Recent Highlights on the Synthesis of Pyrazoles with Antimicrobial Activity

Author(s): Caroline C. Da Silva, Rosiane M. Martins, Rafael G. Lund, Lucas Pizzuti, Claudio M.P. de Pereira*.

Journal Name: Current Bioactive Compounds

Volume 15 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Heterocyclic compounds containing nitrogen atoms such as pyrazoles have a long history and applicability in the field of medicinal chemistry. Many compounds containing pyrazole moiety have been reported in the available literature for their prominent biological activities, including antimicrobial activity against different microorganisms. Over the years, there has been a concern with the many health problems associated with the dramatic increase of microbial infections and resistance to standard drugs, so there is a need for the development of more effective antimicrobial agents. Pyrazoles and their derivatives are promising candidates to bypass these problems with good safety profiles, and there is a wide range of synthetic methodologies for their obtainment. This review aims to compact a literature survey (2012-2017) very informative and helpful for researchers who wish to study or continue the development of new, potent and broad-spectrum antimicrobial compounds.

Methods: This review encompasses reports on the synthesis and antimicrobial evaluation of synthetic pyrazoles from the year 2012 to 2017, which were extracted from bibliographic databases such as PubMed, scielo, sciencedirect, scifinder, and scopus. The main keywords in our search were “pyrazole” and “antimicrobial activity”, in which we made efforts to include synthetic and biological methodologies that can be useful for laboratories of different levels of infrastructure. Moreover, inclusion/ exclusion criteria was applied to select quality reports which could demonstrate different tools of antimicrobial evaluation, focusing on the advances made in the area, such as evaluation in silico and exploration of the possible mechanism of action for active compounds.

Results: Thirty-four papers were included in this work, which was displayed chronologically from the year 2012 to 2017 in order to enhance the advances made in the area, with at least five reports from each year. We found that the most commonly tested bacterial strains are Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and from the year 2016 onwards Mycobacterium tuberculosis. The most common tested fungal strains are Candida albicans, Aspergillus flavus, and Aspergillus niger. The majority of articles expressed the antimicrobial results as a zone of inhibition, leading to the determination of the Minimum Inhibitory Concentration (MIC) and a probable mechanism of action for the most prominent compounds, considering cytotoxicity. Aromatic aldehydes and ketones are key reactants to obtain important precursors for the synthesis of pyrazoles, such as chalcones, together with alkyl or phenylhydrazines and thiosemicarbazide. A great variation in the reported MICs was found as there is no standard maximum limit, but many compounds exhibited antimicrobial activity comparable or better than standard drugs, from which 10 reports active compounds with MIC lower than 5 μg mL-1.

Conclusion: The findings of this work support the importance of pyrazole moiety in the structure of antimicrobial compounds and the versatility of synthetic methodologies to obtain the target products. Results clearly indicate that they are attractive target compounds for new antimicrobial drugs development. We hope that this information will guide further studies on continuing the search for more effective, highly active antimicrobial agents.

Keywords: Antimicrobial activity, antibacterial, antifungal, heterocycles, pyrazole, chalcone, bioactive pyrazole.

[1]
Sridhar, R.; Perumal, P.T.; Etti, S.; Shanmugam, G.; Ponnuswamy, M.N.; Prabavathy, V.R.; Mathivanan, N. Design, synthesis and anti-microbial activity of 1H-pyrazole carboxylates. Bioorg. Med. Chem. Lett., 2004, 14(24), 6035-6040.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.066] [PMID: 15546724]
[2]
Khan, M.F.; Alam, M.M.; Verma, G.; Akhtar, W.; Akhter, M.; Shaquiquzzaman, M. The therapeutic voyage of pyrazole and its analogs: A review. Eur. J. Med. Chem., 2016, 120, 170-201.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.077] [PMID: 27191614]
[3]
Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles, 2nd ed; Wiley and Sons: New York, 2003.
[http://dx.doi.org/10.1002/352760183X]
[4]
Ahmad, A.; Husain, A.; Khan, S.A.; Mujeeb, M.; Bhandari, A. Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives. J. Saudi Chem. Soc., 2016, 20(5), 577-584.
[http://dx.doi.org/10.1016/j.jscs.2014.12.004]
[5]
Wiley, R.H.; Behr, L.C.; Fusco, R.; Jarboe, C.H. Chemistry of heterocyclic compounds: Pyrazoles, pyrazolines, pyrazolidines, indazoles and condensed rings. Chemistry of Heterocyclic Compounds: a series of monographs; Wiley Online Library, 2008, pp. 10-64.
[http://dx.doi.org/10.1002/9780470186848.ch3]
[6]
Ozdemir, Z.; Kandilci, H.B.; Gumusel, B.; Calis, U.; Bilgin, A.A. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-thienyl)pyrazoline derivatives. Arch. Pharm. (Weinheim), 2008, 341(11), 701-707.
[http://dx.doi.org/10.1002/ardp.200800068] [PMID: 18816586]
[7]
Souza, F.R.; Souza, V.T.; Ratzlaff, V.; Borges, L.P.; Oliveira, M.R.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P.; Mello, C.F. Hypothermic and antipyretic effects of 3-methyl- and 3-phenyl-5-hydroxy-5-trichloromethyl-4,5-dihydro-1H-pyrazole-1-carboxyamides in mice. Eur. J. Pharmacol., 2002, 451(2), 141-147.
[http://dx.doi.org/10.1016/S0014-2999(02)02225-2] [PMID: 12231383]
[8]
Abdel-Aziz, M.; Gamal-Eldeen, A.M. Synthesis and screening of anti-cancer, antioxidant, and anti-inflammatory activities of novel galloyl pyrazoline derivatives. Pharm. Biol., 2009, 47(9), 854-863.
[http://dx.doi.org/10.1080/13880200902946452]
[9]
Abd El-Karim, S.S.; Anwar, M.M.; Mohamed, N.A.; Nasr, T.; Elseginy, S.A. Design, synthesis, biological evaluation and molecular docking studies of novel benzofuran-pyrazole derivatives as anticancer agents. Bioorg. Chem., 2015, 63(October), 1-12.
[http://dx.doi.org/10.1016/j.bioorg.2015.08.006] [PMID: 26368040]
[10]
Aggarwal, R.; Masan, E.; Kaushik, P.; Kaushik, D.; Sharma, C.; Aneja, K.R. Synthesis and biological evaluation of 7-Trifluoromethylpyrazolo[1,5-a]Pyrimidines as anti-inflammatory and antimicrobial agents. J. Fluor. Chem., 2014, 168, 16-24.
[http://dx.doi.org/10.1016/j.jfluchem.2014.08.017]
[11]
Dias, D.; Pacheco, B.S.; Cunico, W.; Pizzuti, L.; Pereira, C.M. Recent advances on the green synthesis and antioxidant activities of pyrazoles. Mini Rev. Med. Chem., 2015, 14(13), 1078-1092.
[http://dx.doi.org/10.2174/1389557515666150101102606] [PMID: 25553424]
[12]
Pizzuti, L.; Barschak, A.G.; Stefanello, F.M.; Farias, M.D.; Lencina, C.; Roesch-Ely, M.; Cunico, W.; Moura, S.; Pereira, C.M.P. Environment-friendly synthesis of bioactive pyrazoles. Curr. Org. Chem., 2014, 18, 115-126.
[http://dx.doi.org/10.2174/13852728113179990029]
[13]
Ningaiah, S.; Bhadraiah, U.K.; Doddaramappa, S.D.; Keshavamurthy, S.; Javarasetty, C. Novel pyrazole integrated 1,3,4-oxadiazoles: synthesis, characterization and antimicrobial evaluation. Bioorg. Med. Chem. Lett., 2014, 24(1), 245-248.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.029] [PMID: 24316123]
[14]
Ritter, M.; Martins, R.M.; Rosa, S.A.; Malavolta, J.L.; Lund, R.G.; Flores, A.F.C.; Pereira, C.M.P. Green synthesis of chalcones and microbiological evaluation. J. Braz. Chem. Soc., 2015, 26(6), 1201-1210.
[http://dx.doi.org/10.5935/0103-5053.20150084]
[15]
Farahat, O.O.M.; Atta, K.F.M. Synthesis, characterization and anticancer activity of novel 1, 3, 4- Oxadiazolyl- and Pyrazolylquinoxalines. J. Chem. Biochem., 2014, 2(2), 139-160.
[http://dx.doi.org/10.15640/jcb.v2n2a7]
[16]
Akula, R.K. Pamulaparthy, S. R.; Koochana, P. K.; Dharmarajan, Y. P. and S. Synthesis and in vitro antibacterial, antitubercular studies of novel fluoroquinolones analogs containing 4-substituted sec amine. Curr. Bioact. Compd., 2018, 14, 1-9.
[17]
Attaby, F.A.; El-Ghandour, A.H.; Sayed, A.R.; El-Reedy, A.A.E.B.; Synthesis, A.A.M. reactions and biological evaluation of 3-Amino-6- (Subs.)Thieno[2,3-b]Pyridine-2-Carbohydrazides. Curr. Bioact. Compd., 2013, 9(2), 167-181.
[http://dx.doi.org/10.2174/15734072113099990011]
[18]
Bhatia, R.K. The anti-protozoal potential of heterocyclic compounds against giardiasis. Curr. Bioact. Compd., 2018, 14, 1-9.
[19]
Chabukswar, A.; Kuchekar, B.; Lokhande, P.; Tryambake, M.; Pagare, B.; Kadam, V.; Chabukswar, S.J.; Design, V. Synthesis and evaluation of antibacterial activity of novel indazole derivatives. Curr. Bioact. Compd., 2013, 9(4), 263-269.
[http://dx.doi.org/10.2174/1573407209999131231095550]
[20]
Figarella, K.; Marsiccobetre, S.; Galindo-Castro, I.; Urdaneta, N.; Herrera, J.C. Galarraga*, N. C. and E. Antileishmanial and antitrypanosomal activity of synthesized hydrazones, pyrazoles, Pyrazolo[1,5-a]-Pyrimidines and Pyrazolo[3,4-b]-. Pyridine. Curr. Bioact. Compd., 2018, 14(3), 234-239.
[http://dx.doi.org/10.2174/1573407213666170405121810]
[21]
Fontana, G. Current bioactive azole-containing natural products. Curr. Bioact. Compd., 2010, 6(4), 284-308.
[http://dx.doi.org/10.2174/157340710793237290]
[22]
Guarcello, A.P.P. Bioactive compounds containing benzoxadiazole, benzothiadiazole, benzotriazole. Curr. Bioact. Compd., 2010, 6(4), 266-283.
[23]
Huang, X-S. Liu, K.; Yin, Y.; Li, W.-M.; Ran, W.; Duan, M.; Zhu, L.-S. W. and H.-L. The synthesis, structure and activity evaluation of secnidazole derivatives as helicobacter pylori urease inhibitors. Curr. Bioact. Compd., 2011, 7(4), 268-280.
[http://dx.doi.org/10.2174/157340711798375868]
[24]
Kondawar, R.D.B. Synthesis and molecular modeling studies of novel 2,4-Disubstituted-1, 5-Diphenyl-1-H-Imidazole derivatives as potential anti-tubercular agents. Curr. Bioact. Compd., 2017, 13(3), 244-258.
[25]
Kumari, S. Chauhan, S. K. P. and R. An improved protocol for the synthesis of chalcones containing pyrazole with potential antimicrobial and antioxidant activity. Curr. Bioact. Compd., 2018, 14(1), 39-47.
[http://dx.doi.org/10.2174/1573407212666161101152735]
[26]
Pavase, L.S. Baheti, D. V. M. and K. Synthesis and antibacterial activities of novel sulphonamide containing 1, 3-Diarylpyrazolyl amides. Curr. Bioact. Compd., 2018, 14(2), 163-168.
[http://dx.doi.org/10.2174/1573407213666170104123810]
[27]
Shrivastava, A. Gupta, M. K.; Shrivastava, P. K. S. and P. Extracellular release of non-peptide group compounds by antifungal bacillus and brevibacillus strains. Curr. Bioact. Compd., 2017, 13(3), 259-267.
[http://dx.doi.org/10.2174/1573407212666160804124019]
[28]
Raimondi, M.V.; Maggio, B.; Raffa, D.; Plescia, F.; Cascioferro, S.; Cancemi, G.; Schillaci, D.; Cusimano, M.G.; Vitale, M.; Daidone, G. Synthesis and anti-staphylococcal activity of new 4-diazopyrazole derivatives. Eur. J. Med. Chem., 2012, 58, 64-71.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.041] [PMID: 23088933]
[29]
Rangaswamy, J.; Kumar, H.V.; Harini, S.T.; Naik, N. Synthesis of benzofuran based 1,3,5-substituted pyrazole derivatives: as a new class of potent antioxidants and antimicrobials-a novel accost to amend biocompatibility. Bioorg. Med. Chem. Lett., 2012, 22(14), 4773-4777.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.061] [PMID: 22695127]
[30]
Abdel-Wahab, B.F.; Abdel-Latif, E.; Mohamed, H.A.; Awad, G.E.A. Design and synthesis of new 4-pyrazolin-3-yl-1,2,3-triazoles and 1,2,3-triazol-4-yl-pyrazolin-1-ylthiazoles as potential antimicrobial agents. Eur. J. Med. Chem., 2012, 52, 263-268.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.023] [PMID: 22480494]
[31]
Raval, J.P.; Desai, K.G.; Desai, K.R. Microwave synthesis, characterization and antimicrobial study of new Pyrazolyl-Oxopropyl-Quinazolin-4(3H)-One derivatives. J. Saudi Chem. Soc., 2012, 16(4), 387-393.
[http://dx.doi.org/10.1016/j.jscs.2011.02.003]
[32]
Panneerselvam, P.; Rather, B.A.; Ravi Sankar Reddy, D.; Ramesh Kumar, N. Synthesis and anti-microbial screening of some Schiff bases of 3-amino-6,8-dibromo-2-phenylquinazolin-4(3H)-ones. Eur. J. Med. Chem., 2009, 44(5), 2328-2333.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.010] [PMID: 18603337]
[33]
Patel, N.B.; Barat, G.G. In vitro microbial studies of new Pyrazolyl Quinazolin-4(3H). Ones. J. Saudi Chem. Soc., 2010, 14(2), 157-164.
[http://dx.doi.org/10.1016/j.jscs.2010.02.016]
[34]
Sangani, C.B.; Mungra, D.C.; Patel, M.P.; Patel, R.G. Synthesis and in vitro antimicrobial screening of new Pyrano[4,3-b]Pyrane derivatives of 1H-Pyrazole. Chin. Chem. Lett., 2012, 23(1), 57-60.
[http://dx.doi.org/10.1016/j.cclet.2011.09.012]
[35]
Zheng, C.J.; Xu, L.L.; Sun, L.P.; Miao, J.; Piao, H.R. Synthesis and antibacterial activity of novel 1,3-diphenyl-1H-pyrazoles functionalized with phenylalanine-derived rhodanines. Eur. J. Med. Chem., 2012, 58, 112-116.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.012] [PMID: 23123727]
[36]
Zheng, C-J.; Song, M-X.; Sun, L-P.; Wu, Y.; Hong, L.; Piao, H-R. Synthesis and biological evaluation of 5-aryloxypyrazole derivatives bearing a rhodanine-3-aromatic acid as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2012, 22(23), 7024-7028.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.107] [PMID: 23099091]
[37]
Desai, N.C.; Joshi, V.V.; Rajpara, K.M.; Vaghani, H.V.; Satodiya, H.M. Facile synthesis of novel fluorine containing pyrazole based thiazole derivatives and evaluation of antimicrobial activity. J. Fluor. Chem., 2012, 142, 67-78.
[http://dx.doi.org/10.1016/j.jfluchem.2012.06.021]
[38]
Patel, N.B.; Shaikh, F.M.; Patel, H.R.; Rajani, D. Synthesis of 2-pyrazolines from pyridine based chalcone by conventional and microwave techniques: Their comparison and antimicrobial studies. J. Saudi Chem. Soc., 2013, 20(1), 5451-5456.
[39]
Sharifzadeh, B.; Mahmoodi, N.O.; Mamaghani, M.; Tabatabaeian, K.; Chirani, A.S.; Nikokar, I. Facile regioselective synthesis of novel bioactive thiazolyl-pyrazoline derivatives via a three-component reaction and their antimicrobial activity. Bioorg. Med. Chem. Lett., 2013, 23(2), 548-551.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.024] [PMID: 23228471]
[40]
Rangaswamy, J.; Kumar, H.V.; Harini, S.T.; Naik, N. Functionalized 3-(Benzofuran-2-Yl)-5-(4-Methoxyphenyl)-4,5-Dihydro-1H-Pyrazole Scaffolds: A New Class of Antimicrobials and Antioxidants. Arab. J. Chem., 2017, 10, S2685-S2696.
[http://dx.doi.org/10.1016/j.arabjc.2013.10.012]
[41]
Song, M.X.; Zheng, C.J.; Deng, X.Q.; Sun, L.P.; Wu, Y.; Hong, L.; Li, Y.J.; Liu, Y.; Wei, Z.Y.; Jin, M.J.; Piao, H.R. Synthesis and antibacterial evaluation of rhodanine-based 5-aryloxy pyrazoles against selected methicillin resistant and quinolone-resistant Staphylococcus aureus (MRSA and QRSA). Eur. J. Med. Chem., 2013, 60, 376-385.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.007] [PMID: 23314051]
[42]
Hardej, D.; Ashby, C.R., Jr; Khadtare, N.S.; Kulkarni, S.S.; Singh, S.; Talele, T.T. The synthesis of phenylalanine-derived C5-substituted rhodanines and their activity against selected methicillin-resistant Staphylococcus aureus (MRSA) strains. Eur. J. Med. Chem., 2010, 45(12), 5827-5832.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.045] [PMID: 20947220]
[43]
Kendre, B.V.; Landge, M.G.; Jadhav, W.N.; Bhusare, S.R. Synthesis and bioactivities of some new 1H-pyrazole derivatives containing an aryl sulfonate moiety. Chin. Chem. Lett., 2013, 24(4), 325-328.
[http://dx.doi.org/10.1016/j.cclet.2013.02.016]
[44]
Kovač, A.; Wilson, R.A.; Besra, G.S.; Filipič, M.; Kikelj, D.; Gobec, S. New lipophilic phthalimido- and 3-phenoxybenzyl sulfonates: Inhibition of antigen 85C mycolyltransferase activity and cytotoxicity. J. Enzyme Inhib. Med. Chem., 2006, 21(4), 391-397.
[http://dx.doi.org/10.1080/14756360600703214] [PMID: 17059171]
[45]
Shah, P.J.; Patel, H.S.; Patel, B.P. Synthesis, Characterization and Antimicrobial Activity of Novel Sulphapiperazine Containing Arylazopyrazoles. J. Saudi Chem. Soc., 2013, 17(3), 307-313.
[http://dx.doi.org/10.1016/j.jscs.2011.04.016]
[46]
Mehta, H.B.; Patel, P.K.; Dixit, B.C.; Dixit, R.B. Synthesis and antimicrobial activities of new mono and bisphenyl linked bispyrazole and bispyrazolone derivatives. Arab. J. Chem., 2017, 10, S1901-S1912.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.019]
[47]
Castagnolo, D.; De Logu, A.; Radi, M.; Bechi, B.; Manetti, F.; Magnani, M.; Supino, S.; Meleddu, R.; Chisu, L.; Botta, M. Synthesis, biological evaluation and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem., 2008, 16(18), 8587-8591.
[http://dx.doi.org/10.1016/j.bmc.2008.08.016] [PMID: 18752962]
[48]
Castagnolo, D.; Manetti, F.; Radi, M.; Bechi, B.; Pagano, M.; De Logu, A.; Meleddu, R.; Saddi, M.; Botta, M. Synthesis, biological evaluation, and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis: Part 2. Synthesis of rigid pyrazolones. Bioorg. Med. Chem., 2009, 17(15), 5716-5721.
[http://dx.doi.org/10.1016/j.bmc.2009.05.058] [PMID: 19581099]
[49]
Ntie-Kang, F.; Kannan, S.; Wichapong, K.; Owono Owono, L.C.; Sippl, W.; Megnassan, E.; Smith, I.; Nwaka, S.; Hudson, A.; Sharma, K. Binding of pyrazole-based inhibitors to Mycobacterium tuberculosis pantothenate synthetase: docking and MM-GB(PB)SA analysis. Mol. Biosyst., 2014, 10(2), 223-239.
[http://dx.doi.org/10.1039/C3MB70449A] [PMID: 24240974]
[50]
Martins, M.A. Blanco, R. F.; Pereira, C. M.; Beck, P.; Brondani, S.; Cunico, W.; Zimmermann, N. E.; Bonacorso, H. G.; Zanatta, N. 5-trifluoromethyl-1,2-dimethyl-1H-pyrazolium chlorides: Synthesis and, and NMR chemical shifts. J. Fluor. Chem., 2002, 118(1–2), 69-72.
[http://dx.doi.org/10.1016/S0022-1139(02)00195-1]
[51]
Martins, M. a P.; Pereira, C.M.P.; Moura, S.; Frizzo, C.P.; Beck, P.; Zanatta, N.; Bonacorso, H.G.; Flores, A.F.C. Microwave assisted regiospecific synthesis of 5-trifluoromethyl-4,5-dihydropyrazoles and pyrazoles. J. Heterocycl. Chem., 2007, 44(5), 1195-1199.
[http://dx.doi.org/10.1002/jhet.5570440537]
[52]
Narayana Rao, D.V.; Raghavendra Guru Prasad, A.; Spoorthy, Y.N.; Raghunatha Rao, D.; Ravindranath, L.K. In vitro microbiological evaluation of novel bis pyrazolones. Ann. Pharm. Fr., 2014, 72(2), 101-106.
[http://dx.doi.org/10.1016/j.pharma.2013.11.005] [PMID: 24630311]
[53]
Sangani, C.B.; Makawana, J.A.; Zhang, X.; Teraiya, S.B.; Lin, L.; Zhu, H.L. Design, synthesis and molecular modeling of pyrazole-quinoline-pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Med. Chem., 2014, 76, 549-557.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.018] [PMID: 24607998]
[54]
Sivakumar, K.K.; Rajasekaran, A.; Senthilkumar, P.; Wattamwar, P.P. Conventional and microwave assisted synthesis of pyrazolone Mannich bases possessing anti-inflammatory, analgesic, ulcerogenic effect and antimicrobial properties. Bioorg. Med. Chem. Lett., 2014, 24(13), 2940-2944.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.067] [PMID: 24835630]
[55]
Parmar, N.; Teraiya, S.; Patel, R.; Barad, H.; Jajda, H.; Thakkar, V. Synthesis, antimicrobial and antioxidant activities of some 5-pyrazolone based schiff bases. J. Saudi Chem. Soc., 2015, 19(1), 36-41.
[http://dx.doi.org/10.1016/j.jscs.2011.12.014]
[56]
İskeleli, N.O.; Alpaslan, Y.B.; Direkel, Ş.; Ertürk, A.G.; Süleymanoğlu, N.; Ustabaş, R. The new Schiff base 4-[(4-Hydroxy-3-fluoro-5-methoxy-benzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one: experimental, DFT calculational studies and in vitro antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 139, 356-366.
[http://dx.doi.org/10.1016/j.saa.2014.12.071] [PMID: 25574656]
[57]
Joseph, V.A.; Pandya, J.H.; Jadeja, R.N. Syntheses, crystal structure and biological evaluation of schiff bases and copper complexes derived from 4-formylpyrazolone. J. Mol. Struct., 2015, 1081, 443-448.
[http://dx.doi.org/10.1016/j.molstruc.2014.10.056]
[58]
Yusuf, M.; Solanki, I. Synthesis and antimicrobial studies of furyl based new bispyrazolines linked via aliphatic chains. J. Saudi Chem. Soc., 2017, 21(3), 251-261.
[http://dx.doi.org/10.1016/j.jscs.2015.02.002]
[59]
Patel, N.B.; Shaikh, F.M.; Patel, H.R.; Rajani, D. Synthesis of 2-pyrazolines from pyridine based chalcone by conventional and microwave techniques: Their comparison and antimicrobial studies. J. Saudi Chem. Soc., 2016, 20(Suppl. 1), S451-S456.
[http://dx.doi.org/10.1016/j.jscs.2013.01.008]
[60]
El-Behairy, M.F.; Mazeed, T.E.; El-Azzouny, A.A.; Aboul-Enein, M.N. Design, synthesis and antibacterial potential of 5-(benzo[d][1,3]dioxol-5-yl)-3-tert-butyl-1-substituted-4,5-dihydropyrazoles. Saudi Pharm. J., 2015, 23(2), 202-209.
[http://dx.doi.org/10.1016/j.jsps.2014.07.009] [PMID: 25972742]
[61]
Cascioferro, S.; Maggio, B.; Raffa, D.; Raimondi, M.V.; Cusimano, M.G.; Schillaci, D.; Manachini, B.; Plescia, F.; Daidone, G. Synthesis and biofilm formation reduction of pyrazole-4-carboxamide derivatives in some Staphylococcus aureus strains. Eur. J. Med. Chem., 2016, 123, 58-68.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.030] [PMID: 27474923]
[62]
Nayak, N.; Ramprasad, J.; Dalimba, U. Synthesis and Antitubercular and antibacterial activity of some active fluorine containing quinoline–pyrazole hybrid derivatives. J. Fluor. Chem., 2016, 183, 59-68.
[http://dx.doi.org/10.1016/j.jfluchem.2016.01.011]
[63]
Martins, M.P.; Cunico, W.; Pereira, C.M.P.; Sinhorin, A.P.; Flores, A.F.C.; Bonacorso, H.G.; Zanatta, N. 4-Alkoxy-1,1,1-Trichloro-3-Alken-2-ones: Preparation and applications in heterocyclic synthesis. Curr. Org. Synth., 2004, 1(4), 391-403.
[http://dx.doi.org/10.2174/1570179043366611]
[64]
Oliveira, S.; Pizzuti, L.; Quina, F.; Flores, A.; Lund, R.; Lencina, C.; Pacheco, B.S.; De Pereira, C.M.P.; Piva, E. Anti-candida, anti-enzyme activity and cytotoxicity of 3,5-Diaryl-4,5- Dihydro-1H-Pyrazole-1-Carboximidamides. Molecules, 2014, 19(5), 5806-5806.
[65]
Harikrishna, N.; Isloor, A.M.; Ananda, K.; Obaid, A.; Fun, H-K. Synthesis, and Antitubercular and antimicrobial activity of 1′-(4-Chlorophenyl)Pyrazole containing 3,5-disubstituted pyrazoline derivatives. New J. Chem., 2016, 40(1), 73-76.
[http://dx.doi.org/10.1039/C5NJ02237A]
[66]
Desai, N.C.; Kotadiya, G.M.; Trivedi, A.R.; Khedkar, V.M.; Jha, P.C. Synthesis, biological valuation, and QSAR studies of novel pyrazole bearing pyridyl oxadiazole analogues as potential antimicrobial agents. Med. Chem. Res., 2016, 25(4), 712-727.
[http://dx.doi.org/10.1007/s00044-016-1511-4]
[67]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2017, 125, 101-116.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.021] [PMID: 27657808]
[68]
Bhoi, N.M.; A.Borad, M.; K. Rathwa, S.; A. Pithawala, E.; D. Patel, H. ZnOCl2 Catalyzed synthesis and characterization of Pyrano[2,3-c]-Pyrazole derivatives as potent antibacterial agents. Curr. Bioact. Compd., 2016, 12(4), 276-281.
[http://dx.doi.org/10.2174/1573407212999160531114722]
[69]
Moydeen, M.; Al-Deyab, S.S.; Kumar, R.S.; Idhayadhulla, A. Efficient synthesis of novel 3-Phenyl-5-Thioxo-3,4,5,6-Tetrahydroimidazo[4,5-c]Pyrazole-2(1H)-Carbothioamide derivatives using a CeO2-MgO catalyst and evaluation of antimicrobial activity. J. Heterocycl. Chem., 2017, 54(6), 3208-3219.
[http://dx.doi.org/10.1002/jhet.2938]
[70]
Gunes, H.; Gulen, D.; Mutlu, R.; Gumus, A.; Tas, T.; Topkaya, A.E. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health, 2016, 32(2), 246-250.
[http://dx.doi.org/10.1177/0748233713498458] [PMID: 24097361]
[71]
Groundwater, P.W.; Narlawar, R.; Wan, V.; Liao, Y.; Bhattacharya, A.; Srivastava, S.; Kunal, K.; Doddareddy, M.; Oza, P.M.; Mamidi, R. A Carbocyclic Curcumin Inhibits Proliferation of Gram-Positive Bacteria by Targeting FtsZ. Biochemistry, 2017, 56(3), 514-524.
[http://dx.doi.org/10.1021/acs.biochem.6b00879]
[72]
Pacheco, B.S.; Carapina da Silva, C.; Pereira, C.M.P. Curcumin and Analogues: Chemical and Biological Aspects; LAP Lambert Academic Publishing: Pelotas, 2017.
[73]
Singh, A.K.; Yadav, P.; Karaulia, P.; Singh, V.K.; Gupta, P.; Puttrevu, S.K.; Chauhan, S.; Bhatta, R.S.; Tadigoppula, N.; Gupta, U.D.; Chopra, S.; Dasgupta, A. Biological evaluation of novel curcumin-pyrazole-mannich derivative active against drug-resistant Mycobacterium tuberculosis. Future Microbiol., 2017, 12(15), 1349-1362.
[http://dx.doi.org/10.2217/fmb-2017-0054] [PMID: 29035081]
[74]
Ahn, M.; Gunasekaran, P.; Rajasekaran, G.; Kim, E.Y.; Lee, S.J.; Bang, G.; Cho, K.; Hyun, J.K.; Lee, H.J.; Jeon, Y.H.; Kim, N.H.; Ryu, E.K.; Shin, S.Y.; Bang, J.K. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity. Eur. J. Med. Chem., 2017, 125, 551-564.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.071] [PMID: 27718471]
[75]
Pulaganti, M. C M, A.; Kumar, C.S. Design, synthesis, and evaluation of pyrazolo-pyrazole derivatives on Methylisocitratelyase of Pseudomonas aeruginosa: in silico and in vitro study. J. Biomol. Struct. Dyn., 2017, 35(11), 2509-2529.
[http://dx.doi.org/10.1080/07391102.2016.1223754] [PMID: 27686121]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 5
Year: 2019
Page: [475 - 506]
Pages: 32
DOI: 10.2174/1573407214666180730104941
Price: $58

Article Metrics

PDF: 20
HTML: 2

Special-new-year-discount