Aptamer-based Homogeneous Analysis for Food Control

Author(s): Xuhan Xia, Qiang He, Yi Dong, Ruijie Deng*, Jinghong Li*.

Journal Name: Current Analytical Chemistry

Volume 16 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Highly sensitive and rapid analysis of food contaminants is of great significance for food safety control. Aptamer is a new kind of recognition molecules which could be applied for constructing homogeneous analysis assays, potentially achieving highly sensitive, cheap and rapid profiling of food contaminants.

Methods: An overview of the literature concerning the homogeneous analysis of food contaminations based on aptamers has been reviewed (focused on the most recent literature, 2000-2018).

Results: Attributed to aptamer’s controllability, designability and feasibility for the adoption of nucleic acid amplification, rapid, highly sensitive homogeneous assay for various food contaminants could be constructed. The structure-switching aptamer probe would confer quick, efficient and specific response to target food contaminants. Besides, the capability of amplification of aptamer sequences or nucleic acid probes would lead to highly sensitive detection.

Conclusion: Aptamer-based homogeneous analysis methods have already been applied to detect various food contaminations ranging from toxins, heavy metal and pesticide to allergen and pathogenic bacteria. However, it is still a challenge to achieve robust and accurate detection of food contaminants in complex food samples.

Keywords: Aptamer, fluorescence analysis, food safety, homogeneous detection, nanomaterials, nucleic acid amplification.

[1]
Gould, J. Nutrition: A world of insecurity. Nature, 2017, 544(7651), S6-S7.
[http://dx.doi.org/10.1038/544S6a] [PMID: 28445448]
[2]
Pischetsrieder, M. Global food-related challenges: What chemistry has achieved and what remains to be done. Angew. Chem. Int. Ed. Engl., 2018, 57(36), 11476-11477.
[http://dx.doi.org/10.1002/anie.201803504] [PMID: 29737014]
[3]
Centonze, D.; Muscarella, M.; Palermo, C.; Iammarino, M.; Magro, S.L.; Nardiello, D. Recent advances in the post-column derivatization for the determination of mycotoxins in food products and feed materials by liquid chromatography and fluorescence detection. Curr. Anal. Chem., 2014, 10(3), 355-365.
[http://dx.doi.org/10.2174/1573411010999131219102253]
[4]
Bazin, I.; Tria, S.A.; Hayat, A.; Marty, J-L. New biorecognition molecules in biosensors for the detection of toxins. Biosens. Bioelectron., 2017, 87, 285-298.
[http://dx.doi.org/10.1016/j.bios.2016.06.083] [PMID: 27568847]
[5]
Vidal, J.C.; Bonel, L.; Ezquerra, A.; Hernández, S.; Bertolín, J.R.; Cubel, C.; Castillo, J.R. Electrochemical affinity biosensors for detection of mycotoxins: A review. Biosens. Bioelectron., 2013, 49, 146-158.
[http://dx.doi.org/10.1016/j.bios.2013.05.008] [PMID: 23743326]
[6]
Xu, L.; Zhang, Z.; Zhang, Q.; Li, P. Mycotoxin determination in foods using advanced sensors based on antibodies or aptamers. Toxins (Basel), 2016, 8(8), 239.
[http://dx.doi.org/10.3390/toxins8080239] [PMID: 27529281]
[7]
Zhang, Z.; Oni, O.; Liu, J. New insights into a classic aptamer: Binding sites, cooperativity and more sensitive adenosine detection. Nucleic Acids Res., 2017, 45(13), 7593-7601.
[http://dx.doi.org/10.1093/nar/gkx517] [PMID: 28591844]
[8]
Yang, K.A.; Barbu, M.; Halim, M.; Pallavi, P.; Kim, B.; Kolpashchikov, D.M.; Pecic, S.; Taylor, S.; Worgall, T.S.; Stojanovic, M.N. Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors. Nat. Chem., 2014, 6(11), 1003-1008.
[http://dx.doi.org/10.1038/nchem.2058] [PMID: 25343606]
[9]
Ranallo, S.; Rossetti, M.; Plaxco, K.W.; Vallée-Bélisle, A.; Ricci, F. A modular, DNA‐based beacon for single‐step fluorescence detection of antibodies and other proteins. Angew. Chem. Int. Ed. Engl., 2015, 54(45), 13214-13218.
[http://dx.doi.org/10.1002/anie.201505179] [PMID: 26337144]
[10]
Porchetta, A.; Ippodrino, R.; Marini, B.; Caruso, A.; Caccuri, F.; Ricci, F. Programmable nucleic acid nanoswitches for the rapid, single-step detection of antibodies in bodily fluids. J. Am. Chem. Soc., 2018, 140(3), 947-953.
[http://dx.doi.org/10.1021/jacs.7b09347] [PMID: 29313682]
[11]
Dunn, M. R.; Jimenez, R. M.; Chaput, J. C. Analysis of aptamer discovery and technology Nat. Rev. Chem., 2017, 1(10) s41570- 017-0076.
[http://dx.doi.org/10.1038/s41570-017-0076]
[12]
Chen, X.; Wang, Y.; Zhang, Y.; Chen, Z.; Liu, Y.; Li, Z.; Li, J. Sensitive electrochemical aptamer biosensor for dynamic cell surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer-graphene electrode interface. Anal. Chem., 2014, 86(9), 4278-4286.
[http://dx.doi.org/10.1021/ac404070m] [PMID: 24684138]
[13]
Kedzierski, S.; Caltagirone, T.; Khoshnejad, M. Synthetic Antibodies: The Emerging Field of Aptamers. Bioprocess. J., 2013, 11(4), 46-49.
[http://dx.doi.org/10.12665/J114.KedzierskiCaltagirone]
[14]
Zhou, W.; Huang, P-J.J.; Ding, J.; Liu, J. Aptamer-based biosensors for biomedical diagnostics. Analyst (Lond.), 2014, 139(11), 2627-2640.
[http://dx.doi.org/10.1039/c4an00132j] [PMID: 24733714]
[15]
Meng, H-M.; Liu, H.; Kuai, H.; Peng, R.; Mo, L.; Zhang, X-B. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem. Soc. Rev., 2016, 45(9), 2583-2602.
[http://dx.doi.org/10.1039/C5CS00645G] [PMID: 26954935]
[16]
Kim, Y.S.; Raston, N.H.A.; Gu, M.B. Aptamer-based nanobiosensors. Biosens. Bioelectron., 2016, 76(15), 2-19.
[PMID: 26139320]
[17]
Dong, Y.; Xu, Y.; Yong, W.; Chu, X.; Wang, D. Aptamer and its potential applications for food safety. Crit. Rev. Food Sci. Nutr., 2014, 54(12), 1548-1561.
[http://dx.doi.org/10.1080/10408398.2011.642905] [PMID: 24580557]
[18]
Li, H.; Dauphin-Ducharme, P.; Ortega, G.; Plaxco, K.W. Calibration-free electrochemical biosensors supporting accurate molecular measurements directly in undiluted whole blood. J. Am. Chem. Soc., 2017, 139(32), 11207-11213.
[http://dx.doi.org/10.1021/jacs.7b05412] [PMID: 28712286]
[19]
Das, J.; Cederquist, K.B.; Zaragoza, A.A.; Lee, P.E.; Sargent, E.H.; Kelley, S.O. An ultrasensitive universal detector based on neutralizer displacement. Nat. Chem., 2012, 4(8), 642-648.
[http://dx.doi.org/10.1038/nchem.1367] [PMID: 22824896]
[20]
Xiang, Y.; Lu, Y. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat. Chem., 2011, 3(9), 697-703.
[http://dx.doi.org/10.1038/nchem.1092] [PMID: 21860458]
[21]
Duan, N.; Wu, S.; Dai, S.; Gu, H.; Hao, L.; Ye, H.; Wang, Z. Advances in aptasensors for the detection of food contaminants. Analyst (Lond.), 2016, 141(13), 3942-3961.
[http://dx.doi.org/10.1039/C6AN00952B] [PMID: 27265444]
[22]
Song, S.; Gao, Z.; Guo, X.; Chen, G. Aptamer-Based detection methodology studies in food safety. Food Anal. Methods, 2019, 12, 966-990.
[23]
Ma, H.; Liu, J.; Ali, M.M.; Mahmood, M.A.; Labanieh, L.; Lu, M.; Iqbal, S.M.; Zhang, Q.; Zhao, W.; Wan, Y. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem. Soc. Rev., 2015, 44(5), 1240-1256.
[http://dx.doi.org/10.1039/C4CS00357H] [PMID: 25561050]
[24]
Zhang, L.; Wan, S.; Jiang, Y.; Wang, Y.; Fu, T.; Liu, Q.; Cao, Z.; Qiu, L.; Tan, W. Molecular elucidation of disease biomarkers at the Interface of chemistry and biology. J. Am. Chem. Soc., 2017, 139(7), 2532-2540.
[http://dx.doi.org/10.1021/jacs.6b10646] [PMID: 28121431]
[25]
Caglayan, M.O. Electrochemical aptasensors for early cancer diagnosis: A review. Curr. Anal. Chem., 2017, 13(1), 18-30.
[http://dx.doi.org/10.2174/1573411012666160601142051]
[26]
McKeague, M.; Derosa, M.C. Challenges and opportunities for small molecule aptamer development. J. Nucleic Acids, 2012, 2012748913
[http://dx.doi.org/10.1155/2012/748913] [PMID: 23150810]
[27]
Xia, X.; Wang, H.; Yang, H.; Deng, S.; Deng, R.; Dong, Y.; He, Q. Dual-Terminal stemmed aptamer beacon for Label-Free detection of Aflatoxin B1 in broad bean paste and peanut oil via Aggregation-Induced emission. J. Agric. Food Chem., 2018, 66, 12431-12438.
[28]
Xia, X.; Wang, Y.; Yang, H.; Dong, Y.; Zhang, K.; Lu, Y.; Deng, R.; He, Q. Enzyme-free amplified and ultrafast detection of aflatoxin B1 using dual-terminal proximity aptamer probes. Food Chem., 2019, 283, 32-38.
[29]
Amaya-González, S.; de-los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J. Aptamer-based analysis: A promising alternative for food safety control. Sensors (Basel), 2013, 13(12), 16292-16311.
[http://dx.doi.org/10.3390/s131216292] [PMID: 24287543]
[30]
Wang, J.; Yu, J.; Yang, Q.; McDermott, J.; Scott, A.; Vukovich, M.; Lagrois, R.; Gong, Q.; Greenleaf, W.; Eisenstein, M.; Ferguson, B.S.; Soh, H.T. Multi-parameter particle display (MPPD): A quantitative screening method for discovery of highly specific aptamers. Angew. Chem. Int. Ed. Engl., 2017, 56(3), 744-747.
[http://dx.doi.org/10.1002/anie.201608880] [PMID: 27933702]
[31]
Cruz-Aguado, J.A.; Penner, G. Determination of ochratoxin a with a DNA aptamer. J. Agric. Food Chem., 2008, 56(22), 10456-10461.
[http://dx.doi.org/10.1021/jf801957h] [PMID: 18983163]
[32]
Chen, Y.; Li, H.; Gao, T.; Zhang, T.; Xu, L.; Wang, B.; Wang, J.; Pei, R. Selection of DNA aptamers for the development of light-up biosensor to detect Pb (II). Sensor. Actuat. B-chem., 2018, 254, 214-221.
[33]
Wang, H.; Cheng, H.; Wang, J.; Xu, L.; Chen, H.; Pei, R. Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd(II). Talanta, 2016, 154(1), 498-503.
[http://dx.doi.org/10.1016/j.talanta.2016.04.005] [PMID: 27154706]
[34]
Joshi, R.; Janagama, H.; Dwivedi, H.P.; Senthil Kumar, T.M.; Jaykus, L-A.; Schefers, J.; Sreevatsan, S. Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol. Cell. Probes, 2009, 23(1), 20-28.
[http://dx.doi.org/10.1016/j.mcp.2008.10.006] [PMID: 19049862]
[35]
Cao, X.; Li, S.; Chen, L.; Ding, H.; Xu, H.; Huang, Y.; Li, J.; Liu, N.; Cao, W.; Zhu, Y.; Shen, B.; Shao, N. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res., 2009, 37(14), 4621-4628.
[http://dx.doi.org/10.1093/nar/gkp489] [PMID: 19498077]
[36]
Davydova, A.; Vorobjeva, M.; Pyshnyi, D.; Altman, S.; Vlassov, V.; Venyaminova, A. Aptamers against pathogenic microorganisms. Crit. Rev. Microbiol., 2016, 42(6), 847-865.
[http://dx.doi.org/10.3109/1040841X.2015.1070115] [PMID: 26258445]
[37]
Shahdordizadeh, M.; Taghdisi, S.M.; Ansari, N.; Langroodi, F.A.; Abnous, K.; Ramezani, M. Aptamer based biosensors for detection of Staphylococcus aureus. Sensor. Actuat. B-chem., 2017, 241, 619-635.
[38]
Djordjevic, M. SELEX experiments: New prospects, applications and data analysis in inferring regulatory pathways. Biomol. Eng., 2007, 24(2), 179-189.
[http://dx.doi.org/10.1016/j.bioeng.2007.03.001] [PMID: 17428731]
[39]
Wang, Y.; Li, Z.; Weber, T.J.; Hu, D.; Lin, C.T.; Li, J.; Lin, Y. In situ live cell sensing of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets. Anal. Chem., 2013, 85(14), 6775-6782.
[http://dx.doi.org/10.1021/ac400858g] [PMID: 23758346]
[40]
Wang, Y.; Tang, L.; Li, Z.; Lin, Y.; Li, J. In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet-based sensing platform in living cells. Nat. Protoc., 2014, 9(8), 1944-1955.
[http://dx.doi.org/10.1038/nprot.2014.126] [PMID: 25058642]
[41]
Sanzani, S.M.; Reverberi, M.; Fanelli, C.; Ippolito, A. Detection of ochratoxin A using molecular beacons and real-time PCR thermal cycler. Toxins (Basel), 2015, 7(3), 812-820.
[http://dx.doi.org/10.3390/toxins7030812] [PMID: 25760080]
[42]
Zhou, L.; Sun, N.; Xu, L.; Chen, X.; Cheng, H.; Wang, J.; Pei, R. Dual signal amplification by an “on-command” pure DNA hydrogel encapsulating HRP for colorimetric detection of ochratoxin A. RSC Advances, 2016, 6(115), 114500-114504.
[http://dx.doi.org/10.1039/C6RA23462C]
[43]
Xia, F.; Zuo, X.; Yang, R.; Xiao, Y.; Kang, D.; Vallée-Bélisle, A.; Gong, X.; Yuen, J.D.; Hsu, B.B.; Heeger, A.J.; Plaxco, K.W. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc. Natl. Acad. Sci. USA, 2010, 107(24), 10837-10841.
[http://dx.doi.org/10.1073/pnas.1005632107] [PMID: 20534499]
[44]
So, H-M.; Won, K.; Kim, Y.H.; Kim, B-K.; Ryu, B.H.; Na, P.S.; Kim, H.; Lee, J-O. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc., 2005, 127(34), 11906-11907.
[http://dx.doi.org/10.1021/ja053094r] [PMID: 16117506]
[45]
Lu, C.H.; Li, J.; Lin, M.H.; Wang, Y.W.; Yang, H.H.; Chen, X.; Chen, G.N. Amplified aptamer-based assay through catalytic recycling of the analyte. Angew. Chem. Int. Ed. Engl., 2010, 49(45), 8454-8457.
[http://dx.doi.org/10.1002/anie.201002822] [PMID: 20878817]
[46]
Hu, J.; Wang, Z.; Li, J. Gold nanoparticles with special shapes: controlled synthesis, surface-enhanced raman scattering, and the application in biodetection. Sensors (Basel), 2007, 7(12), 3299-3311.
[http://dx.doi.org/10.3390/s7123299] [PMID: 28903295]
[47]
Sabela, M.; Balme, S.; Bechelany, M.; Janot, J.M.; Bisetty, K. A review of gold and silver nanoparticle‐based colorimetric sensing Assays. Adv. Eng. Mater., 2017, 19(12)1700270
[http://dx.doi.org/10.1002/adem.201700270]
[48]
Luan, Y.; Chen, Z.; Xie, G.; Chen, J.; Lu, A.; Li, C.; Fu, H.; Ma, Z.; Wang, J. Rapid Visual Detection of Aflatoxin B1 by Label-Free Aptasensor Using Unmodified Gold Nanoparticles. J. Nanosci. Nanotechnol., 2015, 15(2), 1357-1361.
[http://dx.doi.org/10.1166/jnn.2015.9225] [PMID: 26353655]
[49]
Kim, Y.S.; Kim, J.H.; Kim, I.A.; Lee, S.J.; Jurng, J.; Gu, M.B. A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens. Bioelectron., 2010, 26(4), 1644-1649.
[http://dx.doi.org/10.1016/j.bios.2010.08.046] [PMID: 20829027]
[50]
Johnson, R.R.; Johnson, A.T.; Klein, M.L. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett., 2008, 8(1), 69-75.
[http://dx.doi.org/10.1021/nl071909j] [PMID: 18069867]
[51]
Zhang, Q.; Qiao, Y.; Hao, F.; Zhang, L.; Wu, S.; Li, Y.; Li, J.; Song, X.M. Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chemistry, 2010, 16(27), 8133-8139.
[http://dx.doi.org/10.1002/chem.201000684] [PMID: 20583058]
[52]
Kong, R-M.; Ding, L.; Wang, Z.; You, J.; Qu, F. A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Anal. Bioanal. Chem., 2015, 407(2), 369-377.
[http://dx.doi.org/10.1007/s00216-014-8267-9] [PMID: 25366976]
[53]
Kong, R-M.; Zhang, X.; Ding, L.; Yang, D.; Qu, F. Label-free fluorescence turn-on aptasensor for prostate-specific antigen sensing based on aggregation-induced emission-silica nanospheres. Anal. Bioanal. Chem., 2017, 409(24), 5757-5765.
[http://dx.doi.org/10.1007/s00216-017-0519-z] [PMID: 28741111]
[54]
Lv, L.; Cui, C.; Liang, C.; Quan, W.; Wang, S.; Guo, Z. Aptamer-based single-walled carbon nanohorn sensors for ochratoxin A detection. Food Control, 2016, 60(296-301), 296-301.
[http://dx.doi.org/10.1016/j.foodcont.2015.08.002]
[55]
Lu, Z.; Chen, X.; Wang, Y.; Zheng, X.; Li, C.M. Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Mikrochim. Acta, 2015, 182(3-4), 571-578.
[http://dx.doi.org/10.1007/s00604-014-1360-0]
[56]
Wang, Y.; Ma, T.; Ma, S.; Liu, Y.; Tian, Y.; Wang, R.; Jiang, Y.; Hou, D.; Wang, J. Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS 2 nanosheets and carbon dots. Mikrochim. Acta, 2016, 184(1), 1-8.
[http://dx.doi.org/10.1007/s00604-017-2562-z] [PMID: 29594366]
[57]
Chen, L.; Wen, F.; Li, M.; Guo, X.; Li, S.; Zheng, N.; Wang, J. A simple aptamer-based fluorescent assay for the detection of Aflatoxin B1 in infant rice cereal. Food Chem., 2017, 215(15), 377-382.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.148] [PMID: 27542489]
[58]
Chen, J.; Fang, Z.; Liu, J.; Zeng, L. A simple and rapid biosensor for ochratoxin A based on a structure-switching signaling aptamer. Food Control, 2012, 25(2), 555-560.
[http://dx.doi.org/10.1016/j.foodcont.2011.11.039]
[59]
Shim, W.B.; Mun, H.; Joung, H.A.; Ofori, J.A.; Chung, D.H.; Kim, M.G. Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples. Food Control, 2014, 36(1), 30-35.
[http://dx.doi.org/10.1016/j.foodcont.2013.07.042]
[60]
Hindson, C.M.; Chevillet, J.R.; Briggs, H.A.; Gallichotte, E.N.; Ruf, I.K.; Hindson, B.J.; Vessella, R.L.; Tewari, M. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods, 2013, 10(10), 1003-1005.
[http://dx.doi.org/10.1038/nmeth.2633] [PMID: 23995387]
[61]
Guo, X.; Wen, F.; Zheng, N.; Luo, Q.; Wang, H.; Wang, H.; Li, S.; Wang, J. Development of an ultrasensitive aptasensor for the detection of aflatoxin B1. Biosens. Bioelectron., 2014, 56(1), 340-344.
[http://dx.doi.org/10.1016/j.bios.2014.01.045] [PMID: 24549114]
[62]
Ma, W.; Yin, H.; Xu, L.; Xu, Z.; Kuang, H.; Wang, L.; Xu, C. Femtogram ultrasensitive aptasensor for the detection of Ochratoxin A. Biosens. Bioelectron., 2013, 42(1), 545-549.
[http://dx.doi.org/10.1016/j.bios.2012.11.024] [PMID: 23261687]
[63]
Reid, M.S.; Le, X.C.; Zhang, H. Exponential isothermal amplification of nucleic acids and amplified assays for proteins, cells, and enzyme activities. Angew. Chem. Int. Ed., 2018, 57(37), 11856-11866.
[http://dx.doi.org/10.1002/anie.201712217] [PMID: 29704305]
[64]
Compton, J. Nucleic acid sequence-based amplification. Nature, 1991, 350(6313), 91-92.
[http://dx.doi.org/10.1038/350091a0] [PMID: 1706072]
[65]
Walker, G.T.; Fraiser, M.S.; Schram, J.L.; Little, M.C.; Nadeau, J.G.; Malinowski, D.P. Strand displacement amplification--an isothermal, in vitro DNA amplification technique. Nucleic Acids Res., 1992, 20(7), 1691-1696.
[http://dx.doi.org/10.1093/nar/20.7.1691] [PMID: 1579461]
[66]
Xu, J.; Zheng, T.; Le, J.; Jia, L. Long-stem shaped multifunctional molecular beacon for highly sensitive nucleic acids determination via intramolecular and intermolecular interactions based strand displacement amplification. Analyst (Lond.), 2017, 142(23), 4438-4445.
[http://dx.doi.org/10.1039/C7AN01205E] [PMID: 29082392]
[67]
Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc., 2008, 3(5), 877-882.
[http://dx.doi.org/10.1038/nprot.2008.57] [PMID: 18451795]
[68]
Deng, R.; Zhang, K.; Li, J. Isothermal Amplification for MicroRNA Detection: From the Test Tube to the Cell. Acc. Chem. Res., 2017, 50(4), 1059-1068.
[http://dx.doi.org/10.1021/acs.accounts.7b00040] [PMID: 28355077]
[69]
Ali, M.M.; Li, F.; Zhang, Z.; Zhang, K.; Kang, D.K.; Ankrum, J.A.; Le, X.C.; Zhao, W. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev., 2014, 43(10), 3324-3341.
[http://dx.doi.org/10.1039/c3cs60439j] [PMID: 24643375]
[70]
Deng, R.; Zhang, K.; Sun, Y.; Ren, X.; Li, J. Highly specific imaging of mRNA in single cells by target RNA-initiated rolling circle amplification. Chem. Sci. (Camb.), 2017, 8(5), 3668-3675.
[http://dx.doi.org/10.1039/C7SC00292K] [PMID: 28580104]
[71]
Deng, R.; Zhang, K.; Wang, L.; Ren, X.; Sun, Y.; Li, J. DNA-Sequence-Encoded Rolling Circle Amplicon for Single-Cell RNA Imaging. Chem, 2018, 4(6), 1373-1386.
[http://dx.doi.org/10.1016/j.chempr.2018.03.003]
[72]
Deng, R.; Tang, L.; Tian, Q.; Wang, Y.; Lin, L.; Li, J. Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells. Angew. Chem. Int. Ed. Engl., 2014, 53(9), 2389-2393.
[http://dx.doi.org/10.1002/anie.201309388] [PMID: 24469913]
[73]
Zhang, Y.; Yang, L.; Lin, C.; Guo, L.; Qiu, B.; Lin, Z.; Chen, G. Fluorescence aptasensor for Ochratoxin A in food samples based on hyperbranched rolling circle amplification. Anal. Methods, 2015, 7(15), 6109-6113.
[http://dx.doi.org/10.1039/C5AY01182E]
[74]
Tong, P.; Zhao, W.W.; Zhang, L.; Xu, J.J.; Chen, H.Y. Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification. Biosens. Bioelectron., 2012, 33(1), 146-151.
[http://dx.doi.org/10.1016/j.bios.2011.12.042] [PMID: 22270050]
[75]
Hun, X.; Liu, F.; Mei, Z.; Ma, L.; Wang, Z.; Luo, X. Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A. Biosens. Bioelectron., 2013, 39(1), 145-151.
[http://dx.doi.org/10.1016/j.bios.2012.07.005] [PMID: 22938841]
[76]
Zhou, Y.; Liu, B.; Yang, R.; Liu, J. Filling in the gaps between nanozymes and enzymes: challenges and opportunities. Bioconjug. Chem., 2017, 28(12), 2903-2909.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00673] [PMID: 29172463]
[77]
Liu, B.; Liu, J. Surface modification of nanozymes. Nano Res., 2017, 10(4), 1125-1148.
[http://dx.doi.org/10.1007/s12274-017-1426-5]
[78]
Wang, C.; Qian, J.; Wang, K.; Yang, X.; Liu, Q.; Hao, N.; Wang, C.; Dong, X.; Huang, X. Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator. Biosens. Bioelectron., 2016, 77(15), 1183-1191.
[http://dx.doi.org/10.1016/j.bios.2015.11.004] [PMID: 26583358]
[79]
Luan, Q.; Gan, N.; Cao, Y.; Li, T. Mimicking enzyme-based colorimetric aptasensor for antibiotic residue detection in milk combining magnetic Loop-DNA probes and CHA-assisted target recycling amplification. J. Agric. Food Chem., 2017, 65(28), 5731-5740.
[http://dx.doi.org/10.1021/acs.jafc.7b02139] [PMID: 28654744]
[80]
Luo, Y.; He, L.; Zhan, S.; Wu, Y.; Liu, L.; Zhi, W.; Zhou, P. Ultrasensitive resonance scattering (RS) spectral detection for trace tetracycline in milk using aptamer-coated nanogold (ACNG) as a catalyst. J. Agric. Food Chem., 2014, 62(5), 1032-1037.
[http://dx.doi.org/10.1021/jf403566e] [PMID: 24400926]
[81]
Willner, I.; Shlyahovsky, B.; Zayats, M.; Willner, B. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem. Soc. Rev., 2008, 37(6), 1153-1165.
[http://dx.doi.org/10.1039/b718428j] [PMID: 18497928]
[82]
Yang, C.; Lates, V.; Prieto-Simón, B.; Marty, J.L.; Yang, X. Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme-aptamer conjugates in wine. Talanta, 2013, 116(22), 520-526.
[http://dx.doi.org/10.1016/j.talanta.2013.07.011] [PMID: 24148439]
[83]
Seok, Y.; Byun, J.Y.; Shim, W.B.; Kim, M.G. A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme. Anal. Chim. Acta, 2015, 886(30), 182-187.
[http://dx.doi.org/10.1016/j.aca.2015.05.041] [PMID: 26320651]
[84]
Jung, C.; Ellington, A.D. Diagnostic applications of nucleic acid circuits. Acc. Chem. Res., 2014, 47(6), 1825-1835.
[http://dx.doi.org/10.1021/ar500059c] [PMID: 24828239]
[85]
Dirks, R.M.; Pierce, N.A. Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA, 2004, 101(43), 15275-15278.
[http://dx.doi.org/10.1073/pnas.0407024101] [PMID: 15492210]
[86]
Wang, C.; Dong, X.; Liu, Q.; Wang, K. Label-free colorimetric aptasensor for sensitive detection of ochratoxin A utilizing hybridization chain reaction. Anal. Chim. Acta, 2015, 860(20), 83-88.
[http://dx.doi.org/10.1016/j.aca.2014.12.031] [PMID: 25682251]
[87]
Mun, H.; Jo, E.J.; Li, T.; Joung, H.A.; Hong, D.G.; Shim, W.B.; Jung, C.; Kim, M.G. Homogeneous assay of target molecules based on chemiluminescence resonance energy transfer (CRET) using DNAzyme-linked aptamers. Biosens. Bioelectron., 2014, 58(1), 308-313.
[http://dx.doi.org/10.1016/j.bios.2014.02.008] [PMID: 24658027]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2020
Page: [4 - 13]
Pages: 10
DOI: 10.2174/1573411014666180810125737
Price: $65

Article Metrics

PDF: 19
HTML: 4