Biomarkers and Spectroscopic Methods: The Strategies for Diagnostics of Selected Diseases

Author(s): Kristína Krajčíková, Gabriela Glinská, Vladimíra Tomečková*.

Journal Name: Current Chemical Biology

Volume 13 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: There are many different tools for diagnostics of various diseases. One of the simplest approach for the early, rapid and accurate diagnosis represents determination of biomarkers.

Focus: In the following text, we describe review of the latest discoveries in the field of biomarkers of selected diseases: intestinal ischemia and atherosclerosis. The aim of this review article is to show the problems which the researchers have been dealing with in the process of discovering and establishing novel biomarkers. This work describes the possibilities of monitoring biomarkers from noninvasive samples such as tears. Additionally, the actual possibilities of the spectroscopy techniques in monitoring and diagnostics of selected diseases are mentioned which might replace the need of biomarkers of several diseases.

Prospect: For the most diagnostic purposes, biomarkers should be analyzed in body fluid samples. For the biofluids, metabolic signatures could be determined, although there is no consensus on possible biomarkers yet. Metabolomics, the comprehensive, qualitative, and quantitative study of secondary metabolites and signaling molecules reveal a wide range of dysregulated molecules in various diseases. However, using spectroscopic methods could contribute to the traditional view on biomarkers by monitoring the relevant tissues and body fluid samples.

Keywords: Biomarkers, spectroscopic methods, ischemia, atherosclerosis, tear fluid, glaucoma, dry eye, diabetic retinopathy.

Günther UL. Metabolomics biomarkers for breast cancer. Pathobiol 2015; 82: 153-65.
Comoğlu SS, Güven H, Acar M, Öztürk G, Koçer B. Tear levels of tumor necrosis factor-alpha in patients with Parkinson’s disease. Neurosci Lett 2013; 553: 63-7.
Salvisberg C, Tajouri N, Hainard A, Burkhard PR, Lalive PH, Turck N. Exploring the human tear fluid: Discovery of new biomarkers in multiple sclerosis. Proteomics Clin Appl 2014; 8: 185-94.
Lebrecht A, Boehm D, Schmidt M, Koelblb H, Schwirz RL, Grus FH. Diagnosis of breast cancer by tear proteomic pattern. Cancer Genomics Proteomics 2009; 6: 177-82.
Acosta S, Nilsson T. Current status on plasma biomarkers for acute mesenteric ischemia. J Thromb Thrombolysis 2012; 33: 355-61.
Evenett NJ, Petrov MS, Mittal A, Windsor JA. Systemic review and pooled estimates for the diagnostic accuracy of serological markers for intestinal ischemia. World J Surg 2009; 33: 1374-83.
Yan L, Wu CR, Wang C, Yang CH, Tong GZ, Tang JG. Effect of candida albicans on intestinal ischemia-reperfusion injury in rats. Chin Med J (Engl) 2016; 129: 1711-8.
Munoz-Abraham AS, Judeeba S, Alkukhun A, et al. A new method to measure intestinal secretion using fluorescein isothiocyanate-inulin in small bowel of rats. J Surg Res 2015; 197: 225-30.
Khurana S, Corbally MT, Manning F, Armenise T, Kierce B, Kilty C. Glutathione S-transferase: A potential new marker of intestinal ischemia. J Pediatr Surg 2002; 37: 1543-8.
Shi H, Wu BY, Liu WH, Su BB, Li TT. The value of serum intestinal fatty acid binding protein measurement in discriminating intestinal ischemia in patients with acute abdomen. Zhonghua Nei Ke Za Zhi 2012; 51: 690-3.
Powell A, Armstrong P. Plasma biomarkers for early diagnosis of acute intestinal ischemia. Semin Vasc Surg 2014; 27: 170-5.
Thompson JS, Bragg LE, West WW. Serum enzyme levels during intestinal ischemia. Ann Surg 1990; 211: 369-73.
Varga J, Tóth Š Jr, Tóth Š, Tomečková V, Gregová K, Veselá J. The relationship between morphology and disaccharidase activity in ischemia – reperfusion injured intestine. Acta Biochim Pol 2012; 59: 631-8.
Meletta R, Slavik R, Mu L, et al. Cannabinoid receptor type 2 (CB2) as one of the candidate genes in human carotid plaque imaging: Evaluation of the novel radiotracer [11C] RS-016 targeting CB2 in atherosclerosis. Nucl Med Biol 2017; 47: 31-43.
Papazafiropoulou A, Tentolouris N. Matrix metalloproteinases and cardiovascular diseases. Hippokratia 2009; 13: 76-82.
Lim HS, Lip GYH. Circulating matrix metalloproteinase-9 levels in atherosclerotic vascular disease: A possible measurement of systemic or specific disease pathophysiology? J Intern Med 2008; 263: 620-2.
Goncalves I, Bengtsson E, Colhoun HM, et al. Elevated plasma levels of MMP-12 are associated with atherosclerotic burden and symptomatic cardiovascular disease in subjects with type 2 diabetes. Arterioscler Thromb Vasc Biol 2015; 35: 1723-31.
Ong KL, Januszewski AS, O’Connell R, et al. The relationship of fibroblast growth factor 21 with cardiovascular outcome events in the fenofibrate intervention and event lowering in diabetes study. Diabetologia 2015; 85: 464-73.
Kokkinos J, Tang S, Rye KA, Ong KL. The role of fibroblast growth factor 21 in atherosclerosis. Atherosclerosis 2017; 257: 259-65.
Soeki T, Sata M. Inflammatory biomarkers and atherosclerosis. Int Heart J 2016; 57: 134-9.
Huang Y, Tang S, Ji-Yan C, Li J, Cai AP, Feng YQ. Circulating miR-92a expression level in patients with essential hypertension: A potential marker of atherosclerosis. J Hum Hypertens 2016; 31: 200-5.
Hagan S, Tomlinson A. Tear fluid biomarker profiling: A review of multiplex bead analysis. Ocul Surf 2013; 11: 219-35.
Perumal N, Funke S, Pfeiffer N, Grus FH. Proteomics analysis of human tears from aqueous-deficient and evaporative dry eye patients. Sci Rep 2016; 6: 29629.
Kim WS, Wee SW, Lee SH, Kim JC. Angiogenin for the diagnosis and grading of dry eye syndrome. Korean J Ophthalmol 2016; 30: 163-71.
Licier R, Miranda E, Serrano H. A quantitative proteomics approach to clinical research with non-traditional samples. Proteomes 2016; 4(4): 31.
Gu J, Pauer GJ, Yue X, et al. Proteomic and genomic biomarkers for age-related macular degeneration. Adv Exp Med Biol 2010; 664: 411-7.
Lam H, Bleiden L, de Paiva CS, Farley W, Stern ME, Pflugfelder SC. Tear cytokine profiles in dysfunctional tear syndrome. Am J Ophthalmol 2009; 147: 198-205.
Hagan S, Martin E, Enríquez-de-Salamanca A. Tear fluid biomarkers in ocular and systemic disease: Potential use for predictive, preventive and personalised medicine. EPMA J 2016; 7(1): 15.
D’Souza S, Tong L. Practical issues concerning tear protein assays in dry eye. Eye Vis (Lond) 2014; 1: 6.
Li B, Sheng M, Li J, et al. Tear proteomic analysis of sjögren syndrome patients with dry eye syndrome by two-dimensional-nano-liquid chromatography coupled with tandem mass spectrometry. Sci Rep 2014; 4: 5772.
Tong L, Lan W, Lim RR, Chaurasia SS. S100A Proteins as molecular targets in the ocular surface inflammatory diseases. Ocul Surf 2014; 12: 23-31.
Malvitte L, Montange T, Vejux A, et al. Measurment of inflammatory cytokines by multicytokine assay in tears of patients with glaucoma topically treated with chronic drugs. Br J Ophthalmol 2007; 91: 29-32.
Oddone F, Roberti G, Micera A, et al. Exploring serum levels of brain derived neurotrophic factor and nerv growth factor across glaucoma stages. PLoS One 2017; 12(1): e0168565.
Ghaffariyeh A. Glaucoma biomarker 2010.
Chong RS, Jiang YZ, Boey PY, et al. Tear cytokine profile in medicated glaucoma patients: Effect of monocyte chemoattractant protein 1 on early posttrabeculectomy outcome. Ophthalmology 2010; 117: 2353-8.
Csősz É, Deák E, Kalló G, Csutak A, Tőszér J. Diabetic retinopathy: Proteomic approaches to help the differential diagnosis and to understand the underlying molecular mechanisms. J Proteomics 2017; 150: 351-8.
Osaadon P, Fagan XJ, Lifshitz T, Levy J. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye (Lond) 2014; 28: 510-20.
Ghasemi H. Roles of IL-6 in ocular inflammation: A review. Ocul Immunol Inflamm 2017; 25: 1-14.
Funke S, Grus FH. Tears as a source of biomarkers for ocular and systemic disease. Exp Eye Res 2013; 117: 126-37.
Pusparajah P, Lee L-H, Kadir KA. Molecular markers of diabetic retinopathy: Potential screening tool of the future? Front Physiol 2016; 7: 200.
Matsumura T, Takamura Y, Tomomatsu T, et al. Changes in matrix metalloproteinases in diabetes patients´ tears after vitrectomy and the relationship with corneal epithelial disorder. Invest Ophthalmol Vis Sci 2015; 56: 3559-64.
Park KS, Kim SS, Kim JC, et al. Serum and tear levels of nerve growth factor in diabetic retinopathy patients. Am J Ophthalmol 2008; 145: 432-7.
Mysona BA, Matragoon S, Stephens M, et al. Imbalance of the nerve growth factor and its precursor as a potential biomarker for diabetic retinopathy. BioMed Res Int 2015; 2015: 571456.
Coucha M, Elshaer SL, Eldahshan WS, Mysona BA, El-Remessy AB. Molecular mechanisms of diabetic retinopathy: Potential therapeutic targets. Middle East Afr J Ophthalmol 2015; 22: 135-44.
Hanuza J, Maczka M, Gasior-Glogowska M, et al. FT-Raman spectroscopic study of thoracic aortic wall subjected to uniaxial stress. J Raman Spectrosc 2009; 41: 1163-9.
Guľašová Z, Tomečková V, Bilecová-Rabajdová M, et al. Monitoring of thoracic aortic aneurysm in blood by fluorescence spectroscopy. Am J Med Biol Res 2015; 3: 128-32.
Tomečková V, Komanický V, Kakoush M, et al. Monitoring of heart ischemia in blood serum. Spectral Anal Rev 2016; 4: 11-22.
Henderson LM, Hubbard RA, Sprague BL, Zhu W, Kerlikowske K. Increased risk of developing breast cancer after a false-positive screening mammogram. Cancer Epidemiol Biomarkers Prev 2015; 24: 1-8.
Kong K, Kendall C, Stone N, Notingher I. Raman spectroscopy for medical diagnostics - From in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 2015; 89: 121-34.
Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics 2006; 23: 6326-53.
Emwas A-HM, Salek RM, Griffin JL, Merzaban J. NMR-based metabolomics in human disease diagnosis: Applications, limitations, and recommendations. Metabolomics 2013; 9: 1048-72.
Krafft C, Belay B, Bergner B, et al. Advances in optical biopsy – correlation of malignancy and cell density of primary brain tumors using raman microspectroscopic imaging. Analyst (Lond) 2012; 137: 5533-7.
Kalaivani R, Masilamani V, Sivaji K, et al. Fluorescence spectra of blood components for breast cancer diagnosis. Photomed Laser Surg 2008; 26: 251-6.
Morris MD, Mandair GS. Raman assessment of bone quality. Clin Orthop Relat Res 2011; 469: 2160-9.
Matousek P, Draper ERC, Goodship AE, Clark IP, Ronayne KL, Parker AW. Noninvasive raman spectroscopy of human tissue in vivo. Appl Spectrosc 2006; 60: 758-63.
Buckley K, Kerns JG, Gikas PD, et al. Measurment of abnormal bone composition in vivo using noninvasive raman spectroscopy. Nature 2014; 11: 1-3.
Esmonde-White K. Raman spectroscopy of soft muscoskeletal tissue. Appl Spectrosc 2014; 68: 1203-18.
Paschalis EP, Mendelsohn R, Boskey AL. Infrared assessment of bone quality: A review. Clin Orthop Relat Res 2011; 469: 2170-8.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [8 - 18]
Pages: 11
DOI: 10.2174/2212796812666180817094320
Price: $58

Article Metrics

PDF: 62