The Evaluation of Animal Models in the Development of Anticancer Agents: From Preclinical to Clinical Tests

Author(s): Jie Wang , Haiyan Dong , Jian Liu , Ning Zheng , Xiaodong Xie , Lee Jia* .

Journal Name: Current Cancer Drug Targets

Volume 19 , Issue 4 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: One of the main reasons for most of the anticancer drugs to fail in the late preclinical testing and early clinical trials is the differences in drug effects observed from animals and patients, and the challenge has been to find a balance to reduce the inherent differences from species.

Objective: Predicting safe starting doses and dosing schedules for human clinical trials is the main purpose of toxicological studies of anticancer drugs.

Methods: Relevant information and data were assimilated from manuscripts, congress publications, and online sources.

Results: We systematically overview the cons and pros of animal models and briefed the ways to determine human clinical starting doses derived from animal toxicological studies for anticancer drugs.

Conclusion: This information helps smart select the suitable predictive model for anti-cancer drugs with the different mechanisms and emphasized the pharmaceutical challenges behind and ahead.

Keywords: Anticancer drugs, animal toxicological studies, animal models, starting doses, preclinical testing, toxicological studies.

[1]
Pazdur, R. Endpoints for assessing drug activity in clinical trials. Oncologist, 2008, 13(Suppl. 2), 19-21.
[2]
Duffaud, F.; Therasse, P. New guidelines to evaluate the response to treatment in solid tumors. Bull. Cancer, 2000, 87(12), 881-886.
[3]
Schwartsmann, G.; Winograd, B.; Pinedo, H.M. The main steps in the development of anticancer agents. Radiother. Oncol., 1988, 12(4), 301-313.
[4]
Chabner, B.A.; Roberts, Jr T.G. Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[5]
Heljasvaara, R.; Pihlajaniemi, T. Exper; Tumour Model. Mice, 2011.
[6]
J.C. Schuh, Trials, tribulations, and trends in tumor modeling in mice. Toxicol. Pathol., 2004, 32(Suppl. 1), 53-66.
[7]
Fogh, J.; Dracopoli, N.; Loveless, J.D.; Fogh, H. Cultured human tumor cells for cancer research: Assessment of variation and stability of cultural characteristics. Prog. Clin. Biol. Res., 1982, 89, 191-223.
[8]
Li, K.; Du, H.; Lian, X.; Chai, D.; Li, X.; Yang, R.; Wang, C. Establishment and characterization of a metastasis model of human gastric cancer in nude mice. BMC Cancer, 2016, 16(1), 54.
[9]
Wang, L.; Li, L.; Zhao, L.; Liu, C.; Liu, J.; Liu, L.; Lin, P.; Liu, B.; Li, M. Chronopharmacokinetics and mechanisms of gefitinib in a nude mice model of non-small cell lung cancer. RSC Advances, 2016, 6(98), 95780-95788.
[10]
Sausville, E.A.; Burger, A.M. Contributions of human tumor xenografts to anticancer drug development. Cancer Res., 2006, 66(7), 3351-3354.
[11]
Rygaard, J.; Poulsen, C.O. Heterotransplantation of a human malignant tumour to “Nude” mice. Acta Pathol. Microbiol. Scand., 1969, 77(4), 758-760.
[12]
Houghton, J.A.; Williams, L.G.; Houghton, P.J. Stability of vincristine complexes in cytosols derived from xenografts of human rhabdomyosarcoma and normal tissues of the mouse. Cancer Res., 1985, 45(8), 3761-3767.
[13]
Horowitz, M.E.; Etcubanas, E.; Christensen, M.L.; Houghton, J.A.; George, S.L.; Green, A.A.; Houghton, P.J. Phase II testing of melphalan in children with newly diagnosed rhabdomyosarcoma: A model for anticancer drug development. J. Clin. Oncol., 1988, 6(2), 308-314.
[14]
Peterson, J.K.; Houghton, P.J. Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur. J. Cancer, 2004, 40(6), 837-844.
[15]
L.S. Goodman, ; M.M. Wintrobe, ; W. Dameshek, Dameshek, “Landmark article Sept. 21, 1946: Nitrogen mustard therapy. Use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. By Louis S. Goodman, Maxwell M. Wintrobe, William Dameshek, Morton J. Goodman, Alfred Gilman and Margaret T. McLennan. JAMA vol. 251, no. 17, pp. 2255-61, May 04, 1984.,
[16]
DeGeorge, J.J.; Ahn, C.H.; Andrews, P.A.; Brower, M.E.; Giorgio, D.W.; Goheer, M.A.; Lee-Ham, D.Y.; McGuinn, W.D.; Schmidt, W.; Sun, C.J.; Tripathi, S.C. Regulatory considerations for preclinical development of anticancer drugs. Cancer Chemother. Pharmacol., 1997, 41(3), 173-185.
[17]
Grieshaber, C.K.; Marsoni, S. Relation of preclinical toxicology to findings in early clinical trials. Cancer Treat. Rep., 1986, 70(1), 65-72.
[18]
Buttles, S.S.; Newell, D.R.; Henrar, R.E.C.; Connors, T.A. Revisions of general guidelines for the preclinical toxicology of new cytotoxic anticancer agents in Europe. Eur. J. Cancer, 1995, 31(3), 408-410.
[19]
Clark, D.L.; Andrews, P.A.; Smith, D.D.; DeGeorge, J.J.; Justice, R.L.; Beitz, J.G. Predictive value of preclinical toxicology studies for platinum anticancer drugs. Clin. Cancer Res., 1999, 5(5), 1161-1167.
[20]
Rozencweig, M.; Von, D.H.; Staquet, M.J.; Schein, P.S.; Penta, J.S.; Goldin, A.; Muggia, F.M.; Freireich, E.J.; DeVita, J.V. Animal toxicology for early clinical trials with anticancer agents. Cancer Clin. Trials, 1981, 4(1), 21-28.
[21]
Liu, X.; Jia, L. The conduct of drug metabolism studies considered good practice (I): Analytical systems and in vivo studies. Curr. Drug Metab., 2007, 8(8), 815-821.
[22]
Johnson, J.I.; Decker, S.; Zaharevitz, D.; Rubinstein, L.V.; Venditti, J.M.; Schepartz, S.; Kalyandrug, S.; Christian, M.; Arbuck, S.; Hollingshead, M.; Sausville, E.A. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer, 2001, 84(10), 1424.
[23]
Wall, M.E.; Wani, M.C. Camptothecin and taxol: Discovery to clinic-thirteenth Bruce F. Cain memorial award lecture. Cancer Res., 1995, 55(4), 753-760.
[24]
Zamboni, W.C.; Gajjar, A.J.; Mandrell, T.D.; Einhaus, S.L.; Danks, M.K.; Rogers, W.P.; Heideman, R.L.; Houghton, P.J.; Stewart, C.F. A four-hour topotecan infusion achieves cytotoxic exposure throughout the neuraxis in the nonhuman primate model: implications for treatment of children with metastatic medulloblastoma. Clin. Cancer Res., 1998, 4(10), 2537-2544.
[25]
Zhang, F.; Xue, J.; Shao, J.; Jia, L. Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov. Today, 2012, 17(9-10), 475-485.
[26]
Ferguson, Jr F.C.; Thiersch, J.B.; Philips, F.S.; Theodore, P.; Rosenthal, D. The action of 4-amino-N10methyl-pteroylglutamic acid in mice, rats, and dogs. J. Pharmacol. Exp. Ther., 1950, 98, 293-299.
[27]
Bishop, J.B.; Wassom, J.S. Toxicological review of busulfan (Myleran). Mutat. Res. Rev. Genet. Toxicol., 1986, 168(1), 15-45.
[28]
Lian, S.; Lu, Y.; Cheng, Y.; Yu, T.; Xie, X.; Liang, H.; Ye, Y.; Jia, L. S-nitrosocaptopril interrupts adhesion of cancer cells to vascular endothelium by suppressing cell adhesion molecules via inhibition of the NF-кB and JAK/STAT signal pathways in endothelial cells. Eur. J. Pharmacol., 2016, 791, 62-71.
[29]
Cao, S.; Frank, C.; Rustum, Y.M. Role of fluoropyrimidine Schedule and (6R,S)leucovorin dose in a preclinical animal model of colorectal carcinoma. J. Natl. Cancer Inst., 1996, 88(7), 430-436.
[30]
Kozuch, P.; Hoff, P.M.; Hess, K.; Adams, J.; Newman, R.A.; Lee, F.; Pazdur, R. Phase I bioequivalency study of MitoExtra and mitomycin C in patients with solid tumors. Cancer, 2001, 91(4), 815-821.
[31]
Fazeny-Dörner, B.; Mader, R.M.; Piribauer, M.; Rizovski, B.; Stögermaier, B.; Marosi, C. Preliminary study on pharmacokinetics of dacarbazine and fotemustine in glioblastoma multiforme patients does not indicate gender-specific differences. Anticancer Drugs, 2004, 15(5), 495-498.
[32]
Rheeders, M.; Bouwer, M.; Goosen, T.C. Drug‐drug interaction after single oral doses of the furanocoumarin methoxsalen and cyclosporine. J. Clin. Pharmacol., 2006, 46(7), 768-775.
[33]
Camaggi, C.M.; Strocchi, E.; Martoni, A.; Zamagni, C.; Cacciari, N.; della Cuna, G.R.; Pavesi, L.; Tedeschi, M.; Silva, A.; Pannuti, F. Pharmacokinetic evaluation of two different formulations of megestrol acetate in patients with advanced malignancies. Cancer Chemother. Pharmacol., 1995, 36(4), 356-359.
[34]
Marcucci, G.; Silverman, L.; Eller, M.; Lintz, L.; Beach, C.L. Bioavailability of azacitidine subcutaneous versus intravenous in patients with the myelodysplastic syndromes. J. Clin. Pharmacol., 2005, 45(5), 597-602.
[35]
Kuenen, B.C.; Rosen, L.; Smit, E.F.; Parson, M.R.; Levi, M.; Ruijter, R.; Huisman, H.; Kedde, M.A.; Noordhuis, P.; Van Der Vijgh, W.J.; Peters, G.J. Dose-finding and pharmacokinetic study of cisplatin, gemcitabine, and SU5416 in patients with solid tumors. J. Clin. Oncol., 2002, 20(6), 657-1667.
[36]
Supko, J.G.; Hickman, R.L.; Grever, M.R.; Malspeis, L. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother. Pharmacol., 1995, 36(4), 305-315.
[37]
Muindi, J.R.; Frankel, S.R.; Huselton, C.; DeGrazia, F.; Garland, W.A.; Young, C.W.; Warrell, R.P. Clinical pharmacology of oral all-trans retinoic acid in patients with acute promyelocytic leukemia. Cancer Res., 1992, 52(8), 2138-2142.
[38]
Sparreboom, A.; Planting, A.S.; Jewell, R.C.; Loos, W.J.; Nooter, K.; Chandler, L.H.; Paul, E.M.; Wissel, P.S.; Verweij, J. Clinical pharmacokinetics of doxorubicin in combination with GF120918, a potent inhibitor of MDR1 P-glycoprotein. Anticancer Drugs, 1999, 10(8), 719-728.
[39]
Schellens, J.H.; Goey, S.H.; Pronk, L.C.; Loos, W.J.; Ma, J.; Stoter, G.; Verweij, J. Phase I and pharmacologic study of the arotinoid Ro 40-8757 in combination with cisplatin and etoposide in patients with non-small cell lung cancer. Anticancer Drugs, 1999, 10(4), 361-368.
[40]
Chen, X.; Shu, L. Stream‐aquifer interactions: Evaluation of depletion volume and residual effects from ground water pumping. Ground Water, 2002, 40(3), 284-290.
[41]
Reardon, D.A.; Desjardins, A.; Vredenburgh, J.J.; Gururangan, S.; Friedman, A.H.; Herndon, J.E.; Marcello, J.; Norfleet, J.A.; McLendon, R.E.; Sampson, J.H.; Friedman, H.S. Phase 2 trial of erlotinib plus sirolimus in adults with recurrent glioblastoma. J. Neurooncol., 2010, 96(2), 219-230.
[42]
Kisseberth, W.C.; Vail, D.M.; Yaissle, J.; Jeglum, K.A.; Couto, C.G.; Ward, H.; Khanna, C.; Obradovich, J.E. Phase I clinical evaluation of Carboplatin in tumor‐bearing cats: a veterinary cooperative oncology group study. J. Vet. Intern. Med., 2008, 22(1), 83-88.
[43]
Bonner, H.S.; Shaw, L.M. New dosing regimens for amifostine: a pilot study to compare the relative bioavailability of oral and subcutaneous administration with intravenous infusion. J. Clin. Pharmacol., 2002, 42(2), 66-74.
[44]
Hersh, M.R.; Kuhn, J.G.; Phillips, J.L.; Clark, G.; Ludden, T.M.; Von Hoff, D.D. Pharmacokinetic study of fludarabine phosphate (NSC 312887). Cancer Chemother. Pharmacol., 1986, 17(3), 277-280.
[45]
Faderl, S.; Gandhi, V.; O’Brien, S.; Bonate, P.; Cortes, J.; Estey, E.; Beran, M.; Wierda, W.; Garcia-Manero, G.; Ferrajoli, A.; Estrov, Z. Results of a phase 1-2 study of clofarabine in combination with cytarabine (ara-C) in relapsed and refractory acute leukemias. Blood, 2005, 105(3), 940-947.
[46]
Loos, W.J.; de Wit, R.; Freedman, S.J.; Van Dyck, K.; Gambale, J.J.; Li, S.; Murphy, G.M.; van Noort, C.; de Bruijn, P.; Verweij, J. Aprepitant when added to a standard antiemetic regimen consisting of ondansetron and dexamethasone does not affect vinorelbine pharmacokinetics in cancer patients. Cancer Chemother. Pharmacol., 2007, 59(3), 407-412.
[47]
Herben, V.M.M.; Rosing, H.; ten Bokkel Huinink, W.W.; Van Zomeren, D.M.; Batchelor, D.; Doyle, E.; Beusenberg, F.D.; Beijnen, J.H.; Schellens, J.H.M. Oral topotecan: Bioavailability and effect of food co-administration. Br. J. Cancer, 1999, 80(9), 1380.
[48]
Dy, G.K.; Suri, A.; Reid, J.M.; Sloan, J.A.; Pitot, H.C.; Alberts, S.R.; Goldberg, R.M.; Atherton, P.J.; Hanson, L.J.; Burch, P.A.; Rubin, J. A phase IB study of the pharmacokinetics of gemcitabine and pemetrexed, when administered in rapid sequence to patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2005, 55(6), 522-530.
[49]
Guo, B.; Cao, S.; Tóth, K.; Azrak, R.G.; Rustum, Y.M. Overexpression of Bax enhances antitumor activity of chemotherapeutic agents in human head and neck squamous cell carcinoma. Clin. Cancer Res., 2000, 6(2), 718-724.
[50]
Shakuto, S.; Noguchi, K.; Bissery, M.C. Antitumor effect of docetaxel against human endometrial tumor cell lines. Gan To Kagaku Ryoho, 2005, 32(10), 1437-1442.
[51]
Quinn, D.I.; Nemunaitis, J.; Fuloria, J.; Britten, C.D.; Gabrail, N.; Yee, L.; Acharya, M.; Chan, K.; Cohen, N.; Dudov, A. Effect of the cytochrome P450 2C19 inhibitor omeprazole on the pharmacokinetics and safety profile of bortezomib in patients with advanced solid tumours, non-Hodgkin’s lymphoma or multiple myeloma. Clin. Pharmacokinet., 2009, 48(3), 199-209.
[52]
Mita, A.C.; Sweeney, C.J.; Baker, S.D.; Goetz, A.; Hammond, L.A.; Patnaik, A.; Tolcher, A.W.; Villalona-Calero, M.; Sandler, A.; Chaudhuri, T.; Molpus, K. Phase I and pharmacokinetic study of pemetrexed administered every 3 weeks to advanced cancer patients with normal and impaired renal function. J. Clin. Oncol., 2006, 24(4), 552-562.
[53]
Hudes, G.; Haas, N.; Yeslow, G.; Gillon, T.; Gunnarsson, P.O.; Ellman, M.; Nordle, O.; Eriksson, B.; Miller, L.; Cisar, L.; Kopreski, M. Phase I clinical and pharmacologic trial of intravenous estramustine phosphate. J. Clin. Oncol., 2002, 20(4), 1115-1127.
[54]
Adjei, A.A.; Molina, J.R.; Mandrekar, S.J.; Marks, R.; Reid, J.R.; Croghan, G.; Hanson, L.J.; Jett, J.R.; Xia, C.; Lathia, C.; Simantov, R. Phase I trial of sorafenib in combination with gefitinib in patients with refractory or recurrent non–small cell lung cancer. Clin. Cancer Res., 2007, 13(9), 2684-2691.
[55]
Hidalgo, M.; Siu, L.L.; Nemunaitis, J.; Rizzo, J.; Hammond, L.A.; Takimoto, C.; Eckhardt, S.G.; Tolcher, A.; Britten, C.D.; Denis, L.; Ferrante, K. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J. Clin. Oncol., 2001, 19(13), 3267-3279.
[56]
Grossman, S.A.; Olson, J.; Batchelor, T.; Peereboom, D.; Lesser, G.; Desideri, S.; Ye, X.; Hammour, T.; Supko, J.G. Effect of phenytoin on celecoxib pharmacokinetics in patients with glioblastoma. Neuro-oncol., 2008, 10(2), 190-198.
[57]
Aft, R.; Naughton, M.; Trinkaus, K.; Watson, M.; Ylagan, L.; Chavez-MacGregor, M.; Zhai, J.; Kuo, S.; Shannon, W.; Diemer, K.; Herrmann, V. Effect of zoledronic acid on disseminated tumour cells in women with locally advanced breast cancer: An open label, randomised, phase 2 trial. Lancet Oncol., 2010, 11(5), 421-428.
[58]
Zhang, Y.Y.; Xie, K.M.; Yang, G.Q.; Mu, H.J.; Yin, Y.; Zhang, B.; Xie, P. The effect of glucosylceramide synthase on P-glycoprotein function in K562/AO2 leukemia drug-resistance cell line. Int. J. Hematol., 2011, 93(3), 361-367.
[59]
Faivre, S.; Delbaldo, C.; Vera, K.; Robert, C.; Lozahic, S.; Lassau, N.; Bello, C.; Deprimo, S.; Brega, N.; Massimini, G.; Armand, J.P. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol., 2006, 24(1), 25-35.
[60]
Johnson, B.E.; Fischer, T.; Fischer, B.; Dunlop, D.; Rischin, D.; Silberman, S.; Kowalski, M.O.; Sayles, D.; Dimitrijevic, S.; Fletcher, C.; Hornick, J. Phase II study of imatinib in patients with small cell lung cancer. Clin. Cancer Res., 2003, 9(16), 5880-5887.
[61]
Burris, III H.A.; Hurwitz, H.I.; Dees, E.C.; Dowlati, A.; Blackwell, K.L.; O’neil, B.; Marcom, P.K.; Ellis, M.J.; Overmoyer, B.; Jones, S.F.; Harris, J.L. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J. Clin. Oncol., 2005, 23(23), 5305-5313.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 4
Year: 2019
Page: [277 - 284]
Pages: 8
DOI: 10.2174/1568009618666180817095331
Price: $58

Article Metrics

PDF: 30
HTML: 4
EPUB: 1
PRC: 2