Understanding and Preventing Adverse Effects of Tacrolimus Metabolization in Transplant Patients

Author(s): Eleonore Fröhlich*.

Journal Name: Current Drug Metabolism

Volume 20 , Issue 13 , 2019


[1]
Rana, A.; Gruessner, A.; Agopian, V.G.; Khalpey, Z.; Riaz, I.B.; Kaplan, B.; Halazun, K.J.; Busuttil, R.W.; Gruessner, R.W. Survival benefit of solid-organ transplant in the United States. JAMA Surg., 2015, 150, 252-259.
[2]
Han, S.S.; Kim, D.H.; Lee, S.M.; Han, N.Y.; Oh, J.M.; Ha, J.; Kim, Y.S. Pharmacokinetics of tacrolimus according to body composition in recipients of kidney transplants. Kidney Res. Clin. Pract., 2012, 31, 157-162.
[3]
de Jonge, H.; de Loor, H.; Verbeke, K.; Vanrenterghem, Y.; Kuypers, D.R. In vivo CYP3A4 activity, CYP3A5 genotype, and hematocrit predict tacrolimus dose requirements and clearance in renal transplant patients. Clin. Pharmacol. Ther., 2012, 92, 366-375.
[4]
Saitoh, H.; Saikachi, Y.; Kobayashi, M.; Yamaguchi, M.; Oda, M.; Yuhki, Y.; Achiwa, K.; Tadano, K.; Takahashi, Y.; Aungst, B.J. Limited interaction between tacrolimus and P-glycoprotein in the rat small intestine. Eur. J. Pharm. Sci., 2006, 28, 34-42.
[5]
Claudio-Campos, K.; Duconge, J.; Cadilla, C.L.; Ruano, G. Pharmacogenetics of drug-metabolizing enzymes in US Hispanics. Drug Metab. Pers. Ther., 2015, 30, 87-105.
[6]
Staatz, C.E.; Goodman, L.K.; Tett, S.E. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin. Pharmacokinet., 2010, 49, 141-175.
[7]
Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; Maurel, P.; Relling, M.; Brimer, C.; Yasuda, K.; Venkataramanan, R.; Strom, S.; Thummel, K.; Boguski, M.S.; Schuetz, E. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet., 2001, 27, 383-391.
[8]
Andrews, L.M.; De Winter, B.C.; Van Gelder, T.; Hesselink, D.A. Consideration of the ethnic prevalence of genotypes in the clinical use of tacrolimus. Pharmacogenomics, 2016, 17, 1737-1740.
[9]
Schütte-Nütgen, K.; Thölking, G.; Suwelack, B.; Reuter, S. Tacrolimus - pharmacokinetic considerations for clinicians. Curr. Drug Metab., 2018, 19, 342-350.
[10]
Undre, N.A. Pharmacokinetics of tacrolimus-based combination therapies. Nephrol. Dial. Transplant., 2003, 18(Suppl. 1), i12-i15.
[11]
Paine, M.F.; Hart, H.L.; Ludington, S.S.; Haining, R.L.; Rettie, A.E.; Zeldin, D.C. The human intestinal cytochrome P450 “pie”. Drug Metab. Dispos., 2006, 34, 880-886.
[12]
von Richter, O.; Burk, O.; Fromm, M.F.; Thon, K.P.; Eichelbaum, M.; Kivisto, K.T. Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: A comparative analysis in paired tissue specimens. Clin. Pharmacol. Ther., 2004, 75, 172-183.
[13]
Kim, I.W.; Noh, H.; Ji, E.; Han, N.; Hong, S.H.; Ha, J.; Burckart, G.J.; Oh, J.M. Identification of factors affecting tacrolimus level and 5-year clinical outcome in kidney transplant patients. Basic Clin. Pharmacol. Toxicol., 2012, 111, 217-223.
[14]
Patel, N.; Cook, A.; Greenhalgh, E.; Rech, M.A.; Rusinak, J.; Heinrich, L. Overview of extended release tacrolimus in solid organ transplantation. World J. Transplant., 2016, 6, 144-154.
[15]
Mercuri, A.; Wu, S.; Stranzinger, S.; Mohr, S.; Salar-Behzadi, S.; Bresciani, M.; Fröhlich, E. In vitro and in silico characterisation of Tacrolimus released under biorelevant conditions. Int. J. Pharm., 2016, 515, 271-280.
[16]
Trofe-Clark, J.; Brennan, D.C.; West-Thielke, P.; Milone, M.C.; Lim, M.A.; Neubauer, R.; Nigro, V.; Bloom, R.D. Results of ASERTAA, a randomized prospective crossover pharmacogenetic study of immediate-release versus extended-release tacrolimus in African American kidney transplant recipients. Am. J. Kidney Dis., 2018, 71, 315-326.
[17]
Tremblay, S.; Nigro, V.; Weinberg, J.; Woodle, E.S.; Alloway, R.R. A steady-state head-to-head pharmacokinetic comparison of all FK-506 (tacrolimus) formulations (ASTCOFF): An open-label, prospective, randomized, two-arm, three-period crossover study. Am. J. Transplant., 2017, 17, 432-442.
[18]
Vadcharavivad, S.; Susomboon, T.; Kulabusaya, B.; Avihingsanon, Y.; Praditpornsilpa, K.; Townamchai, N. Validation of a 2-point limited sampling strategy to predict the tacrolimus area-under-the-12-hour-curve in kidney transplant recipients. Ther. Drug Monit., 2016, 38, 614-620.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 13
Year: 2019
Page: [1039 - 1040]
Pages: 2
DOI: 10.2174/1389200219666180806154433

Article Metrics

PDF: 24
HTML: 2
EPUB: 1