Aqueous Drug Solubility: What Do We Measure, Calculate and QSPR Predict?

Author(s): Oleg A. Raevsky*, Veniamin Y. Grigorev, Daniel E. Polianczyk, Olga E. Raevskaja, John C. Dearden.

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 19 , Issue 5 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Detailed critical analysis of publications devoted to QSPR of aqueous solubility is presented in the review with discussion of four types of aqueous solubility (three different thermodynamic solubilities with unknown solute structure, intrinsic solubility, solubility in physiological media at pH=7.4 and kinetic solubility), variety of molecular descriptors (from topological to quantum chemical), traditional statistical and machine learning methods as well as original QSPR models.

Keywords: Aqueous solubility, QSPR, molecular descriptors, methods and models, thermodynamic, ADMET.

[1]
Lagorce, D.; Douguet, D.; Miteva, M.A.; Villoutreix, B.O. Computational analysis of calculated physicochemical and ADMET properties of protein- protein interaction inhibitors. Sci. Rep., 2017, 7, 46277.
[2]
Wenlock, M.C.; Barton, P. In silico physicochemical parameter predictions. Mol. Pharmaceut., 2013, 10(4), 1224-1235.
[3]
Zhang, X.; Xing, H.; Zhao, Y.; Ma, Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics, 2018, 10(3), 74.
[4]
Munjal, N.S.; Dutta, S.; Sharma, M.; Rout, C. QSAR and QSPR model development and comparison for drugs having low solubility. Intl. J. Eng. Technol. Sci. Res., 2017, 4(12), 313-318.
[5]
Singh, G.; Kaur, I.; Gupta, G.D.; Sharma, S. Enhancement of the solubility of poorly water soluble drugs through solid dispersion: A comprehensive review. Indian J. Pharm. Sci., 2017, 79(5), 674-687.
[6]
Mirza, R.M.; Ahirrao, S.P.; Kshirsagar, S.J. A nanocrystal technology: to enhance solubility of poorly water soluble drugs. J. Appl. Pharm. Res., 2017, 5(1), 1-13.
[7]
Basavaraj, S.; Betageri, G.V. Can formulation and drug delivery reduce attrition during drug discovery and development—review of feasibility, benefits and challenges. Acta Pharm. Sin. B, 2014, 4(1), 3-17.
[8]
Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J.H. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev., 2013, 65(1), 315-499.
[9]
Vimalson, D.C.S.; Parimalakrishnan, S.; Jeganathan, N.S.; Anbazhagan, S. Techniques to enhance solubility of hydrophobic drugs: an overview. Asian J. Pharmaceut., 2016, 10(2), 67-75.
[10]
Alelyunas, Y.W.; Empfield, J.R.; McCarthy, D.; Spreen, R.C.; Bui, K.; Pelosi-Kilby, L.; Shen, C. Experimental solubility profiling of marketed CNS drugs, exploring solubility limit of CNS discovery candidate. Bioorg. Med. Chem. Lett., 2010, 20(24), 7312-7316.
[11]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: importance and enhancement techniques. ISRN Pharmaceut., 2012, 2012, 10.
[12]
Göke, K.; Lorenz, T.; Repanas, A.; Schneider, F.; Steiner, D.; Baumann, K.; Bunjes, H.; Dietzel, A.; Finke, J.H.; Glasmacher, B.; Kwade, A. Novel strategies for the formulation and processing of poorly water-soluble drugs. Eur. J. Pharm. Biopharm., 2018, 126, 40-56.
[13]
Elouzi, A.A.; El-Buzidi, N.O. A review on solubility enhancement techniques of poor water-soluble drugs for oral pharmaceutical formulation. Annals Adv. Sci, 2017, 1(3), 9-27.
[14]
Bouakkadia, A.; Haddag, H.; Bouarra, N.; Messadi, D. QSPR study of the water solubility of a diverse set of agrochemicals: hybrid (GA/ MLR) approach. Rev. Sci. Technol. Synthese, 2016, 32, 12-21.
[15]
Yalkowsky, S.H.; Banerjee, S. Aqueous solubility: methods of estimation for organic compounds; Marcel Dekker: New York, 1992.
[16]
Murdande, S.B.; Pikal, M.J.; Shanker, R.M.; Bogner, R.H. Aqueous solubility of crystalline and amorphous drugs: Challenges in measurement. Pharm. Dev. Technol., 2011, 16(3), 187-200.
[17]
Grant, D.J.W.; Higuchi, T. Solubility behavior of organic compounds; New York: John Wiley & Sons , 1990.
[18]
Balakin, K.V.; Savchuk, N.P.; Tetko, I.V. In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: Trends, problems and solutions. Curr. Med. Chem., 2006, 13(2), 223-241.
[19]
Jorgensen, W.L.; Duffy, E.M. Prediction of drug solubility from structure. Adv. Drug Deliv. Rev., 2002, 54(3), 355-366.
[20]
Box, K.J.; Völgyi, G.; Baka, E.; Stuart, M.; Takács-Novák, K.; Comer, J.E. Equilibrium versus kinetic measurements of aqueous solubility, and the ability of compounds to supersaturate in solution-a validation study. J. Pharm. Sci., 2006, 95(6), 1298-1307.
[21]
[22]
Dearden, J.C. In silico prediction of aqueous solubility. Expert Opin. Drug Discov., 2006, 1(1), 31-52.
[23]
Faller, B.; Ertl, P. Computational approaches to determine drug. Adv. Drug Deliv. Rev., 2007, 59(7), 533-545.
[24]
Johnson, S.R.; Zheng, W. Recent progress in the computational prediction of aqueous solubility and absorption. AAPS J., 2006, 8(1), E27-E40.
[25]
Sugano, K.; Okazaki, A.; Sugimoto, S.; Tavornvipas, S.; Omura, A.; Mano, T. Solubility and dissolution profile assessment in drug discovery. Drug Metab. Pharmacokinet., 2007, 22(4), 225-254.
[26]
Wang, J.; Hou, T. Recent advances on aqueous solubility prediction. Comb. Chem. High Throughput Screen., 2011, 14(5), 328-338.
[27]
Skyner, R.E.; McDonagh, J.L.; Groom, C.R.; van Mourika, T.; Mitchell, J.B.O. A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys. Chem. Chem. Phys., 2015, 17(9), 6174-6191.
[28]
Lipnick, R.L.; Filov, V.A. Nikolai Vasilyevich Lazarev, toxicologist and pharmacologist, comes in from the cold. Trends Pharmacol. Sci., 1992, 13(2), 56-60.
[29]
Hansch, C. Quantitative approach to biochemical structure-activity relationships. Acc. Chem. Res., 1969, 2(8), 232-239.
[30]
Michielan, L.; Moro, S. Pharmaceutical perspectives of nonlinear QSAR strategies. J. Chem. Inf. Model., 2010, 50(6), 961-978.
[31]
Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci., 2003, 43(6), 1882-1889.
[32]
Sheridan, R.P. Time-split cross-validation as a method for estimating the goodness of prospective prediction. J. Chem. Inf. Model., 2013, 53(4), 783-790.
[33]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; Consonni, V.; Kuz’min, V.E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem., 2014, 57(12), 4977-5010.
[34]
Klimenko, K.; Kuz’min, V.; Ognichenko, L.; Gorb, L.; Shukla, M.; Vinas, N.; Perkins, E.; Polishchuk, P.; Artemenko, A.; Leszczynski, J. Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility. J. Comput. Chem., 2016, 37(22), 2045-2051.
[35]
Dave, R.A.; Morris, M.E. Novel high/low solubility classification methods for new molecular entities. Int. J. Pharm., 2016, 511(1), 111-126.
[36]
Cappelli, C.I.; Manganelli, S.; Lombardo, A.; Gissi, A.; Benfenati, E. Validation of quantitative structure–activity relationship models to predict water-solubility of organic compounds. Sci. Total Environ., 2013, 463-464, 781-789.
[37]
Enciso, M.; Meftahi, N.; Walker, M.L.; Smith, B.J. BioPPSy: An open-source platform for QSAR/QSPR Analysis. PLoS One, 2016, 11(11), e0166298.
[38]
Chevillard, F.; Lagorce, D.; Reynès, C.; Villoutreix, B.O.; Vayer, P.; Miteva, M.A. In silico prediction of aqueous solubility: A multimodel protocol based on chemical similarity. Mol. Pharm., 2012, 9(11), 3127-3135.
[39]
Tetko, I.V.; Tanchuk, V.Y.; Kasheva, T.N.; Villa, A.E.P. Estimation of aqueous solubility of chemical compounds using e-state indices. J. Chem. Inf. Comput. Sci., 2001, 41, 1488-1493.
[40]
Cheng, A.; Merz, K.M. Prediction of aqueous solubility of a diverse set of compounds using quantitative structure property relationships. J. Med. Chem., 2003, 46, 3572-3580.
[42]
Hou, T.J.; Xia, K.; Zhang, W.; Xu, X.J. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J. Chem. Inf. Comput. Sci., 2004, 44(1), 266-275.
[44]
[46]
Lagorce, D.; Maupetit, J.; Baell, J.; Sperandio, O.; Tuffery, P.; Miteva, M.A.; Galona, H.; Villoutreix, B.O. The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections. Bioinformatics, 2011, 27(14), 2018-2020.
[47]
Tetko, I.V.; Tanchuk, V.Y. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J. Chem. Inf. Comput. Sci., 2002, 42(5), 1136-1145.
[49]
Palmer, D.S.; Mitchell, J.B.O. Is experimental data quality the limiting factor in predicting the aqueous solubility of drug like molecules? Mol. Pharm., 2014, 11(8), 2962-2972.
[50]
Zhou, D.; Alelyunas, Y.; Liu, R. Scores of extended connectivity fingerprint as descriptors in QSPR study of melting point and aqueous solubility. J. Chem. Inf. Model., 2008, 48(5), 981-987.
[51]
Emami, S.; Jouyban, A.; Valizadeh, H.; Shayanfar, A. Are crystallinity parameters critical for drug solubility prediction? J. Solution Chem., 2015, 44(12), 2297-2315.
[52]
Hewitt, M.; Cronin, M.T.D.; Enoch, S.J.; Madden, J.C.; Roberts, D.W.; Dearden, J.C. In silico prediction of aqueous solubility: the solubility challenge. Chem. Inf. Model., 2009, 49(11), 2572-2587.
[53]
Abramov, Y.A. Major source of error in QSPR prediction of intrinsic thermodynamic solubility of drugs: Solid vs nonsolid state contributions? Mol. Pharm., 2015, 12(6), 2126-2141.
[54]
Salahinejad, M.; Le, T.C.; Winkler, D.A. Aqueous solubility prediction: Do crystal lattice interactions help? Mol. Pharm., 2013, 10(7), 2757-2766.
[55]
Kuehne, W.R. Predicting aqueous solubility from structure Journal of the University of Applied Sciences Mittweida Proceedings of the 20. IWKM, 28-29. Oct 2009.
[56]
MDL Information Systems. Beilstein crossfire database, 2005.
[57]
NY Syracuse Research Corporation, Environmental Science Center Syracuse. Physical/chemical property database. 2005.
[58]
Schaper, K-J.; Kunz, B.; Raevsky, O.A. Analysis of water solubility data on the basis of HYBOT descriptors Part 2. Solubility of liquid chemicals and drugs. QSAR Comb. Sci., 2003, 22(9-10), 943-958.
[59]
Raevsky, O.A.; Trepalin, S.V.; Trepalina, H.P.; Gerasimenko, V.A.; Raevskaja, O.E. SLIPPER-2001 – software for predicting molecular properties on the basis of physicochemical descriptors and structural similarity. J. Chem. Inf. Comput. Sci., 2002, 42(3), 540-549.
[60]
Hansen, N.T.; Kouskoumvekaki, I.; Jørgensen, F.S.; Brunak, S.; Jónsdóttir, S.O. Prediction of pH-dependent aqueous solubility of druglike molecules. J. Chem. Inf. Model., 2006, 46(6), 2601-2609.
[61]
Lee, A.C.; Crippen, G.M. Predicting pKa. J. Chem. Inf. Model., 2009, 49(9), 2013-2033.
[62]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 1997, 23(1-3), 3-25.
[63]
Stuart, M.; Box, K. Chasing equilibrium: Measuring the intrinsic solubility of weak acids and bases. Analyt. Chem., 2005, 77(4), 983-990.
[64]
Cheng, T.; Li, Q.; Wang, Y.; Bryant, S.H. Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection. J. Chem. Inf. Model., 2011, 51(2), 229-236.
[65]
Raevsky, O.A. Molecular structure descriptors in the computer-aided design biologically active compounds. Russ. Chem. Rev., 1999, 68(6), 505-524.
[66]
Dearden, J.C.; Cronin, M.T.D.; Kaiser, K.L.E. How not to develop a quantitative structure–activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ. Res., 2009, 20(3-4), 241-266.
[67]
Breiman, L. Random forests. Machine Learning., 2001, 45(1), 5-32.
[68]
Ivanciuc, O. Applications of support vector machines in chemistry. In: Reviews in computational chemistry; Lipkowitz, K.B. and Cundari. T.R., Eds.; Wiley-VCH, Weinheim,, 2007; Vol. 23, pp. 291-400.
[69]
MacKay, D.J.C. Information theory, inference, and learning algorithms; Cambridge University Press: Cambridge, United Kingdom, 2003.
[70]
Rasmussen, C.E.; Williams, C.K.I. Gaussian processes for machine learning. the MIT Press 2006.
[71]
Hanch, C.; Quinlan, J.E.; Lawrence, G.L. Linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids. J. Org. Chem., 1968, 33(1), 347-350.
[72]
Mannhold, R.; Poda, G.I.; Ostermann, C.; Tetko, I.V. Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. J. Pharm. Sci., 2009, 98(3), 861-893.
[73]
Yalkowsky, S.H.; Valvani, S.C. Solubility and partitioning i: solubility of nonelectrolytes in water. J. Pharm. Sci., 1980, 69(8), 912-922.
[74]
Raevsky, O.A.; Schaper, K-J.; van de Waterbeemd, H.; McFarland, J.W. Hydrogen bond contributions to properties and activity of chemicals and drugs. In: molecular modeling and prediction of bioactivity; Gundertofte, K., Jorgensen, F. S., Eds.; Kluwer Academic/ Plenum Publishers: New York, Boston, Dordrecht, London, Moscow, 2000; pp. 221-227.
[75]
Abraham, H.; Le, J. The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. J. Pharm. Sci., 1999, 88(9), 868-880.
[76]
Ran, Y.; He, Y.; Yang, G.; Johnson, J.L.H.; Yalkowsky, S.H. Estimation of aqueous solubility of organic compounds by using the general solubility equation. Chemosphere, 2002, 48(5), 487-509.
[77]
Raevsky, O.A.; Polianczyk, D.E.; Grigorev, V.Y.; Raevskaja, O.E.; Dearden, J.C. In silico prediction of aqueous solubility: A comparative study of local and global predictive models. Mol. Inform., 2015, 34(6-7), 2-16.
[78]
Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. In silico prediction of aqueous solubility using simple QSPR models: the importance of phenol and phenol-like moieties. J. Chem. Inf. Model., 2012, 52(11), 2950-2957.
[79]
Warr, W.A. Some trends in chemoinformatics. Methods Mol. Biol., 2011, 672, 1-37.
[80]
Wold, S.; Sjostrom, M. SIMCA: A method for analyzing chemical data in terms of similarity and analogy. In: Chemometrics Theory and Application; Kowalski, B. R., Ed.; American Chemical Society Symposium Series 52, 1977; pp. 243-282.
[81]
Raevsky, O.A.; Sapegin, A.M.; Zefirov, N.S. Discriminant-regression model. In: QSAR: Rational approaches in the design of bioactive compounds; Silipo, C.; Vittoria, A., Eds.; Elsevier: Amsterdam, 1991; pp. 189-192.
[82]
Raevsky, O.A.; Sapegin, A.M.; Zefirov, N.S. The QSAR discriminant-regression model. QSAR, 1994, 13(4), 412-418.
[83]
Raevsky, O.A. Molecular lipophilicity calculations of chemically heterogeneous chemicals and drugs on the basis of structural similarity and physicochemical parameters. SAR QSAR Environ. Res., 2001, 12(4), 367-381.
[84]
Raevsky, O.A.; Grigorev, V.Y.; Polianczyk, D.E.; Raevskaja, O.E.; Dearden, J.C. Six global and local QSPR models of aqueous solubility at pH=7.4 based on structural similarity and physicochemical descriptors. SAR QSAR Environ. Res., 2017, 28(8), 661-676.
[85]
Guha, R.; Dutta, D.; Jurs, P.C.; Chen, T. Local lazy regression: making use of the neighborhood to improve QSAR predictions. J. Chem. Inf. Model., 2006, 46(4), 1836-1847.
[86]
Zhang, S.; Golbraikh, A.; Oloff, S.; Kohn, H.; Tropsha, A. A novel automated lazy learning QSAR (ALL-QSAR) approach: Method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. J. Chem. Inf. Model., 2006, 46(5), 1984-1995.
[87]
Raevsky, O.A.; Grigor’ev, V.Y.; Modina, E.A.; Worth, A.P. Prediction of acute toxicity to mice by the Arithmetic Mean Toxicity (AMT) modelling approach. SAR QSAR Environ. Res., 2010, 21(3-4), 265-275.
[88]
Raevsky, O.A.; Grigor’ev, V.Y.; Liplavskaya, E.A.; Worth, A.P. Prediction of acute rodent toxicity on the basis of chemical structure and physicochemical similarity. Mol. Inform., 2011, 30(2-3), 267-275.
[89]
Raevsky, O.A.; Grigor’ev, V.Y.; Polianczyk, D.E.; Raevskaja, O.E.; Dearden, J.C. Calculation of aqueous solubility of crystalline un-ionized organic chemicals and drugs based on structural similarity and physicochemical descriptors. J. Chem. Inf. Model., 2014, 54(2), 683-691.
[90]
Obrezanova, O.; Csanyi, G.; Gola, J.M.; Segall, M.D. Gaussian processes: a method for automatic QSAR modeling of ADME properties. J. Chem. Inf. Model., 2007, 47(5), 1847-1857.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 19
ISSUE: 5
Year: 2019
Page: [362 - 372]
Pages: 11
DOI: 10.2174/1389557518666180727164417
Price: $58

Article Metrics

PDF: 28
HTML: 2
EPUB: 1