Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Fireworks: How to Simulate the Manufacture and Operation in the Atmosphere with the Substitution of Ultrasonic Spray Pyrolysis

Author(s): Rebeka Rudolf*, Urban Ferčec and Mohammed Shariq

Volume 15, Issue 2, 2019

Page: [147 - 156] Pages: 10

DOI: 10.2174/1573413714666180726143918

Price: $65

Abstract

Background: This review provides a closer look at recent work in the field of fireworks manufacture, which could see the replacement of micron-sized particles with their nano-scaled counterparts. Moreover, we also discuss micron-sized particles as well as nanoparticles (NPs) from K, Fe, Al, Ti, Ba, etc., that are produced in the atmosphere as a result of these fireworks. One of the possible technological substitutes for fireworks is presented in detail, i.e., the use of ultrasonic spray pyrolysis (USP) technology.

Method: We searched Google, Web of Science and PubMed for a literature survey of fireworks and their products: firecrackers, micron-sized and nanoparticles. Moreover, we used some of our own knowledge and experimental data to strengthen the possibility of simulating the synthesis of firework products on the laboratory scale.

Results: The use of nano reactants and oxidisers has seen a substantial increase in the sound efficiency and a decrease in the amount of chemicals used, making fireworks more eco-friendly. The application of Al- and Ti-based nano flash powder in the size range from 35 nm to 50 μm resulted in a significant improvement in the ignition properties of the fireworks. Under changing aerodynamic conditions, it is difficult to collect them as samples for real-time monitoring, needed for their characterization or the testing of their harmfulness under laboratory conditions. As a result, NPs below 100 nm in the surroundings could be easily inhaled into the lungs and cause more pulmonary and respiratory problems than micron-sized particles. USP produces nanoparticles in the laboratory that could replace the conventional micron-sized firecracker raw materials, or nanoparticles that are similar to those formed by fireworks. It will also help to identify the physiochemical properties of the airborne particulates in order to understand and evaluate their impact.

This review could be valuable for a controlled economic synthesis through USP, and in the use of nanopowders in pyrotechnology that could reduce pollution to a great extent, thus contributing to the growth and good practise of the fireworks industry. With respect to the USP synthesis, we have also discussed in detail the physical (size, shape) and chemical (composition) characteristics of Al2O3 and TiO2 NPs from different precursors and their temperature ranges. An in-depth explanation for a comparative analysis for the formation mechanism of nanoparticles through both fireworks and USP is presented in the final section.

Conclusion: We can produce nanoparticles in the laboratory with ultrasonic spray pyrolysis that have similar properties to those produced from fireworks and can then be used for further testing.

Keywords: Fireworks manufacturing, nanoparticles, formation mechanism, Ultrasonic Spray Pyrolysis, firecrackers, micronsized and nanoparticles.

Graphical Abstract
[1]
Crespo, J.; Yubero, E.; Nicolas, J.F.; Lucarelli, F.; Nava, S.; Chiari, M.; Calzolai, G. High-time resolution and size-segregated elemental composition in high-intensity pyrotechnic exposures. J. Hazard. Mater., 2012, 241-242, 82-91.
[2]
Wang, Y.; Zhuang, G.; Xu, C.; An, Z. The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmos. Environ., 2007, 41, 417-431.
[3]
Thanulingam, T.L.; Rajendran, A.J.; Karlmarx, P.; Subramanianc, K.; Azhagurajan, A. Hazard assessment and effect of nano-sized oxidizer on sound level analysis of firecrackers. J. Pyrotech., 2009, 28, 95-111.
[4]
Sivaprakasam, S.P.; Surianarayanan, M.; Nagaraj, P.; Venkataratnam, G.S. Impact sensitiveness analysis of pyrotechnic flash compositions. J. Pyrotech. Archive, 2005, 21, 51-58.
[5]
Sivaprakasam, S.P.; Surianarayanan, M. Interrelation between impact, friction and thermal energy of pyrotechnic cracking reaction. J. Pyrotech. Archive, 2006, 23, 51-60.
[6]
Jeyarajendran, A.; Thanulingam, T.L. Sound level analysis of firecrackers. J. Pyrotech. Archive, 2008, 27, 60-76.
[7]
Selvakumar, N.; Azhagurajan, A.; Suresh, A. Experimental analysis on nano scale flash powder composition in fireworks manufacturing. J. Therm. Anal. Calorim., 2013, 113, 615-621.
[8]
Jian, G.; Feng, J.; Jacob, R.J.; Egan, G.C.; Zachariah, M.R. Super-reactive nano energetic gas generators based on periodate salts. Angew. Chem. Int. Ed., 2013, 52, 9743-9746.
[9]
Alavi, M.A.; Morsali, A. Synthesis and characterization of Sr(OH)2 and SrCO3 nanostructures by ultrasonic method. Ultrason. Sonochem., 2010, 17, 132-138.
[10]
Tahmasian, A.; Safarifard, V.; Morsali, A.; Joo, S.W. Sonochemical syntheses of a new fibrous-like nano-scale strontium (II) 3D coordination polymer; Precursor for the fabrication of a strontium carbonate nanostructure. Polyhedron, 2014, 67, 81-88.
[11]
Azhagurajan, A.; Selvakumar, N.; Jeyakumar, S. Flame analysis of micro and nano flash powder for firework applications. J. Pyrotech. Archive, 2011, 30, 11-21.
[12]
Granier, J.J.; Plantier, K.B.; Pantoya, M.L. The role of the Al2O3 passivation shell surrounding nano Al particles in the combustion synthesis of Ni Al. J. Mater. Sci., 2004, 39, 6421-6431.
[13]
Malchi, J.Y.; Yetter, R.A.; Son, S.F.; Risha, G.A. Nano aluminium flame spread with fingering combustion instabilities. Proc. Combust. Inst., 2007, 31, 2617-2624.
[14]
Galfetti, L.; Deluca, L.T.; Severini, F.; Colombo, G.; Meda, L.; Marra, G. Pre and post-burning analysis of nano aluminized solid rocket propellants. Aerosp. Sci. Technol., 2007, 11, 26-32.
[15]
Luman, J.R.; Wehrman, B.; Kuo, K.K.; Yetter, R.A.; Masoud, N.M.; Manning, T.G.; Harris, L.E.; Bruck, H. Development and characterization of high performance solid propellants containing nano sized energetic ingredients. Proc. Combust. Inst., 2007, 31, 2089-2096.
[16]
Do, T.M.; Hsieh, H.F.; Chang, W.C.; Chang, E.E.; Wang, C.F. Analysis of liquid samples using dried droplet laser ablation inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B, 2011, 66, 610-618.
[17]
Wu, H.; Chang, R.C.; Hsiao, H.C. Research in minimum ignition energy for nano titanium powder and nano iron powder. J. Loss Prev. Process Ind., 2009, 22, 21-24.
[18]
Kosanke, L.K. An evaluation of Pyro-flake titanium for use in fireworks. Pyrotech. Guild Int. Bull., 1987, 58, 86-90.
[19]
Kulkarni, P.; Baron, A.P.; Willeke, K. Aerosol Measurement: Principles, Techniques and Applications, 3rd ed; John Wiley & Sons: New York, 2011.
[20]
Shimizu, T. Fireworks: The Art, Science and Technique; Pyrotechnica Publications: Austin, TX, 1996.
[21]
Vermeij, E.; Duvalois, W.; Webb, R.; Koeberg, M. Morphology and composition of pyrotechnic residues formed at different levels of confinement. Forensic Sci. Int., 2009, 186, 68-74.
[22]
Monaci, F.; Moni, F.; Lanciotti, E.; Grechi, D.; Bargagli, R. Bio-monitoring of airborne metals in Urban environments: New tracers of vehicle emission, in place of lead. Environ. Pollut., 2000, 107, 321-327.
[23]
Marcazzan, G.M.; Vaccaro, S.; Valli, G.; Vecchi, R. Characterization of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos. Environ., 2001, 35, 4639-4650.
[24]
Steinhauser, G.; Sterba, J.H.; Foster, M.; Grass, F.; Bichler, M. Heavy metals from pyrotechnics in new year’s eve snow. Atmos. Environ., 2008, 42, 8616-8622.
[25]
Huang, S.L.; Hsu, M.K.; Chan, C.C. Effects of sub-micrometer particle compositions on cytokine production and lipid peroxidation of human bronchial epithelial cells. Environ. Health Perspect., 2003, 111, 478-482.
[26]
Veranth, J.M.; Reilly, C.A.; Veranth, M.M.; Moss, T.A.; Langelier, C.R.; Lanza, D.L.; Yost, G.S. Inflammatory cytokines and cell death in BEAS-2B lung cells treated with soil dust, lipopolysaccharide, and surface-modified particles. Toxicol. Sci., 2004, 82, 88-96.
[27]
Maynard, A.D.; Kuempel, E.D. Airborne nanostructured particles and occupational health. J. Nanopart. Res., 2005, 7, 587-564.
[28]
Ravindra, K.; Mor, S.; Kaushik, C.P. Short- term variation in air quality associated with firework events: A case study. J. Environ. Monit., 2003, 5, 260-264.
[29]
Moreno, T.; Querol, X.; Alastuey, A.; Minguillon, M.C.; Pey, J.; Rodriguez, S.; Miro, J.V.; Felis, C.; Gibbons, W. Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays. Atmos. Environ., 2007, 41, 913-922.
[30]
Vecchi, R.; Bernardoni, V.; Cricchio, D.; D’Alessandro, A.; Fermo, P.; Lucarelli, F.; Nava, S.; Piazzalunga, A.; Valli, G. The impact of fireworks on air particles. Atmos. Environ., 2008, 42, 1121-1132.
[31]
Shi, Y.; Zhang, N.; Gao, J.; Li, X.; Cai, Y. Effects of fireworks display on perchlorate in air aerosols during the spring festival. Atmos. Environ., 2011, 45, 1323-1327.
[32]
Do, T.M.; Wang, C.F.; Hsieh, Y.H.; Hsieh, H.F. Metals present in ambient air before and after a firework festival in Yanshui, Tainan, Taiwan. Aerosol Air Qual. Res., 2012, 12, 981-993.
[33]
Kreyling, W.G. Ultrafine Aerosols and Workplaces: Deposition, retention, and clearance of ultrafine particles. BIA-Report 7/2003e of the BIA-Workshop, Sankt Augustin, Germany, 21-22 August, 2002.
[34]
Raabe, O.G.; Al-Bayati, M.A.; Teague, S.V.; Rasolt, A. Regional deposition of inhaled mono disperse coarse and fine aerosol particles in small laboratory animals. Ann. Occup. Hyg., 1988, 32(Suppl. 1), 53-63.
[35]
Ferin, J.; Oberdorster, G.; Penney, D. Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Mol. Biol., 1992, 6, 535-542.
[36]
Monteiller, C.; Tran, L.; MacNee, W.; Faux, S.; Jones, A.; Miller, B.; Donaldson, K. The pro-inflammatory effects of low toxicity low-solubility particles, nanoparticles and fine particles on epithelial cells in vitro: The role of surface area. Occup. Environ. Med., 2007, 64, 609-615.
[37]
Donaldson, K.; Brown, D.; Clouter, A.; Duffin, R.; MacNee, W.; Renwick, L.; Tran, L.; Stone, V. The pulmonary toxicology of ultrafine particles. J. Aerosol Med., 2002, 15, 213-230.
[38]
Rudolf, R.; Friedrich, B.; Stopić, S.; Anžel, I.; Tomić, S.; Čolić, M. Cytotoxicity of gold nanoparticles prepared by ultrasonic spray pyrolysis. J. Biomater. Appl., 2012, 26, 595-612.
[39]
Rudolf, R.; Majerič, P.; Tomić, S.; Shariq, M.; Ferčec, U.; Friedrich, B.; Vucevic, D. Morphology, aggregation properties, cytocompatibility & anti-inflammatory potential of citrate-stabilized aunps prepared by modular ultrasonic spray pyrolysis. J. Nanomater., 2017. 2017, Aticle ID 9365012.
[40]
Bakrania, S.D.; Miller, T.A.; Perez, C.; Wooldridge, M.S. Combustion of multiphase reactants for the synthesis of nanocomposite materials. Combust. Flame, 2007, 148, 76-87.
[41]
Shariq, M.; Majerič, P.; Friedrich, B.; Budič, B.; Dixit, A.R.; Rudolf, R. Application of gold(III) acetate as a new precursor for the synthesis of gold nanoparticles in PEG through ultrasonic spray pyrolysis. J. Cluster Sci., 2017, 28, 1647-1665.
[42]
Majerič, P.; Friedrich, B.; Rudolf, R. Au-nanoparticle synthesis via ultrasonic spray pyrolysis with a separate evaporation zone. Mater. Technol., 2015, 49, 791-796.
[43]
Majerič, P.; Jenko, D.; Budič, B.; Čolić, M.; Friedrich, B.; Rudolf, R. Formation of non-toxic Au nanoparticles with bimodal size distribution by a modular redesign of ultrasonic spray pyrolysis. Nanosci. Nanotechnol. Lett., 2015, 7, 1-10.
[44]
Majerič, P.; Jenko, D.; Friedrich, B.; Rudolf, R. Formation mechanisms for gold nanoparticles in a redesigned ultrasonic spray pyrolysis. Adv. Powder Technol., 2017, 28, 876-883.
[45]
Stopić, S.; Friedrich, B.; Fritsching, H.U.; Raić, K. Synthesis of Metallic Nanosized Particles by Ultrasonic Spray Pyrolysis; Aachen, Germany: Shaker Verlag GmbH, 2015.
[46]
Dokić, J.; Rudolf, R.; Tomić, S.; Stopić, S.; Friedrich, B.; Budič, B.; Anžel, I.; Čolić, M. Immunomodulatory properties of nanoparticles obtained by ultrasonic spray pyrolysis from gold scrap. J. Biomed. Nanotechnol., 2012, 8, 528-538.
[47]
Ohkura, Y. Synthesis and Optical Ignition of Aluminum and Silicon-based Energetic Materials., PhD Thesis, Stanford University, USA, October, 2013
[48]
Hassanzadeh-Tabrizi, S.A.; Taheri-Nassaj, E. Economical synthesis of Al2O3 nano-powder using a precipitation method. Mater. Lett., 2009, 63, 2274-2276.
[49]
Tok, A.I.Y.; Boey, F.Y.C.; Zhao, X.L. Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis. J. Mater. Process. Technol., 2006, 178, 270-273.
[50]
Janackovic, D.; Jokanovic, V.; Kostic-Gvozdenovic, L.; Uskokovic, D.P. Formation mechanism, morphology and synthesis of α-Al2O3, mullite and cordierite particles obtained by the ultrasonic spray pyrolysis. Mater. Sci. Forum, 1996, 214, 215-222.
[51]
Jokanovic, V.; Janackovic, D.; Spasic, A.M.; Uskokovic, D. Synthesis and formation mechanism of ultrafine spherical Al2O3 powders by ultrasonic spray pyrolysis. Mater. Trans., 1996, 37, 627-635.
[52]
Bogović, J.; Rudolf, R.; Friedrich, B. The controlled single-step synthesis of Ag/TiO2 and Au/TiO2 by ultrasonic spray pyrolysis (USP). JOM, 2016, 68, 330-335.
[53]
Srimuruganandam, B.; Madanayak, S.; Nagendra, S. Analysis and interpretation of particulate matter – PM10, PM2.5 and PM1 emissions from the heterogeneous traffic near an urban roadway. Atmos. Pollut. Res., 2010, 1, 184-194.
[54]
Azhagurajan, A.; Selvakumar, N. Impact of nano particles on safety and environment for fireworks chemicals. Process Saf. Environ. Prot., 2014, 92, 732-738.
[55]
Azhagurajan, A.; Selvakumar, N.; Thanulingam, T.L. Thermal and sensitivity analysis of nano aluminium powder for firework application. J. Therm. Anal. Calorim., 2011, 105, 259-267.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy