Modulation of Mitochondrial and Epigenetic Targets by Polyphenols-rich Extract from Araucaria angustifolia in Larynx Carcinoma

Author(s): Catia S. Branco*, Angela Duong, Alencar K. Machado, Gustavo Scola, Ana C. Andreazza, Mirian Salvador.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Araucaria angustifolia extract (AAE) is a polyphenol-rich extract that has gained interest as a natural anticancer agent. Recent work suggests that AAE induces oxidative damage and apoptosis through its action on decreasing complex I activity of the mitochondrial Electron Transport Chain (ETC).

Aims and Methods: In the present study, we aimed to further examine the specific targets by which AAE exerts proapoptotic effects in HEp-2 cancer cells. Specifically, the effect of AAE on the: 1) levels of pyruvate dehydrogenase was assessed by ELISA assay; 2) levels of mitochondrial ETC complexes, focusing on complex I at the gene transcript and protein level relevant to ROS generation was evaluated by multiplex ELISA followed by qRT-PCR and immunoblotting; 3) mitochondrial network distribution analysis was assessed by MitoTracker Red CMXRos; and 4) chemical variations on DNA was evaluated by dot-blotting in HEp-2 cells.

Results: Results demonstrated that AAE increased protein levels of PDH, switching energy metabolism to oxidative metabolism. Protein expression levels of complex I and III were found decreased in AAE-treated HEp-2 cells. Analyzing the subunits of complex I, changes in protein and gene transcript levels of NDUFS7 and NDUFV2 were found. Mitochondria staining after AAE incubation revealed changes in the mitochondrial network distribution. AAE was able to induce DNA hypomethylation and decreased DNA (cytosine-5)-methyltransferase 1 activity.

Conclusion: Our data demonstrate for the first time that AAE alters expression of NDUFS7 and NDUFV2 mitochondrial subunits and induce epigenetic changes in HEp-2 cancer cells leading to a possible suppression of oncogenes.

Keywords: Polyphenols, NDUFS7, NDUFV2, methylation, hydroxymethylation, epigenetic targets, larynx carcinoma.

[1]
Rezende, T.M.B.; Freire, M.D.S.; Franco, O.L. Head and neck cancer. Cancer, 2010, 116(21), 4914-4925.
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin., 2016, 66(1), 7-30.
[3]
Gatta, G.; Botta, L.; Sánchez, M.J.; Anderson, L.A.; Pierannunzio, D.; Licitra, L. Prognoses and improvement for head and neck cancers diagnosed in Europe in early 2000s: The EUROCARE-5 population-based study. Eur. J. Cancer, 2015, 51(15), 2130-2143.
[4]
Donaldson, M.S. Nutrition and cancer: A review of the evidence for an anti-cancer diet. Nutr. J., 2004, 3, 19.
[5]
Davidson, P.G.; Touger-Decker, R. Chemopreventive role of fruits and vegetables in oropharyngeal cancer. Nutr. Clin. Pract., 2013, 24(2), 250-260.
[6]
Gorlach, S.; Fichna, J.; Lewandowska, U. Polyphenols as mitochondria-targeted anticancer drugs. Cancer Lett., 2015, 366(2), 141-149.
[7]
Kim, H.S.; Quon, M.J.; Kim, J.A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol., 2014, 2(1), 187-195.
[8]
Scola, G.; Laliberte, V.L.M.; Kim, H.K.; Pinguelo, A.; Salvador, M.; Young, L.T.; Andreazza, A.C. Vitis labrusca extract effects on cellular dynamics and redox modulations in a SH-SY5Y neuronal cell model: A similar role to lithium. Neurochem. Int., 2014, 79, 12-19.
[9]
León-González, A.J.; Auger, C.; Schini-Kerth, V.B. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem. Pharmacol., 2015, 98(3), 371-380.
[10]
Fraunberger, E.A.; Scola, G.; Laliberté, V.L.M.; Duong, A.; Andreazza, A.C. Redox modulations, antioxidants, and neuropsychiatric disorders. Oxid. Med. Cell. Longev., 2016, 2016, 4729192.
[11]
Branco, C.S.; Rodrigues, T.S.; Lima, É.D.; Calloni, C.; Scola, G.; Salvador, M. Chemical constituents and biological activities of Araucaria angustifolia (Bertol.) O. Kuntze: A review. Org. Inorg. Chem., 2016, 2, 1-10.
[12]
Souza, M.; Branco, C.S.; Sene, J.; DallAgnol, R.; Agostini, F.; Moura, S.; Salvador, M. Antioxidant and antigenotoxic activities of the brazilian pine Araucaria angustifolia (Bert.) O. Kuntze. Antioxidants, 2014, 3, 24-37.
[13]
Khan, H.Y.; Zubair, H.; Ullah, M.F.; Ahmad, A.; Hadi, S.M. A prooxidant mechanism for the anticancer and chemopreventive properties of plant polyphenols. Curr. Drug Targets, 2012, 13, 1738-1749.
[14]
Hroudová, J.; Fišar, Z. Control mechanisms in mitochondrial oxidative phosphorylation. Neural Regen. Res., 2013, 8(4), 363-375.
[15]
Sancho, P.; Barneda, D.; Heeschen, C. Hallmarks of cancer stem cell metabolism. Br. J. Cancer, 2016, 114(12), 1305-1312.
[16]
Sabharwal, S.S.; Schumacker, P.T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer, 2014, 14(11), 709-721.
[17]
Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol., 2003, 552(2), 335-344.
[18]
Murata, M.; Thanan, R.; Ma, N.; Kawanishi, S. Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J. Biomed. Biotechnol., 2012, 623019.
[19]
Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12, 931-947.
[20]
Mileo, A.M.; Miccadei, S. Polyphenols as modulator of oxidative stress in cancer disease: New therapeutic strategies. Oxid. Med. Cell. Longev., 2016, 6475624.
[21]
Jaenisch, R.; Bird, A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet., 2003, 33, 245-254.
[22]
Ehrlich, M. DNA methylation in cancer: Too much, but also too little. Oncogene, 2002, 21, 5400-5413.
[23]
Sandoval-Acuña, C.; Ferreira, J.; Speisky, H. Polyphenols and mitochondria: An update on their increasingly emerging ROS-scavenging independent actions. Arch. Biochem. Biophys., 2014, 559, 75-90.
[24]
Berghe, W.V. Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. Pharmacol. Res., 2012, 65(6), 565-576.
[25]
Lee, W.J.; Zhu, B.T. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis, 2006, 27(2), 269-277.
[26]
Scola, G.; Laurino, C.C.F.C.; Menin, E.; Salvador, M. Suppression of oncoprotein Her-2 and DNA damage after treatment with flavan-3- ol Vitis labrusca extract. Anticancer. Agents Med. Chem., 2013, 13(7), 1088-1095.
[27]
Tao, L.; Forester, S.C.; Lambert, J.D. The role of the mitochondrial oxidative stress in the cytotoxic effects of the green tea catechin, (-)-epigallocatechin-3-gallate, in oral cells. Mol. Nutr. Food Res., 2014, 58(4), 665-676.
[28]
Tao, L.; Park, J.Y.; Lambert, J.D. Differential prooxidative effects of the green tea polyphenol, (-)-epigallocatechin-3-gallate, in normal and oral cancer cells are related to differences in sirtuin 3 signaling. Mol. Nutr. Food Res., 2015, 59, 203-211.
[29]
Branco, C.S.; Lima, É.D.; Rodrigues, T.S.; Scheffel, T.B.; Scola, G.; Laurino, C.C.; Moura, S.; Salvador, M. Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells. Chem. Biol. Interact., 2015, 231, 108-118.
[30]
Branco, C.S.; Rodrigues, T.S.; Lima, É.D.; Salvador, M. Polyphenols-rich extract from Araucaria angustifolia: Differential mechanisms on cancer and normal cells. Cancer Cell Microenviron., 2015, 2(3), 21-25.
[31]
Michelon, F.; Branco, C.S.; Calloni, C.; Giazzon, I.; Agostini, F.; Spada, P.K.W.; Salvador, M. Araucaria angustifolia: a potential nutraceutical with antioxidant and antimutagenic activities. Curr. Nutr. Food Sci., 2012, 8(3), 155-159.
[32]
Sutendra, G.; Michelakis, E.D. Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front. Oncol., 2013, 3, 1-11.
[33]
Brizel, D.M.; Schroeder, T.; Scher, R.L.; Walenta, S.; Clough, R.W.; Dewhirst, M.W.; Mueller-Klieser, W. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int. J. Radiat. Oncol., 2001, 51(2), 349-353.
[34]
Michelakis, E.D.; Webster, L.; Mackey, J.R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer, 2008, 99(7), 989-994.
[35]
Rohlena, J.; Dong, L.F.; Neuzil, J. Targeting the mitochondrial electron transport chain complexes for the induction of apoptosis and cancer treatment. Curr. Pharm. Biotechnol., 2013, 13(7), 377-389.
[36]
Shrotriya, S.; Deep, G.; Lopert, P.; Patel, M.; Agarwal, R.; Agarwal, C. Grape seed extract targets mitochondrial electron transport chain complex III and induces oxidative and metabolic stress leading to cytoprotective autophagy and apoptotic death in human head and neck cancer cells. Mol. Carcinog., 2015, 54(12), 1734-1747.
[37]
Zickermann, V.; Kerscher, S.; Zwicker, K.; Tocilescu, M.A.; Radermacher, M.; Brandt, U. Architecture of complex I and its implications for electron transfer and proton pumping. BBA Bioenerg., 2009, 1787(6), 574-583.
[38]
Vogel, R.O.; Smeitink, J.A.M.; Nijtmans, L.G.J. Human mitochondrial complex I assembly: A dynamic and versatile process. Biochim. Biophys. Acta. Bioenerg., 2007, 1767(10), 1215-1227.
[39]
Lazarou, M.; Thorburn, D.R.; Ryan, M.T.; McKenzie, M. Assembly of mitochondrial complex I and defects in disease. Biochim. Biophys. Acta, 2009, 1793(1), 78-88.
[40]
Turrens, J.F.; Boveris, A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J., 1980, 191, 421-427.
[41]
Teo, I.T.N.; Tang, J.C.O.; Chui, C.H.; Cheng, G.Y.M.; Yau, M.Y.C.; Lau, F.Y.; Wong, R.S.M.; Leung, T.W.T.; Cheung, F.; Ho, K.P.; Cheng, C.H.; Chan, A.S.C. Superoxide anion is involved in the early apoptosis mediated by Gleditsia sinensis fruit extract. Int. J. Mol. Med., 2004, 13(6), 909-913.
[42]
Ryter, S.W.; Kim, H.P.; Hoetzel, A.; Park, J.W.; Nakahira, K.; Wang, X.; Choi, A.M.K. Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal., 2007, 9(1), 48-89.
[43]
Kuznetsov, A.V.; Margreiter, R.; Amberger, A.; Saks, V.; Grimm, M. Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim. Biophys. Acta, 2011, 1813(6), 1144-1152.
[44]
Maynard, S.; Schurman, S.H.; Harboe, C.; de Souza-Pinto, N.C.; Bohr, V.A. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis, 2009, 30(1), 2-10.
[45]
Lange, S.S.; Takata, K.; Wood, R.D. DNA polymerases and cancer. Nat. Rev. Cancer, 2011, 11(2), 96-110.
[46]
Barbin, A. Etheno-adduct-forming chemicals: From mutagenicity testing to tumor mutation spectra. Mutat. Res., 2000, 462(2-3), 55-69.
[47]
Halliwell, B. Why and how should we measure oxidative DNA damage in nutritional studies? How far have we come? Am. J. Clin. Nutr., 2000, 72(5), 1082-1087.
[48]
Suski, J.M.; Lebiedzinska, M.; Bonora, M.; Pinton, P.; Duszynski, J.; Wieckowski, M.R. Relation between mitochondrial membrane potential and ROS formation. Methods Mol. Biol., 2012, 810, 183-205.
[49]
Van-Raam, B.J.; Sluiter, W.; De Wit, E.; Roos, D.; Verhoeven, A.J.; Kuijpers, T.W. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation. PLoS One, 2008, 3(4), e2013.
[50]
Kroemer, G.; Galluzzi, L.; Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev., 2007, 87, 99-163.
[51]
Lartigue, L.; Kushnareva, Y.; Seong, Y.; Lin, H.; Faustin, B.; Newmeyer, D.D. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol. Biol. Cell, 2009, 20(23), 4871-4884.
[52]
Teiten, M.; Eifes, S.; Dicato, M.; Diederich, M. Curcumin-The paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins., 2010, 2(1), 128-162.
[53]
Yang, C.; Ma, Y.; Xue, Y.; Liu, Y. Curcumin induces small cell lung cancer NCI-H446 cell apoptosis via the reactive oxygen species-mediated mitochondrial pathway and not the cell death receptor pathway. DNA Cell Biol., 2012, 31(2), 139-150.
[54]
Hitchler, M.J.; Domann, F.E. Redox regulation of the epigenetic landscape in cancer: a role for metabolic reprogramming in remodeling the epigenome. Free Radic. Biol. Med., 2013, 53(11), 319-335.
[55]
Smith, Z.D.; Meissner, A. DNA methylation: Roles in mammalian development. Nat. Rev. Genet., 2013, 14(3), 204-220.
[56]
Rhee, I.; Bachman, K.E.; Park, B.H.; Jair, K. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 2002, 416(6880), 552-556.
[57]
Hill, P.W.S.; Amouroux, R.; Hajkova, P. DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: An emerging complex story. Genomics, 2014, 104(5), 324-333.
[58]
Ko, M.; Huang, Y.; Jankowska, A.M.; Pape, U.J.; Tahiliani, M.; Bandukwala, H.S.; An, J.; Lamperti, E.D.; Koh, K.P.; Ganetzky, R.; Liu, S.; Aravind, L.; Agarwal, S.; Maciejewski, J.P.; Rao, A. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature, 2011, 468(7325), 839-843.
[59]
Madugundu, G.S.; Cadet, J.; Wagner, J.R. Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Res., 2014, 42(11), 7450-7460.
[60]
Lim, S.O.; Gu, J.M.; Kim, M.S.; Park, Y.N.; Park, C.K.; Cho, J.W.; Park, Y.M.; Jung, G. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: Methylation of the E-cadherin promoter. Gastroenterology, 2008, 135(6), 2128-2140.
[61]
Gong, Z.; Zhu, J. Active DNA demethylation by oxidation and repair. Cell Res., 2011, 21(12), 1649-1651.
[62]
Fang, M.Z.; Wang, Y.; Ai, N.; Hou, Z.; Sun, Y.; Lu, H.; Welsh, W.; Yang, C.S. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res., 2003, 63, 7563-7570.
[63]
Aslan, E.; Guler, C.; Adem, S. In vitro effects of some flavonoids and phenolic acids on human pyruvate kinase isoenzyme M2. J. Enzyme Inhib. Med. Chem., 2015, 31, 314-317.
[64]
Chen, H.; Miao, Q.; Geng, M.; Liu, J.; Hu, Y.; Tian, L.; Pan, J.; Yang, Y. Anti-tumor effect of rutin on human neuroblastoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. Sci. J., 2013, 2013, 269165.
[65]
Wu, F.; Chen, J.; Fan, L.M.; Liu, K.; Zhang, N.; Li, S.W.; Zhu, H.; Gao, H.C. Analysis of the effect of rutin on GSK-3 β and TNF- α expression in lung cancer. Exp. Ther. Med., 2017, 14(1), 127-130.
[66]
Chou, C.C.; Yang, J.S.; Lu, H.F.; Ip, S.W.; Lo, C.; Wu, C.C.; Lin, J.P.; Tang, N.Y.; Chung, J.G.; Chou, M.J.; Teng, Y.H.; Chen, D.R. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch. Pharm. Res., 2010, 33(8), 1181-1191.
[67]
Li, J.; Zhu, F.; Lubet, R.A.; De Luca, A.; Grubbs, C.; Ericson, M.E.; D’Alessio, A.; Normanno, N.; Dong, Z.; Bode, A.M. Quercetin-3-methyl ether inhibits lapatinib-sensitive and -resistant breast cancer cell growth by inducing G2/M arrest and apoptosis. Mol. Carcinog., 2013, 52(2), 134-143.
[68]
Seo, H.S.; Ku, J.M.; Choi, H.S.; Woo, J.K.; Jang, B.H.; Go, H.; Shin, Y.C.; Ko, S.G. Apigenin induces caspase-dependent apoptosis by inhibiting signal transducer and activator of transcription 3 signaling in HER2-overexpressing SKBR3 breast cancer cells. Mol. Med. Rep., 2015, 12(2), 2977-2984.
[69]
Ujiki, M.B.; Ding, X.Z.; Salabat, M.R.; Bentrem, D.J.; Golkar, L.; Milam, B.; Talamonti, M.S.; Jr, B.R.H.; Iwamura, T.; Adrian, T.E. Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest. Mol. Cancer, 2006, 5, 4-11.
[70]
Conforti, F.; Menichini, F.; Rigano, D.; Senatore, F. Antiproliferative activity on human cancer cell lines after treatment with polyphenolic compounds isolated from Iris Pseudopumila flowers and rhizomes. Z. Naturforsch. C, 2009, 64(7-8), 490-494.
[71]
Zhang, Z.R.; Al Zaharna, M.; Wong, M.M.; Chiu, S.; Cheung, H.Y. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation. PLoS One, 2013, 8(1), e54577.
[72]
Lee, S.; Kim, H.; Kang, J.W.; Kim, J.H.; Lee, D.H.; Kim, M.S.; Yang, Y.; Woo, E.R.; Kim, Y.M.; Hong, J.; Yoon, D.Y. The biflavonoid amentoflavone induces apoptosis via suppressing E7 expression, cell cycle arrest at sub-G1 phase, and mitochondria-emanated intrinsic pathways in human cervical cancer cells. J. Med. Food, 2011, 14(7-8), 808-816.
[73]
Lee, J.S.; Sul, J.Y.; Park, J.B.; Lee, M.S.; Cha, E.Y.; Song, I.S.; Kim, J.R.; Chang, E.S. Fatty acid synthase inhibition by amentoflavone suppresses HER2/neu (erbB2) oncogene in SKBR3 human breast cancer cells. Phytother. Res., 2012, 27(5), 713-720.
[74]
Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9), 552.
[75]
Mohan, A.; Narayanan, S.; Sethuraman, S.; Krishnan, U.M. Combinations of plant polyphenols & anti-cancer molecules: A novel treatment strategy for cancer chemotherapy. Anticancer. Agents Med. Chem., 2013, 13(2), 281-295.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 1
Year: 2019
Page: [130 - 139]
Pages: 10
DOI: 10.2174/1871520618666180816142821
Price: $58

Article Metrics

PDF: 34
HTML: 6