Mechanochemical Synthesis, in vitro Evaluation and Molecular Docking Studies of 4-Amino-2-arylamino-5-(benzofuran-2-oyl)thiazoles as Antidiabetic Agents

Author(s): Vijayan R. Akhila, Maheswari R. Priya, Daisy R. Sherin, Girija K. Krishnapriya, Sreerekha V. Keerthi, Thanathu K. Manojkumar, Kallikat N. Rajasekharan*.

Journal Name: Letters in Organic Chemistry

Volume 16 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The synthesis of 4-amino-2-arylamino-5-(benzofuran-2-oyl)thiazoles 4a-h, as example of 2,4-diaminothiazole-benzofuran hybrids and an evaluation of their antidiabetic activity, by in vitro and computational methods, are reported. The synthesis of these diaminothiazoles was achieved mechano chemically by a rapid solvent-less method. Their antidiabetic activity was assessed by α-glucosidase and α-amylase inhibition assays. The, IC50 value for α-glucosidase inhibition by 4-amino-5- (benzofuran-2-oyl)-2-(4-methoxyphenylamino)thiazole (4d) was found to be 20.04 µM and the IC50 value for α-amylase inhibition, 195.03 µM, whereas the corresponding values for reference acarbose were 53.38 µM and 502.03 µM, respectively. Molecular docking studies at the active sites of α- glucosidase and α-amylase showed that among the diaminothiazoles 4a-h now studied, 4-amino-5- (benzofuran-2-oyl)-2-(4-methoxyphenylamino)thiazole (4d) has the highest D-scores of -8.63 and -8.08 for α-glucosidase and for α-amylase, with binding energies -47.76 and -19.73 kcal/mol, respectively.

Keywords: Mechanochemical, 2, 4-diaminothiazoles, α-glucosidase, α-amylase, molecular docking, alkaloids.

[1]
Berube, G. Expert Opin. Drug, 2016, 11, 281-305.
[2]
Xiao, Z.P.; Wang, X.D.; Wang, P.F.; Zhou, Y.; Zhang, J.W.; Zhang, L.; Zhou, J.; Zhou, S.S.; Ouyang, H.; Lin, X.Y.; Mustapa, M.; Reyinbaike, A.; Zhu, H.L. Eur. J. Med. Chem., 2014, 80, 92-100.
[3]
Treptow, T.G.; Figueiro, F.; Jandrey, E.H.; Battastini, A.M.; Salbego, C.G.; Hoppe, J.B.; Taborda, P.S.; Rosa, S.B.; Piovesan, L.A. Montes D’Oca Cda, R., Russowsky, D.; Montes D’Oca, M.G. Eur. J. Med. Chem., 2015, 95, 552-562.
[4]
Tsai, C.Y.; Kapoor, V.; Huang, Y.P.; Lin, H.H.; Liang, Y.C.; Lin, Y.L.; Huang, S.C.; Liao, W.N.; Chen, J.K.; Huang, J.S.; Hsu, M.H. Molecules, 2016, 21, 145-153.
[5]
Pajtas, D.; Konya, K.; Szikszai, A.K.; Džubák, P.; Pethő, Z.; Varga, Z.; Panyi, G.; Patonay, T. J. Org. Chem., 2017, 82, 4578-4587.
[6]
Xie, Z.; Wang, G.; Wang, J.; Chen, M.; Peng, Y.; Li, L.; Deng, B.; Chen, S.; Li, W. Molecules, 2017, 22, 659-669.
[7]
Ahn, C.; Hegde, H.; Shetty, N.S. J. Korean Chem. Soc., 2016, 60, 107-110.
[8]
Reji, T.F.A.F.; Devi, S.K.C.; Thomas, K.K.; Sreejalekshmi, K.G.; Manju, S.L.; Francis, M.; Philip, S.K.; Bharathan, A.; Rajasekharan, K.N. Indian J. Chem., 2008, 47B, 1145-1150.
[9]
Sengupta, S.; Smitha, S.L.; Thomas, N.E.; Santoshkumar, T.R.; Devi, S.K.C.; Sreejalekshmi, K.G.; Rajasekharan, K.N. Br. J. Pharmacol., 2005, 145, 1076-1083.
[10]
Thomas, N.E.; Thamkachy, R.; Sivakumar, K.C.; Sreedevi, K.J.; Louis, X.L.; Thomas, S.A.; Kumar, R.; Rajasekharan, K.N.; Cassimeris, L.; Sengupta, S. Mol. Cancer Ther., 2014, 13, 179-189.
[11]
Thomas, S.A.; Vasudevan, S.; Thamkachy, R.; Lekshmi, S.U.; Santhoshkumar, T.R.; Rajasekharan, K.N.; Sengupta, S. Apoptosis, 2013, 18, 713-726.
[12]
Thamkachy, R.; Kumar, R.; Rajasekharan, K.N.; Sengupta, S. Mol. Cancer, 2016, 15, 1-17.
[13]
Juneja, M.; Vanam, U.; Paranthaman, S.; Bharathan, A.; Keerthi, V.S.; Reena, J.K. Rajaram, R.; Rajasekharan, K.N.; Karunagaran, D. Eur. J. Med. Chem., 2013, 63, 474-483.
[14]
Ma, Y.; Gao, H.; Wan, C.; Rao, G.; Mao, Z. Molecules, 2016, 21, 1684-1694.
[15]
Coskun, D.; Tekin, S.; Sandal, S.; Coskun, M.F. J. Chem., 2016.
[http://dx.doi.org/10.1155/2016/7678486]
[16]
Koca, M.; Servi, S.; Kirilmis, C.; Ahmedzade, M.; Kazaz, C.; Ozbek, B.; Otük, G. Eur. J. Med. Chem., 2005, 40, 1351-1352.
[17]
Bazin, M.A.; Bodero, L.; Tomasoni, C.; Rousseau, B.; Roussakis, C.; Marchand, P. Eur. J. Med. Chem., 2013, 69, 823-832.
[18]
Wang, G.W. Chem. Soc. Rev., 2013, 42, 7668-7700.
[19]
Varma, R.S. Green Chem. Lett. Rev., 2007, 1, 37-45.
[20]
Baig, R.B.N.; Varma, R.S. Chem. Soc. Rev., 2012, 41, 1559-1584.
[21]
El-Sayed, T.H.; Aboelnaga, A.; El-Atawy, M.A.; Hagar, M. Molecules, 2018, 23, 1348-1368.
[22]
Gupta, R.; Sharma, D.; Singh, S. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185, 1321-1331.
[23]
Satheesh, S.V.; Radha, A.V.; Girija, K.K.; Maheswari, P.M.; Rajasekharan, K.N. J. Serb. Chem. Soc., 2017, 82, 1087-1095.
[24]
Mabkhot, Y.N.; Barakat, A.; Al-Majid, A.M.; Alshahrani, S.; Yousuf, S.; Choudhary, M.Y. Chem. Cent. J., 2013, 7, 112-120.
[25]
Sreejalekshmi, K.G.; Devi, S.K.C.; Rajasekharan, K.N. Tetrahedron Lett., 2006, 47, 6179-6182.
[26]
Rajasekharan, K.N.; Nair, K.P.; Geetha, C.J. Synthesis, 1986, 5, 353-355.
[27]
Binu, R.; Thomas, K.K.; Jenardanan, G.C.; Rajasekharan, K.N. Org. Prep. Proced. Int., 1998, 30, 93-96.
[28]
Lee, I.Y.; Lee, J.Y.; Lee, H.J.; Gong, Y. Synlett, 2005, 16, 2483-2485.
[29]
Romagnoli, R.; Baraldi, P.G.; Carrion, M.D.; Cruz-Lopez, O.; Cara, C.L.; Basso, G.; Viola, G.; Khedr, M.; Balzarini, J.; Mahboobi, S.; Sellmer, A.; Brancale, A.; Hamel, E. J. Med. Chem., 2009, 52, 5551-5555.
[30]
Jakhar, K.; Makrandi, J.K. Green Chem. Lett. Rev., 2008, 1, 219-221.
[31]
Shobana, S.; Sreerama, Y.N.; Malleshi, N.G. Food Chem., 2009, 115, 1268-1273.
[32]
Priya, R.M.; Padmakumari, K.P. Pharm. Biol., 2012, 50, 1254-1260.
[33]
Apostolidis, E.; Kwon, Y.I.; Shetty, K. Innov. Food Sci. Emerg. Technol., 2007, 8, 46-54.
[35]
Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. J. Comput. Aided Mol. Des., 2013, 27, 221-234.
[36]
Halgren, T. J. Chem. Inf. Model., 2009, 49, 377-389.
[37]
Halgren, T. Chem. Biol. Drug Des., 2007, 69, 146-148.
[38]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. J. Med. Chem., 2004, 47, 1739-1749.
[39]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. J. Med. Chem., 2004, 47, 1750-1759.
[40]
Schrödinger , Release. 2017-1: QikProp; Schrödinger, LLC: New York, NY, 2017.
[41]
Steinbrecher, T.B.; Dahlgren, M.; Cappel, D.; Lin, T.; Wang, L.; Krilov, G.; Abel, R.; Friesner, R.; Sherman, W. J. Chem. Inf. Model., 2015, 55, 2411-2420.
[42]
Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2017. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY. , 2017.
[43]
Guo, Z.; Mohanty, U.; Noehre, J.; Sawyer, T.K.; Sherman, W.; Krilov, G. Chem. Biol. Drug Des., 2010, 75, 348-359.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 7
Year: 2019
Page: [560 - 568]
Pages: 9
DOI: 10.2174/1570178615666180815124425
Price: $58

Article Metrics

PDF: 28
HTML: 2