Synthesis of Polyaniline/Zn Bismuthate Nanocomposites and Sensitive Formaldehyde Sensing Performance

Author(s): Lizhai Pei, Fanglv Qiu, Yue Ma, Feifei Lin, Chuangang Fan*, Xianzhang Ling*.

Journal Name: Current Nanoscience

Volume 15 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Formaldehyde belongs to important pollutant and is usually found in liquid environment, such as juices, beer, cleaning products and biological fluid of the human. The electrochemical sensors using glassy carbon electrode (GCE) modified with polyaniline/Zn bismuthate nanocomposites can effectively detect formaldehyde with broad linear range and good reproducibility.

Methods: Polyaniline/Zn bismuthate nanocomposites were prepared by in-situ aniline polymerizing route in aqueous solution. The structure and morphologies of the nanocomposites were analyzed by X-ray diffraction (XRD) and transmission electron microscopy. The electrochemical performance for formaldehyde detection has been investigated by cyclic voltammetry (CV) method using polyaniline/ Zn bismuthate nanocomposites modified GCE.

Results: XRD shows that ZnBi38O58 phase exists in the nanocomposites. Amorphous polyaniline attaches to the surface of the Zn bismuthate nanorods. The 20wt.% polyaniline/Zn bismuthate nanocomposites modified GCE shows an irreversible cyclic voltammetry (CV) peak at –0.06 V. The peak current increases sharply with increased scan rate, formaldehyde concentration and acidity. The electrochemical response dependences including the linear range, detection limit were analyzed. 20wt.% polyaniline/Zn bismuthate nanocomposites modified GCE shows low detection limit of 0.0095 µM and wide linear range of 0.00001-2 mM. The detection limit for formaldehyde decreases from 0.028 µM to 0.0075 µM with the increase in the polyaniline content from 10wt.% to 40wt.%.

Conclusion: The low detection limit and wide linear range make the nanocomposites modified GCE valuable for sensor application. Polyaniline/Zn bismuthate nanocomposites are identified as the prominent electrode materials for sensitive formaldehyde detection.

Keywords: Polyaniline, Zn bismuthate nanorods, nanocomposites, glassy carbon electrode, formaldehyde, electrochemistry.

[1]
Kawamura, K.; Kerman, K.; Fujihara, M.; Nagatani, N.; Hashiba, T.; Tamiya, E. Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sens. Actuators B Chem., 2005, 105, 495-501.
[2]
Roberts, R.J.; Evans, P.D. Effects of manufacturing variables on surface quality and distribution of melamine formaldehyde resin in paper laminates. Compos. Part A, 2005, 36, 95-104.
[3]
Pan, Y.X.; Wang, W.C.; Peng, C.; Shi, K.; Luo, Y.X.; Ji, X.L. Novel hydrophobic polyvinyl alcohol–formaldehyde foams for organic solvents absorption and effective separation. RSC Advances, 2013, 4, 660-669.
[4]
Antora, R.A.; Hossain, M.P.; Shiraj-Um-Monira, S.; Aziz, M.G. Effect of formaldehyde on some post-harvest qualities and shelf-life of selected fruits and vegetables. JABU, 2018, 16, 151-157.
[5]
Yi, F.; Liu, L.Z.; Zhang, M.J.; Wang, T.T.; Ye, J.N.; Chu, Q.C. Electrophoretic determination of formaldehyde in human urine: Application to Alzheimer’s disease. Anal. Lett., 2018, 51, 1358-1372.
[6]
Wang, Y.; Zhang, G.W.; Zhang, F.; Chu, T.S.; Yang, Y.Y. A novel lanthanide MOF thin film: The highly performance self-calibrating luminescent sensor for detecting formaldehyde as an illegal preservative in aquatic product. Sens. Actuators B Chem., 2017, 251, 667-673.
[7]
Peng, B.; Zhang, J.H.; Wu, C.H.; Li, S.Q.; Li, Y.B.; Gao, H.X.; Lu, R.H.; Zhou, W.F. Use of ionic liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography to detect formaldehyde in air, water, and soil samples. J. Liq. Chromatogr. Relat. Technol., 2014, 37, 815-828.
[8]
Gu, D.C.; Zou, M.J.; Guo, X.X.; Xu, P.; Lin, Z.W.; Hu, T.; Wu, Y.F.; Liu, Y.; Gan, J.H.; Sun, S.Q.; Wang, X.C.; Xu, C.H. A rapid analytical and quantitative evaluation of formaldehyde in squid based on Tri-step IR and partial least squares (PLS). Food Chem., 2017, 229, 458-463.
[9]
Wang, L.Y.; Zhu, Y.; Xiang, Q.; Cheng, Z.X.; Chen, Y.; Xu, J.Q. One novel humidity-resistance formaldehyde molecular probe based hydrophobic diphenyl sulfone urea dry-gel: Synthesis, sensing performance and mechanism. Sens. Actuators B Chem., 2017, 251, 590-600.
[10]
Bianchi, F.; Careri, M.; Musci, M.; Mangia, A. Fish and food safety: Determination of formaldehyde in 12 fish species by SPME extraction and GC–MS analysis. Food Chem., 2007, 100, 1049-1053.
[11]
Wang, L.Y.; Wang, Z.X.; Xiang, Q.; Chen, Y.; Duan, Z.M.; Xu, J.Q. High performance formaldehyde detection based on a novel copper(II) complex functionalized QCM gas sensor. Sens. Actuators B Chem., 2017, 248, 820-828.
[12]
Teixeira, L.S.G.; Leā, E.S.; Dantas, A.F.; Pinheiro, H.L.C.; Costa, A.C.S.; Andrade, J.B.D. Determination of formaldehyde in Brazilian alcohol fuels by flow-injection solid phase spectrophotometry. Talanta, 2004, 64, 711-715.
[13]
Zhang, Y.; Zhang, M.; Cai, Z.Q.; Chen, M.Q.; Cheng, F.L. A novel electrochemical sensor for formaldehyde based on palladium nanowire arrays electrode in alkaline media. Electrochim. Acta, 2012, 68, 172-177.
[14]
Ozoner, S.K.; Erhan, E.; Yilmaz, F.; Ergenekon, P.; Anild, I. Electrochemical biosensor for detection of formaldehyde in rain water. J. Chem. Technol. Biotechnol., 2013, 88, 727-732.
[15]
Zhou, Z.L.; Kang, T.F.; Zhang, Y.; Cheng, S.Y. Electrochemical sensor for formaldehyde based on Pt-Pd nanoparticles and a Nafion-modified glassy carbon electrode. Mikrochim. Acta, 2009, 164, 133-138.
[16]
Kwang-Hua, C.R. Non-equilibrium normal and critical transport of electrons in strontium-doped bismuthate cuprates. Superlattices Microstruct., 2014, 69, 144-148.
[17]
Sun, Y.Z.; Yang, M.; Pan, J.; Wang, P.Y.; Li, W.; Wan, P.Y. Manganese dioxide-supported silver bismuthate as an efficient electrocatalyst for oxygen reduction reaction in zinc-oxygen batteries. Electrochim. Acta, 2016, 197, 68-76.
[18]
Zhang, Y.; Lin, F.F.; Wei, T.; Pei, L.Z. Facile hydrothermal synthesis of Cu bismuthate nanosheets and senstive electrochemical detection of tartaric acid. J. Alloys Compd., 2017, 723, 1062-1069.
[19]
Pei, L.Z.; Wei, T.; Lin, N.; Fan, C.G.; Yang, Z. Aluminium bismuthate nanorods and electrochemical performance for the detection of tartaric acid. J. Alloys Compd., 2016, 679, 39-46.
[20]
Pei, L.Z.; Wei, T.; Lin, N.; Cai, Z.Y.; Fan, C.G.; Yang, Z. Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of L-cysteine. J. Electrochem. Soc., 2016, 163, H1-H8.
[21]
Padmanaban, A.; Dhanasekaran, T.; Manigandan, R.; Kumar, S.P.; Gnanamoorthy, G.; Stephen, A.; Narayanan, V. Facile solvothermal decomposition synthesis of single phase ZnBi38O60 nanobundles for sensitive detection of 4-nitrophenol. New J. Chem., 2017, 41, 7020-7027.
[22]
Liao, Y.Z.; Zhang, C.; Zhang, Y.; Strong, V.; Tang, J.S.; Li, X.G.; Kalantar-zadeh, K.; Hoek, E.M.V.; Wang, K.L.; Kaner, R.B. Carbon nanotube/polyaniline composite nanofibers: Facile synthesis and chemosensors. Nano Lett., 2011, 11, 954-959.
[23]
Sivakumar, M.; Sakthivel, M.; Chen, S.M.; Pandi, K.; Chen, T.W.; Yu, M.C. An electrochemical selective detection of nitrite sensor for polyaniline doped graphene oxide modified electrode. Int. J. Electrochem. Sci., 2017, 12, 4835-4846.
[24]
Pei, L.Z.; Cai, Z.Y.; Xie, Y.K.; Pei, Y.Q.; Fan, C.G.; Fu, D.G. Electrochemical behaviors of ascorbic acid at CuGeO3/polyaniline nanowire modified glassy carbon electrode. J. Electrochem. Soc., 2012, 159, G107-G111.
[25]
Xiang, C.L.; Zou, Y.J.; Qiu, S.J.; Sun, L.X.; Xu, F.; Zhou, H.Y. Bienzymatic glucose biosensor based on direct electrochemistry of cytochrome c on gold nanoparticles/polyaniline nanospheres composite. Talanta, 2013, 110, 96-100.
[26]
Liu, J.; Wan, M.X. Composites of polypyrrole with conducting and ferromagnetic behaviors. J. Polym. Sci. A Part Polym. Chem., 2000, 38, 2734-2739.
[27]
Deng, J.G.; Ding, X.B.; Zhang, W.C.; Peng, Y.X.; Wang, J.H.; Long, X.P.; Li, P.; Chan, A.S.C. Carbon nanotube-polyaniline hybrid materials. Eur. Polym. J., 2002, 38, 2497-2501.
[28]
Zhang, J.; Wang, S.R.; Xu, M.J.; Wang, Y.; Xia, H.J.; Zhang, S.M.; Guo, X.Z.; Wu, S.H. Polypyrrole-coated SnO2 hollow spheres and their application for ammonia sensor. J. Phys. Chem. C, 2009, 113, 1662-1665.
[29]
Yan, R.W.; Jin, B.K. Study of the electrochemical oxidation mechanism of formaldehyde on gold electrode in alkaline solution. Chin. Chem. Lett., 2013, 24, 159-162.
[30]
Safavi, A.; Maleki, N.; Farjami, F.; Farjami, E. Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode. J. Electroanal. Chem. , 2009, 626, 75-79.
[31]
Ivanov, S.; Lange, U.; Tsakova, V.; Mirsky, V.M. Electrocatalytically active nanocomposite from palladium nanoparticles and polyaniline: Oxidation of hydrazine. Sens. Actuators B Chem., 2010, 150, 271-278.
[32]
Li, Z.J.; Zhang, Z.R.; Kay, B.D.; Dohnalek, Z. Polymerization of formaldehyde and acetaldehyde on ordered (WO3)3 films on Pt(111). J. Phys. Chem. C, 2011, 115, 9692-9700.
[33]
Ali, M.B.; Gonchar, M.; Gayda, G.; Paryzhak, S.; Maaref, M.A.; Jaffrezic-Renault, N.; Korpan, Y. Formaldehyde-sensitive sensor based on recombinant formaldehyde dehydrogenase using capacitance versus voltage measurements. Biosens. Bioelectron., 2007, 22, 2790-2795.
[34]
Yi, Q.F.; Niu, F.J.; Yu, W.Q. Pd-modified TiO2 electrode for electrochemical oxidation of hydrazine, formaldehyde and glucose. Thin Solid Films, 2011, 519, 3155-3161.
[35]
Jin, G.P.; Li, J.; Peng, X. Preparation of platinum nanoparticles on polyaniline-coat multi-walled carbon nanotubes for adsorptive stripping voltammetric determination of formaldehyde in aqueous solution. J. Appl. Electrochem., 2009, 39, 1889-1896.
[36]
Shimomura, T.; Itoh, T.; Sumiya, T.; Mizukami, F.; Ono, M. Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sens. Actuators B Chem., 2008, 135, 268-275.
[37]
Pazalja, M.; Kahrović, E.; Zahirović, A.; Turkušić, E. Electrochemical sensor for determination of L-cysteine based on carbon electrodes modified with Ru(III) Schiff base complex, carbon nanoutbes and Nafion. Int. J. Electrochem. Sci., 2016, 11, 10939-10952.
[38]
Zhang, F.; Wu, J.; Wang, R.; Wang, L.; Ying, Y. Portable pH-inspired electrochemical detection of DNA amplification. Chem. Commun. , 2014, 50, 8416-8419.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 5
Year: 2019
Page: [492 - 500]
Pages: 9
DOI: 10.2174/1573413714666180809113244
Price: $65

Article Metrics

PDF: 35
HTML: 2

Special-new-year-discount