Base Distribution in Dengue Nucleotide Sequences Differs Significantly from Other Mosquito-Borne Human-Infecting Flavivirus Members

Author(s): Proyasha Roy , Sumanta Dey , Ashesh Nandy* , Subhash C. Basak , Sukhen Das .

Journal Name: Current Computer-Aided Drug Design

Volume 15 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Introduction: Among the mosquito-borne human-infecting flavivirus species that include Zika, West Nile, yellow fever, Japanese encephalitis and Dengue viruses, the Zika virus is found to be closest to Dengue virus, sharing the same clade in the Flavivirus phylogenetic tree. We consider these five flaviviruses and on closer examination in our analyses, the nucleotide sequences of the Dengue viral genes (envelope and NS5) and genomes are seen to be quite widely different from the other four flaviviruses. We consider the extent of this distinction and determine the advantage and/or disadvantage such differences may confer upon the Dengue viral pathogenesis.

Methods: We have primarily used a 2D graphical representation technique to show the differences in base distributions in these five flaviviruses and subsequently, obtained quantitative estimates of the differences. Similarity/dissimilarity between the viruses based on the genes were also determined which showed that the differences with the Dengue genes are more pronounced.

Results: We found that the Dengue viruses compared to the other four flaviviruses spread rapidly worldwide and became endemic in various regions with small alterations in sequence composition relative to the host populations as revealed by codon usage biases and phylogenetic examination.

Conclusion: We conclude that the Dengue genes are indeed more widely separated from the other aforementioned mosquito-borne human-infecting flaviviruses due to excess adenine component, a feature that is sparse in the literature. Such excesses have a bearing on drug and vaccine, especially peptide vaccine, development and should be considered appropriately.

Keywords: Flaviviruses, 2D graphical representation, dengue, envelope gene, NS5 gene, relative excess adenines, dengue evolution, codon usage bias, methyltransferase, vaccines.

[1]
WHO Dengue. http://www.who.int/denguecontrol/en [Accessed April 18, 2018]
[2]
Ryu, W-S. Chapter 12 Flaviviruses.InMolecular Virology of Human Pathogenic Viruses; Academic Press Boston, 2017, pp. 165-175.
[3]
Nivedita, G. Sakshi, Srivastava.; Amita, J.; Umesh, C.C. Dengue in India. Ind J. Med. Res., 2012, 136(3), 373-390.
[4]
Normile, D. Surprising new dengue virus throws a spanner in disease control efforts. Science, 2013, 342(6157), 415.
[5]
Katzelnick, L.C.; Fonville, H.M.; Gromowski, G.D.; Arriaga, J.B.; Green, A.; James, S.L.; Lau, L.; Montoya, M.; Wang, C.; VanBlargan, L.A.; Russell, C.A.; Thu, H.M.; Pierson, T.C.; Buchy, P.; Aaskov, J.G.; Munoz-Jordan, J.L.; Vasilakis, N.; Gibbons, R.V.; Tesh, R.B.; Osterhaus, A.D.M.E.; Fouchier, R.A.M.; Durbin, A.; Simmons, C.P.; Holmes, E.C.; Harris, E.; Whitehead, S.S.; Smith, D.J. Dengue viruses cluster antigenically but not as discrete serotypes. Science, 2015, 349(6254), 1338.
[6]
Schweitzer, Beth.K.; Chapman, Nora .M.; Iwen, Peter.C. Overview of the flaviviridae with an emphasis on the japanese encephalitis group viruses. Lab. Med., 2009, 40(8), 493-499.
[7]
Dick, G.W.A.; Kitchen, S.F.; Haddow, A.J. Zika Virus (I). Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg., 1952, 46(5), 509-520.
[8]
Zhu, Z.; Chan, J.F-W.; Tee, K-M.; Choi, K-Y.; Lau, S.K-P.; Woo, P.C-Y. Comparative genomic analysis of pre-epidemic and epidemic Zika virus strains for virological factors potentially associated with the rapidly expanding epidemic. Emerg. Microbes Infect., 2016, 5, e22.
[9]
Chambers, T.J.; Hahn, C.S.; Galler, R.; Rice, C.M. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol., 1990, 44, 649-688.
[10]
Holmes, E.C.; Twiddy, S.S. The origin, emergence and evolutionary genetics of dengue virus. Infect. Genet. Evol., 2003, 3, 19-28.
[11]
Cook, S.; Holmes, E.C. A multigene analysis of the phylogenetic relationships among the flaviviruses (Family: Flaviviridae) and the evolution of vector transmission. Arch. Virol., 2006, 151(2), 309-325.
[12]
Moureau, G.; Cook, S.; Lemey, P. New insights into flavivirus evolution, taxonomy and biogeographic history, extended by analysis of canonical and alternative coding sequences. PLoS One, 2015, 10(2), e0117849.
[13]
Weyer, J.; Thomas, J.; Leman, P.A.; Grobbelaar, A.A.; Kemp, A.; Paweska, J.T. Human cases of wesselsbron disease, South Africa 2010-2011. Vector Borne Zoonotic Dis., 2013, 13(5), 330-337.
[14]
Nikolay, B.; Diallo, M.; Boye, C.S.B.; Sall, A.A. Usutu virus in africa. Vector Borne Zoonotic Dis., 2011, 11(11), 1417-1423.
[15]
urray Valley Encephalitis (MVE) Factsheet. New South Wales Department of Health. 1 May 2016. [Accessed on 15 May, 2018]
[16]
Haddow, A.D.; Nasar, F.; Guzman, H.; Ponlawat, A.; Jarman, R.G.; Tesh, R.B. Genetic characterization of spondweni and zika viruses and susceptibility of geographically distinct strains of aedes aegypti, aedes albopictus and culex quinquefasciatus (diptera: culicidae) to spondweni virus. PLoS Negl. Trop. Dis., 2016, 10(10), e0005083.
[17]
WHO Updated Questions and Answers related to the dengue vaccine Dengvaxia® and its use, 22 December 2017. Available from http://www.who.int/immunization/diseases/dengue/q_and_a_dengue_vaccine_dengvaxia_use/en/
[18]
Nandy, A.; Basak, S.C. The epidemic that shook the world - The zika virus rampage. Exp. Res. Hypo. Med., 2017, 2, 43-56.
[19]
WHO. http://www.who.int/mediacentre/factsheets/fs117/en/ [Accessed on 23 April, 2018].
[20]
CDC. Final Cumulative Maps Data for 1999-2016. [Accessed on 22 April, 2018]..
[21]
Kuno, G.; Chang, G.J.; Tsuchiya, K.R.; Karabatsos, N. ’; Cropp, C.B. Phylogeny of the genus Flavivirus. J. Virol., 1998, 72(1), 73-83.
[22]
Sessions, O.M.; Wilm, A.; Kamaraj, U.S.; Choy, M.M.; Chow, A.; Chong, Y. Analysis of dengue virus genetic diversity during human and mosquito infection reveals genetic constraints. PLoS Negl. Trop., 2015, 9(9), e0004044.
[23]
Hatcher, E.L.; Zhdanov, S.A.; Bao, Y.; Blinkova, O.; Nawrocki, E.P.; Ostapchuck, Y.; Schäffer, A.A.; Brister, J.R. Virus Variation Resource - improved response to emergent viral outbreaks. Nucleic Acids Res., 2017, 45(1), 482-490.
[24]
Nandy, A. A New Graphical representation and analysis of DNA sequence structure. Curr. Sci., 1994, 66, 309-314.
[25]
Raychaudhury, C.; Nandy, A. Indexing scheme and similarity measures for macromolecular sequences. J. Chem. Inf. Comput. Sci., 1999, 39, 243-247.
[26]
Nandy, A.; Nandy, P. On the uniqueness of quantitative DNA difference descriptors in 2D graphical representation models. Chem. Phys. Letters,, 2003, 368, 102-107.
[27]
Higgins, D.G.; Thompson, J.D.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 1994, 22, 4673-4680.
[28]
Hahn, Y.S.; Galler, R.; Hunkapiller, T.; Dalrymple, J.M.; Strauss, J.H.; Strauss, E.G. Nucleotide sequence of dengue 2 RNA and comparison of the encoded proteins with those of other flaviviruses. Virology, 1988, 162, 167-180.
[29]
Gokhale, N.S.; McIntyre, A.B.R.; McFadden, M.J.; Roder, A.E.; Kennedy, E.M.; Gandara, J.A. N6-methyladenosine in Flaviviridae viral RNA genomes regulates infection. Cell Host Microbe, 2016, 20(5), 654-665.
[30]
Lichinchi, G.; Zhao, B.S.; Wu, Y.; Lu, Z.; Qin, Y.; He, C.; Rana, T.M. Dynamics of human and viral RNA methylation during zika virus infection. Cell Host Microbe, 2016, 20, 666-673.
[31]
Ikemura, T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol., 1981, 151, 389-409.
[32]
Plotkin, J.B.; Kudla, G. Synonymous but not the same: The causes and consequences of codon bias. Nat. Rev. Genet., 2011, 12, 32-42.
[33]
Spencer, P.S.; Barral, J.M. Genetic code redundancy and its influence on the encoded polypeptides. Comput. Struct. Biotechnol. J., 2012, 1, 1-8.
[34]
Diambra, L.A. Differential bicodon usage in lowly and highly abundant proteins. PeerJ, 2017, 5, 3081.
[35]
Villabona-Arenas, C.J.; de Brito, A.F.; de Andrade Zanotto, P.M. Genomic mosaicism in two strains of Dengue virus type 3. Inf. Gen. Evolu., 2013, 18, 202-212.
[36]
Behura, S.K.; Severson, D.W. Nucleotide substitutions in dengue virus serotypes from asian and american countries: Insights into intracodon recombination and purifying selection. BMC Microbiol., 2013, 13(37)
[http://dx.doi.org/10.1186/1471-2180-13-37]
[37]
Vaccines and vaccination against yellow fever. WHO position paper - June 2013. Wkly. Epidemiol. Rec., 2013, 88(27), 269-283.
[38]
Japanese Encephalitis Vaccines. WHO position paper – February 2015. Wkly. Epidemiol. Rec., 2015, 90(9), 69-87.
[39]
Monath, T.P.; Liu, J.; Kanesa-Thasan, N.; Myers, G.A.; Nichols, R.; Deary, A. A live, attenuated recombinant West Nile virus vaccine. Proc. Natl. Acad. Sc., 2006, 103(17), 6694-6699.
[40]
Dengue vaccine: WHO position paper – July 2016. Releve epidemiologique hebdomadaire., 2016, 91(30), 349-64.
[41]
Soucheray, S. Sanofi restricts Dengue vaccine but downplays antibody enhancement.CIDRAP (Centre for Infectious Disease Research and Policy), 1 December 2017. Available from: , http://www.cidrap.umn.edu/news-perspective/2017/12/sanofi-restricts-dengue-vaccine-downplays-antibody-enhancement
[42]
Lakshmy, R.; Madhavan, R.P.; Radhakrishnan, N.R. Dengue vaccine development: Strategies and challenges. Viral Immunol., 2015, 28(2), 76-78.
[43]
Bradrick, S.S. Causes and consequences of flavivirus RNA methylation. Front. Microbiol., 2017, 8, 2374.
[44]
Ray, D. Shah. A.; Tilgnar, M.; Guo, Y.; Zhao, Y.; Dong, H.; Deas, T.S.; Zhou. Y.; Li, H.; Shil, P.-Y. West nile virus 5′-Cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J. Virol., 2006, 80, 8362-8370.
[45]
Chen, H.; Liu, L.; Jones, S.A.; Banavali, N.; Kass, J.; Li, Z.; Zhang, J.; Kramer, L.D.; Ghosh, A.K.; Li, H. Selective inhibition of the west nile virus methyl transferase by nucleoside analogs. Antiviral Res., 2013, 97(3), 232-239.
[46]
Wangikar, P.; Martis, E.A.F.; Ambre, P.K.; Nandan, S.; Coutinho, E.C. Update on methyltransferase inhibitors of the dengue virus and further scope in the field. J. Infect. Dis. Pathol., 2016, 1, 108.
[47]
Bussetta, C.; Choi, K.H. Dengue virus nonstructural protein 5 adopts multiple conformations in solution. Biochemistry, 2012, 51, 5921-5931.
[48]
Coutard, B.; Barral, K.; Lichière, J.; Selisko, B.; Martin, B.; Aouadi, W.; Lombardia, M.O.; Debart, F.; Vasseur, J.J.; Guillemot, J.C.; Canard, B.; Decroly, E. Zika Virus Methyltransferase: Structure and functions for drug design perspectives. J. Virol., 2017, 91(5), e02202-e02216.
[49]
Yin, Z.; Chen, Y.L.; Schul, W.; Wang, Q.Y.; Gu, F.; Duraiswamy, J.; Kondreddi, R.R.; Niyomrattanakit, P.; Lakshminarayana, S.B.; Goh, A.; Xu, H.Y.; Liu, W.; Liu, B.; Lim, J.Y.; Ng, C.Y.; Qing, M.; Lim, C.C.; Yip, A.; Wang, G.; Chan, W.L.; Tan, H.P.; Lin, K.; Zhang, B.; Zou, G.; Bernard, K.A.; Garrett, C.; Beltz, K.; Dong, M.; Weaver, M.; He, H.; Pichota, A.; Dartois, V.; Keller, T.H.; Shi, P.Y. An adenosine nucleoside inhibitor of dengue virus. Proc. Natl. Acad. Sci. , 2009, 106(48), 20435-20439.
[50]
Benmansour, F.; Trist, I.; Coutard, B.; Decroly, E.; Querat, G.; Brancale, A.; Barral, K. Discovery of novel dengue virus NS5 methyltransferase non-nucleoside inhibitors by fragment-based drug design. Eur. J. Med. Chem., 2017, 125, 865-880.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2019
Page: [29 - 44]
Pages: 16
DOI: 10.2174/1573409914666180731090005
Price: $58

Article Metrics

PDF: 31
HTML: 6
PRC: 2