitzpatrick K, Singh R, Guatelli J. Stimulation of NF- B activity by the hiv restriction factor bst2. J Virol 2013; 87(4): 2046-57.
[346]
Corbeil J, Sheeter D, Genini D, et al. Temporal gene regulation during HIV-1 infection of human CD4+ T cells. Genome Res 2001; 11(7): 1198-204.
[347]
van ’t Wout AB, Lehrman GK, Mikheeva SA, et al. Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4(+)-T-cell lines. J Virol 2003; 77(2): 1392-402.
[348]
Geiss GK, Bumgarner RE, An MC, et al. Large-scale monitoring of host cell gene expression during HIV-1 infection using cDNA microarrays. Virology 2000; 266(1): 8-16.
[349]
Krishnan V, Zeichner SL. Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency. J Virol 2004; 78(17): 9458-73.
[350]
Gurdasani D, Iles L, Dillon DG, et al. A systematic review of definitions of extreme phenotypes of HIV control and progression. AIDS 2014; 28: 149-62.
[351]
Crowell TA, Hatano H. Clinical outcomes and antiretroviral therapy in “elite” controllers: a review of the literature. J Virus Erad 2015; 1(2): 72-7.
[352]
Merindol N, Berthoux L. Restriction factors in hiv-1 disease progression. Curr HIV Res 2015; 13(6): 448-61.
[353]
Riveira- Muñoz E, Ruiz A, Pauls E, et al. Increased expression of SAMHD1 in a subset of HIV-1 elite controllers. J Antimicrob Chemother 2014; 69(11): 3057-60.
[354]
Abdel-Mohsen M, Raposo RAS, Deng X, et al. Expression profile of host restriction factors in HIV-1 elite controllers. Retrovirology 2013; 10(1): 106.
[355]
Raposo RAS, Abdel-Mohsen M, Deng X, et al. Dynamic regulation of host restriction factor expression over the course of hiv-1 infection in vivo. J Virol 2014; 88(19): 11624-9.
[356]
Raposo RAS, Abdel-Mohsen M, Holditch SJ, et al. Increased expression of intrinsic antiviral genes in HLA-B*57-positive individuals. J Leukoc Biol 2013; 94(5): 1051-9.
[357]
De Pablo A, Bogoi R, Bejarano I, et al. Short communication: p21/CDKN1A expression shows broad interindividual diversity in a subset of HIV-1 elite controllers. AIDS Res Hum Retroviruses 2016; 32(3): 232-6.
[358]
Laplana M, Caruz A, Pineda JA, Puig T, Fibla J. Association of BST-2 gene variants with HIV disease progression underscores the role of BST-2 in HIV type 1 infection. J Infect Dis 2013; 207(3): 411-9.
[359]
Van Manen D, Rits MAN, Beugeling C, Van Dort K, Schuitemaker H, Kootstra NA. The effect of Trim5 polymorphisms on the clinical course of HIV-1 infection. PLoS Pathog 2008; 4(2): e18.
[360]
Zhang W, Ambikan AT, Sperk M, et al. Transcriptomics and targeted proteomics analysis to gain insights into the immune-control mechanisms of hiv-1 infected elite controllers. EBioMedicine 2017; 27: 40-50.
[361]
Singh HO, Samani D, Ghate MV, Gangakhedkar RR. Impact of cellular restriction gene (TRIM5α, BST-2) polymorphisms on the acquisition of HIV-1 and disease progression. J Gene Med 2018; 20(2-3): e3004.
[362]
Nakayama EE, Carpentier W, Costagliola D, et al. Wild type and H43Y variant of human TRIM5alpha show similar anti-human immunodeficiency virus type 1 activity both in vivo and in vitro. Immunogenetics 2007; 59(6): 511-5.
[363]
Javanbakht H, An P, Gold B, et al. Effects of human TRIM5alpha polymorphisms on antiretroviral function and susceptibility to human immunodeficiency virus infection. Virology 2006; 354(1): 15-27.
[364]
Javanbakht H, Diaz-Griffero F, Stremlau M, Si Z, Sodroski J. The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5α. J Biol Chem 2005; 280(29): 26933-40.
[365]
Diaz-Griffero F, Qin X-r, Hayashi F, et al. A B-Box 2 surface patch important for trim5 self-association, capsid binding avidity, and retrovirus restriction. J Virol 2009; 83(20): 10737-51.
[366]
Price H, Lacap P, Tuff J, et al. A TRIM5 alpha exon 2 polymorphism is associated with protection from HIV-1 infection in the Pumwani sex worker cohort. AIDS 2010; 24(12): 1813-21.
[367]
Liu FL, Qiu YQ, Li H, et al. An HIV-1 resistance polymorphism in TRIM5α gene among Chinese intravenous drug users. J Acquir Immune Defic Syndr 2011; 56(4): 306-11.
[368]
Deng J, Chen Y, Ding D, et al. TRIM5 α H43Y polymorphism and susceptibility to hiv-1 infection: a meta-analysis. AIDS Res Hum Retroviruses 2015; 31(12): 1213-8.
[369]
An P, Bleiber G, Duggal P, et al. APOBEC3G genetic variants and their influence on the progression to AIDS. J Virol 2004; 78(20): 11070-6.
[370]
Do H, Vasilescu A, Diop G, et al. Exhaustive genotyping of the cem15 (apobec3g) gene and absence of association with aids progression in a french cohort. J Infect Dis 2005; 191(2): 159-63.
[371]
Jin X, Brooks A, Chen H, Bennett R, Reichman R, Smith H. Associate inversely with human immunodeficiency virus viremia apobec3g / cem15 (ha3g) mrna levels associate inversely with human immunodeficiency virus viremia. J Virol 2005; 15(17): 11513-6.
[372]
Eyzaguirre LM, Charurat M, Redfield RR, Blattner WA, Carr JK, Sajadi MM. Elevated hypermutation levels in HIV-1 natural viral suppressors. Virology 2013; 443(2): 306-12.
[373]
Kourteva Y, De Pasquale M, Allos T, McMunn C, D’Aquila RT. APOBEC3G expression and hypermutation are inversely associated with human immunodeficiency virus type 1 (HIV-1) burden in vivo. Virology 2012; 430(1): 1-9.
[374]
de Pasquale M, Kourteva Y, Allos T, D’Aquila RT. Lower HIV provirus levels are associated with more apobec3g protein in blood resting memory cd4+ t lymphocytes of controllers in vivo. PLoS One 2013; 8(10): e76002.
[375]
Raposo RAS, Abdel-Mohsen M, Deng X, et al. Dynamic regulation of host restriction factor expression over the course of HIV-1 infection in vivo. J Virol 2014; 88(19): 11624-9.
[376]
Abdel-Mohsen M, Deng X, Liegler T, et al. Effects of alpha interferon treatment on intrinsic anti-hiv-1 immunity in vivo. J Virol 2014; 88(1): 763-7.
[377]
Sandler NG, Bosinger SE, Estes JD, et al. Type i interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature 2014; 511(7511): 601-5.
[378]
Cheng L, Yu H, Li G, et al. Type I interferons suppress viral replication but contribute to T cell depletion and dysfunction during chronic HIV-1 infection. JCI Insight 2017; 2(12): e94366.
[379]
Zhen A, Rezek V, Youn C, et al. Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J Clin Invest 2017; 127(1): 260-8.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 3
Year: 2018
Page: [184 - 207]
Pages: 24
DOI: 10.2174/1570162X16666180817115830

Article Metrics

PDF: 55
HTML: 14