The Potential Impacts of Tylophora Alkaloids and their Derivatives in Modulating Inflammation, Viral Infections, and Cancer

Author(s): Duc-Hiep Bach, Sang Kook Lee*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 25 , 2019

Abstract:

Cancer chemotherapies or antitumor agents mainly remain the backbone of current treatment based on killing the rapidly dividing cancer cell such as tylophora alkaloids and their analogues which have also demonstrated anticancer potential through diverse biological pathways including regulation of the immune system. The introduction of durable clinically effective monoclonal antibodies, however, unmasked a new era of cancer immunotherapies. Therefore, the understanding of cancer pathogenesis will provide new possible treatment options, including cancer immunotherapy and targeted agents. Combining cytotoxic agents and immunotherapies may offer several unique advantages that are complementary to and potentially synergistic with biologic modalities. Herein, we highlight the dynamic mechanism of action of immune modulation in cancer and the immunological aspects of the orally active antitumor agents tylophora alkaloids and their analogues. We also suggest that future cancer treatments will rely on the development of combining tumor-targeted agents and biologic immunotherapies.

Keywords: Tylophora alkaloids, inflammatory, chemotherapy, antiviral, immunotherapy, cancer.

[1]
Gao, F.; Liang, B.; Reddy, S.T.; Farias-Eisner, R.; Su, X. Role of inflammation-associated microenvironment in tumorigenesis and metastasis. Curr. Cancer Drug Targets, 2014, 14(1), 30-45.
[http://dx.doi.org/10.2174/15680096113136660107] [PMID: 24200082]
[2]
Bach, D-H.; Hong, J-Y.; Park, H.J.; Lee, S.K. The role of exosomes and miRNAs in drug-resistance of cancer cells. Int. J. Cancer, 2017, 141(2), 220-230.
[http://dx.doi.org/10.1002/ijc.30669] [PMID: 28240776]
[3]
Bach, D-H.; Lee, S.K. Long noncoding RNAs in cancer cells. Cancer Lett., 2018, 419, 152-166.
[http://dx.doi.org/10.1016/j.canlet.2018.01.053] [PMID: 29414303]
[4]
Fukumura, D.; Kashiwagi, S.; Jain, R.K. The role of nitric oxide in tumour progression. Nat. Rev. Cancer, 2006, 6(7), 521-534.
[http://dx.doi.org/10.1038/nrc1910] [PMID: 16794635]
[5]
Ahn, B.; Ohshima, H. Suppression of intestinal polyposis in Apc(Min/+) mice by inhibiting nitric oxide production. Cancer Res., 2001, 61(23), 8357-8360.
[PMID: 11731407]
[6]
Kisley, L.R.; Barrett, B.S.; Bauer, A.K.; Dwyer-Nield, L.D.; Barthel, B.; Meyer, A.M.; Thompson, D.C.; Malkinson, A.M. Genetic ablation of inducible nitric oxide synthase decreases mouse lung tumorigenesis. Cancer Res., 2002, 62(23), 6850-6856.
[PMID: 12460898]
[7]
Gratton, J.P.; Lin, M.I.; Yu, J.; Weiss, E.D.; Jiang, Z.L.; Fairchild, T.A.; Iwakiri, Y.; Groszmann, R.; Claffey, K.P.; Cheng, Y.C.; Sessa, W.C. Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell, 2003, 4(1), 31-39.
[http://dx.doi.org/10.1016/S1535-6108(03)00168-5] [PMID: 12892711]
[8]
Kashiwagi, S.; Izumi, Y.; Gohongi, T.; Demou, Z.N.; Xu, L.; Huang, P.L.; Buerk, D.G.; Munn, L.L.; Jain, R.K.; Fukumura, D. NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J. Clin. Invest., 2005, 115(7), 1816-1827.
[http://dx.doi.org/10.1172/JCI24015] [PMID: 15951843]
[9]
Zhang, X.M.; Xu, Q. Metastatic melanoma cells escape from immunosurveillance through the novel mechanism of releasing nitric oxide to induce dysfunction of immunocytes. Melanoma Res., 2001, 11(6), 559-567.
[http://dx.doi.org/10.1097/00008390-200112000-00002] [PMID: 11725202]
[10]
Edwards, P.; Cendan, J.C.; Topping, D.B.; Moldawer, L.L.; MacKay, S.; Lind, D.S.; Lind, D.S. Copeland EMIII. Tumor cell nitric oxide inhibits cell growth in vitro, but stimulates tumorigenesis and experimental lung metastasis in vivo. J. Surg. Res., 1996, 63(1), 49-52.
[http://dx.doi.org/10.1006/jsre.1996.0221] [PMID: 8661171]
[11]
zur Hausen, H. Viruses in human cancers. Science, 1991, 254(5035), 1167-1173.
[http://dx.doi.org/10.1126/science.1659743] [PMID: 1659743]
[12]
Parkin, D.M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer, 2006, 118(12), 3030-3044.
[http://dx.doi.org/10.1002/ijc.21731] [PMID: 16404738]
[13]
Gao, W.; Chen, A.P-C.; Leung, C-H.; Gullen, E.A.; Fürstner, A.; Shi, Q.; Wei, L.; Lee, K-H.; Cheng, Y-C. Structural analogs of tylophora alkaloids may not be functional analogs. Bioorg. Med. Chem. Lett., 2008, 18(2), 704-709.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.054] [PMID: 18077159]
[14]
Dhiman, M.; Parab, R.R.; Manju, S.L.; Desai, D.C.; Mahajan, G.B. Antifungal activity of hydrochloride salts of tylophorinidine and tylophorinine. Nat. Prod. Commun., 2012, 7(9), 1171-1172.
[http://dx.doi.org/10.1177/1934578X1200700916] [PMID: 23074899]
[15]
Bhutani, K.K.; Sharma, G.L.; Ali, M. Plant based antiamoebic drugs; Part I. Antiamoebic activity of phenanthroindolizidine alkaloids; common structural determinants of activity with emetine. Planta Med., 1987, 53(6), 532-536.
[http://dx.doi.org/10.1055/s-2006-962803] [PMID: 2895482]
[16]
Wu, M.; Han, G.; Wang, Z.; Liu, Y.; Wang, Q. Synthesis and antiviral activities of antofine analogues with different C-6 substituent groups. J. Agric. Food Chem., 2013, 61(5), 1030-1035.
[http://dx.doi.org/10.1021/jf304905k] [PMID: 23320928]
[17]
Su, B.; Chen, F.; Wang, L.; Wang, Q. Design, synthesis, antiviral activity, and structure-activity relationships (SARs) of two types of structurally novel phenanthroindo/quinolizidine analogues. J. Agric. Food Chem., 2014, 62(6), 1233-1239.
[http://dx.doi.org/10.1021/jf405562r] [PMID: 24467600]
[18]
Su, B.; Cai, C.; Deng, M.; Wang, Q. Spatial configuration and three-dimensional conformation directed design, synthe-sis, antiviral activity, and structure-activity relationships of phenanthroindolizidine analogues. J. Agric. Food Chem., 2016, 64(10), 2039-2045.
[http://dx.doi.org/10.1021/acs.jafc.5b06112] [PMID: 26923726]
[19]
Su, B.; Cai, C.; Deng, M.; Liang, D.; Wang, L.; Wang, Q. Design, synthesis, antiviral activity, and SARs of 13a-substituted phenanthroindolizidine alkaloid derivatives. Bioorg. Med. Chem. Lett., 2014, 24(13), 2881-2884.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.101] [PMID: 24835986]
[20]
Jang, E.J.; Kim, H.K.; Jeong, H.; Lee, Y.S.; Jeong, M.G.; Bae, S.J.; Kim, S.; Lee, S.K.; Hwang, E.S. Anti-adipogenic activity of the naturally occurring phenanthroindolizidine alkaloid antofine via direct suppression of PPARγ expression. Chem. Biodivers., 2014, 11(6), 962-969.
[http://dx.doi.org/10.1002/cbdv.201300365] [PMID: 24934681]
[21]
Pham, L.V.; Ngo, H.T.; Lim, Y.S.; Hwang, S.B. Hepatitis C virus non-structural 5B protein interacts with cyclin A2 and regulates viral propagation. J. Hepatol., 2012, 57(5), 960-966.
[http://dx.doi.org/10.1016/j.jhep.2012.07.006] [PMID: 22796893]
[22]
Ueno, S.; Yamazaki, R.; Ikeda, T.; Yaegashi, T.; Matsuzaki, T. Antitumor effect of a novel phenanthroindolizidine alkaloid derivative through inhibition of protein synthesis. Anticancer Res., 2014, 34(7), 3391-3397.
[PMID: 24982345]
[23]
Miguélez, J.; Boto, A.; Marín, R.; Díaz, M. Simplification of antitumoral phenanthroindolizidine alkaloids: short synthesis of cytotoxic indolizidinone and pyrrolidine analogs. Eur. J. Med. Chem., 2013, 66, 540-554.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.009] [PMID: 23845713]
[24]
Liu, Y.; Qing, L.; Meng, C.; Shi, J.; Yang, Y.; Wang, Z.; Han, G.; Wang, Y.; Ding, J.; Meng, L.H.; Wang, Q. 6-OH-phenanthroquinolizidine alkaloid and its derivatives exert po-tent anticancer activity by delaying S phase progression. J. Med. Chem., 2017, 60(7), 2764-2779.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01502] [PMID: 28333459]
[25]
Yang, C.W.; Lee, Y.Z.; Hsu, H.Y.; Wu, C.M.; Chang, H.Y.; Chao, Y.S.; Lee, S.J. c-Jun-mediated anticancer mechanisms of tylophorine. Carcinogenesis, 2013, 34(6), 1304-1314.
[http://dx.doi.org/10.1093/carcin/bgt039] [PMID: 23385061]
[26]
Li, Z.; Jin, Z.; Huang, R. Isolation, total synthesis and bio-logical activity of phenanthroindolizidine and phenanthro-quinolizidine alkaloids. Synthesis, 2001, 2001(16), 2365-2378.
[27]
Wu, T-S.; Sun, C.R.; Lee, K-H. Cytotoxic and anti-HIV phenanthroindolizidine alkaloids from Cryptocarya chinensis. Nat. Prod. Commun., 2012, 7(6), 725-727.
[http://dx.doi.org/10.1177/1934578X1200700608] [PMID: 22816292]
[28]
Wang, Z.; Wu, M.; Wang, Y.; Li, Z.; Wang, L.; Han, G.; Chen, F.; Liu, Y.; Wang, K.; Zhang, A.; Meng, L.; Wang, Q. Synthesis and SAR studies of phenanthroindolizidine and phenanthroquinolizidine alkaloids as potent anti-tumor agents. Eur. J. Med. Chem., 2012, 51, 250-258.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.048] [PMID: 22417638]
[29]
Gopalakrishnan, C.; Shankaranarayan, D.; Kameswaran, L.; Natarajan, S. Pharmacological investigations of tylophorine, the major alkaloid of Tylophora indica. Indian J. Med. Res., 1979, 69, 513-520.
[PMID: 447392]
[30]
Chemler, S.R. Phenanthroindolizidines and phenanthroquin-olizidines: promising alkaloids for anti-cancer therapy. Curr. Bioact. Compd., 2009, 5(1), 2-19.
[http://dx.doi.org/10.2174/157340709787580928] [PMID: 20160962]
[31]
Pettit, G.R.; Goswami, A.; Cragg, G.M.; Schmidt, J.M.; Zou, J.C. Antineoplastic agents, 103. The isolation and structure of hypoestestatins 1 and 2 from the East African Hypoëstes verticillaris. J. Nat. Prod., 1984, 47(6), 913-919.
[http://dx.doi.org/10.1021/np50036a001] [PMID: 6533268]
[32]
Lee, Y.Z.; Huang, C.W.; Yang, C.W.; Hsu, H.Y.; Kang, I.J.; Chao, Y.S.; Chen, I.S.; Chang, H.Y.; Lee, S.J. Isolation and biological activities of phenanthroindolizidine and septicine alkaloids from the Formosan Tylophora ovata. Planta Med., 2011, 77(17), 1932-1938.
[http://dx.doi.org/10.1055/s-0030-1271199] [PMID: 21728149]
[33]
Lee, Y-Z.; Yang, C-W.; Hsu, H-Y.; Qiu, Y-Q.; Yeh, T-K.; Chang, H-Y.; Chao, Y-S.; Lee, S-J. Synthesis and biological evaluation of tylophorine-derived dibenzoquinolines as orally active agents: exploration of the role of tylophorine e ring on biological activity. J. Med. Chem., 2012, 55(23), 10363-10377.
[http://dx.doi.org/10.1021/jm300705j] [PMID: 23167614]
[34]
Cassini-Vieira, P.; Araújo, F.A.; da Costa Dias, F.L.; Russo, R.C.; Andrade, S.P.; Teixeira, M.M.; Barcelos, L.S. iNOS activity modulates inflammation, angiogenesis, and tissue fi-brosis in polyether-polyurethane synthetic implants. Mediators Inflamm., 2015.2015138461
[http://dx.doi.org/10.1155/2015/138461] [PMID: 26106257]
[35]
Serafini, P.; Meckel, K.; Kelso, M.; Noonan, K.; Califano, J.; Koch, W.; Dolcetti, L.; Bronte, V.; Borrello, I. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med., 2006, 203(12), 2691-2702.
[http://dx.doi.org/10.1084/jem.20061104] [PMID: 17101732]
[36]
Jayaraman, P.; Alfarano, M.G.; Svider, P.F.; Parikh, F.; Lu, G.; Kidwai, S.; Xiong, H.; Sikora, A.G. iNOS expression in CD4+ T cells limits Treg induction by repressing TGFβ1: combined iNOS inhibition and Treg depletion unmask endogenous antitumor immunity. Clin. Cancer Res., 2014, 20(24), 6439-6451.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3409] [PMID: 25278453]
[37]
Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol., 2009, 9(3), 162-174.
[http://dx.doi.org/10.1038/nri2506] [PMID: 19197294]
[38]
Bach, D-H.; Liu, J-Y.; Kim, W.K.; Hong, J-Y.; Park, S.H.; Kim, D.; Qin, S-N.; Luu, T-T-T.; Park, H.J.; Xu, Y-N.; Lee, S.K. Synthesis and biological activity of new phthalimides as potential anti-inflammatory agents. Bioorg. Med. Chem., 2017, 25(13), 3396-3405.
[http://dx.doi.org/10.1016/j.bmc.2017.04.027] [PMID: 28478865]
[39]
Min, H.Y.; Song, S.H.; Lee, B.; Kim, S.; Lee, S.K. Inhibition of lipopolysaccharide-induced nitric oxide production by antofine and its analogues in RAW 264.7 macrophage cells. Chem. Biodivers., 2010, 7(2), 409-414.
[http://dx.doi.org/10.1002/cbdv.200900040] [PMID: 20151387]
[40]
Chou, S.T.; Jung, F.; Yang, S.H.; Chou, H.L.; Jow, G.M.; Lin, J.C. Antofine suppresses endotoxin-induced inflammation and metabolic disorder via AMP-activated protein kinase. Pharmacol. Res. Perspect., 2017, 5(4)
[http://dx.doi.org/10.1002/prp2.337] [PMID: 28805975]
[41]
Yang, C-W.; Chuang, T-H.; Wu, P-L.; Huang, W-H.; Lee, S-J. Anti-inflammatory effects of 7-methoxycryptopleurine and structure-activity relations of phenanthroindolizidines and phenanthroquinolizidines. Biochem. Biophys. Res. Commun., 2007, 354(4), 942-948.
[http://dx.doi.org/10.1016/j.bbrc.2007.01.065] [PMID: 17274949]
[42]
Yang, C-W.; Chen, W-L.; Wu, P-L.; Tseng, H-Y.; Lee, S-J. Anti-inflammatory mechanisms of phenanthroindolizidine alkaloids. Mol. Pharmacol., 2006, 69(3), 749-758.
[PMID: 16332992]
[43]
Ganguly, T.; Sainis, K.B. Inhibition of cellular immune responses by Tylophora indica in experimental models. Phytomedicine, 2001, 8(5), 348-355.
[http://dx.doi.org/10.1078/0944-7113-00055] [PMID: 11695877]
[44]
Ganguly, T.; Badheka, L.P.; Sainis, K.B. Immunomodulatory effect of Tylophora indica on Con A induced lymphoproliferation. Phytomedicine, 2001, 8(6), 431-437.
[http://dx.doi.org/10.1078/S0944-7113(04)70061-6] [PMID: 11824517]
[45]
Donaldson, G.R.; Atkinson, M.R.; Murray, A.W. Inhibition of protein synthesis in Ehrlich ascites-tumour cells by the phenanthrene alkaloids tylophorine, tylocrebrine and cryptopleurine. Biochem. Biophys. Res. Commun., 1968, 31(1), 104-109.
[http://dx.doi.org/10.1016/0006-291X(68)90037-5] [PMID: 4869942]
[46]
Huang, M-T.; Grollman, A.P. Mode of action of tylocrebrine: effects on protein and nucleic acid synthesis. Mol. Pharmacol., 1972, 8(5), 538-550.
[PMID: 4343427]
[47]
Umezawa, K.; Ohse, T.; Yamamoto, T.; Koyano, T.; Takahashi, Y. Isolation of a new vinca alkaloid from the leaves of Ervatamia microphylla as an inhibitor of ras functions. Anticancer Res., 1994, 14(6B), 2413-2417.
[PMID: 7872661]
[48]
Wang, Y.; Gao, W.; Svitkin, Y.V.; Chen, A.P-C.; Cheng, Y-C. DCB-3503, a tylophorine analog, inhibits protein synthesis through a novel mechanism. PLoS One, 2010, 5(7)e11607
[http://dx.doi.org/10.1371/journal.pone.0011607] [PMID: 20657652]
[49]
Kwon, Y.; Song, J.; Lee, H.; Kim, E.Y.; Lee, K.; Lee, S.K.; Kim, S. Design, synthesis, and biological activity of sulfon-amide analogues of antofine and cryptopleurine as potent and orally active antitumor agents. J. Med. Chem., 2015, 58(19), 7749-7762.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00764] [PMID: 26393416]
[50]
Kwon, Y.; Song, J.; Lee, B.; In, J.; Song, H.; Chung, H.J.; Lee, S.K.; Kim, S. Design, synthesis, and evaluation of a water-soluble antofine analogue with high antiproliferative and antitumor activity. Bioorg. Med. Chem., 2013, 21(4), 1006-1017.
[http://dx.doi.org/10.1016/j.bmc.2012.11.039] [PMID: 23294831]
[51]
Lai, C.Y.; Pan, S.L.; Yang, X.M.; Chang, L.H.; Chang, Y.L.; Yang, P.C.; Lee, K.H.; Teng, C.M. Depletion of 4E-BP1 and regulation of autophagy lead to YXM110-induced anticancer effects. Carcinogenesis, 2013, 34(9), 2050-2060.
[http://dx.doi.org/10.1093/carcin/bgt146] [PMID: 23633518]
[52]
Liu, Z.; Lv, H.; Li, H.; Zhang, Y.; Zhang, H.; Su, F.; Xu, S.; Li, Y.; Si, Y.; Yu, S.; Chen, X. Interaction studies of an anticancer alkaloid, (+)-(13aS)-deoxytylophorinine, with calf thymus DNA and four repeated double-helical DNAs. Chemotherapy, 2011, 57(4), 310-320.
[http://dx.doi.org/10.1159/000329506] [PMID: 21893982]
[53]
Ganguly, T.; Khar, A. Induction of apoptosis in a human erythroleukemic cell line K562 by tylophora alkaloids involves release of cytochrome c and activation of caspase 3. Phytomedicine, 2002, 9(4), 288-295.
[http://dx.doi.org/10.1078/0944-7113-00146] [PMID: 12120809]
[54]
Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer, 2002, 2(10), 795-803.
[http://dx.doi.org/10.1038/nrc909] [PMID: 12360282]
[55]
Yang, W-H.; Xu, J.; Mu, J-B.; Xie, J. Revision of the concept of anti-angiogenesis and its applications in tumor treatment. Chronic Dis Transl Med, 2017, 3(1), 33-40.
[http://dx.doi.org/10.1016/j.cdtm.2017.01.002] [PMID: 29063054]
[56]
Saraswati, S.; Kanaujia, P.K.; Kumar, S.; Kumar, R.; Alhaider, A.A. Tylophorine, a phenanthraindolizidine alkaloid isolated from Tylophora indica exerts antiangiogenic and antitumor activity by targeting vascular endothelial growth factor receptor 2-mediated angiogenesis. Mol. Cancer, 2013, 12, 82.
[http://dx.doi.org/10.1186/1476-4598-12-82] [PMID: 23895055]
[57]
Oh, J.; Kim, G.D.; Kim, S.; Lee, S.K. Antofine, a natural phenanthroindolizidine alkaloid, suppresses angiogenesis via regulation of AKT/mTOR and AMPK pathway in endothelial cells and endothelial progenitor cells derived from mouse embryonic stem cells Food Chem. Toxicol., 2017, 107(Pt A), 201-207.
[58]
Song, J.; Kwon, Y.; Kim, S.; Lee, S.K. Antitumor activity of phenanthroindolizidine alkaloids is associated with negative regulation of Met endosomal signaling in renal cancer cells. Chem. Biol., 2015, 22(4), 504-515.
[http://dx.doi.org/10.1016/j.chembiol.2015.03.011] [PMID: 25865310]
[59]
Kim, E.H.; Min, H.Y.; Chung, H.J.; Song, J.; Park, H.J.; Kim, S.; Lee, S.K. Anti-proliferative activity and suppression of P-glycoprotein by (-)-antofine, a natural phenanthroindolizidine alkaloid, in paclitaxel-resistant human lung cancer cells. Food Chem. Toxicol., 2012, 50(3-4), 1060-1065.
[http://dx.doi.org/10.1016/j.fct.2011.11.008] [PMID: 22120505]
[60]
Bach, D-H.; Kim, D.; Bae, S.Y.; Kim, W.K.; Hong, J-Y.; Lee, H-J.; Rajasekaran, N.; Kwon, S.; Fan, Y.; Luu, T-T-T.; Shin, Y.K.; Lee, J.; Lee, S.K. Targeting nicotinamide N-methyltransferase and miR-449a in EGFR-TKI-resistant non-small cell lung cancer cells. Mol. Ther. Nucleic Acids, 2018, 11, 455-467.
[http://dx.doi.org/10.1016/j.omtn.2018.03.011] [PMID: 29858080]
[61]
Rao, K.N.; Bhattacharya, R.K.; Venkatachalam, S.R. Inhibition of thymidylate synthase and cell growth by the phenanthroindolizidine alkaloids pergularinine and tylophorinidine. Chem. Biol. Interact., 1997, 106(3), 201-212.
[http://dx.doi.org/10.1016/S0009-2797(97)00065-3] [PMID: 9413547]
[62]
Rao, K.N.; Venkatachalam, S.R. Inhibition of dihydrofolate reductase and cell growth activity by the phenanthroindolizidine alkaloids pergularinine and tylophorinidine: the in vitro cytotoxicity of these plant alkaloids and their potential as antimicrobial and anticancer agents. Toxicol. In Vitro, 2000, 14(1), 53-59.
[http://dx.doi.org/10.1016/S0887-2333(99)00092-2] [PMID: 10699361]
[63]
Gao, P.; Tchernyshyov, I.; Chang, T.C.; Lee, Y.S.; Kita, K.; Ochi, T.; Zeller, K.I.; De Marzo, A.M.; Van Eyk, J.E.; Mendell, J.T.; Dang, C.V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458(7239), 762-765.
[http://dx.doi.org/10.1038/nature07823] [PMID: 19219026]
[64]
Dang, C.V.; Le, A.; Gao, P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin. Cancer Res., 2009, 15(21), 6479-6483.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0889] [PMID: 19861459]
[65]
Jiang, W.G.; Sanders, A.J.; Katoh, M.; Ungefroren, H.; Gieseler, F.; Prince, M.; Thompson, S.K.; Zollo, M.; Spano, D.; Dhawan, P.; Sliva, D.; Subbarayan, P.R.; Sarkar, M.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Ye, L.; Helferich, W.G.; Yang, X.; Boosani, C.S.; Guha, G.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Azmi, A.S.; Keith, W.N.; Bilsland, A.; Bhakta, D.; Halicka, D.; Nowsheen, S.; Pantano, F.; Santini, D. Tissue invasion and metastasis: molecular, biological and clinical perspectives. Semin. Cancer Biol., 2015, 35(Suppl.), S244-S275.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.008] [PMID: 25865774]
[66]
Cheng, G.Z.; Chan, J.; Wang, Q.; Zhang, W.; Sun, C.D.; Wang, L.H. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res., 2007, 67(5), 1979-1987.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1479] [PMID: 17332325]
[67]
Wu, T.S.; Sun, C.R.; Lee, K.H. Cytotoxic and anti-HIV phenanthroindolizidine alkaloids from Cryptocarya chinensis. Nat. Prod. Commun., 2012, 7(6), 725-727.
[http://dx.doi.org/10.1177/1934578X1200700608] [PMID: 22816292]
[68]
Liu, J.; He, Y.; Zhang, D.; Cai, Y.; Zhang, C.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. In vitro anticancer effects of two novel phenanthroindolizidine alkaloid compounds on human colon and liver cancer cells. Mol. Med. Rep., 2017, 16(3), 2595-2603.
[http://dx.doi.org/10.3892/mmr.2017.6879] [PMID: 28677760]
[69]
You, X.; Pan, M.; Gao, W.; Shiah, H.S.; Tao, J.; Zhang, D.; Koumpouras, F.; Wang, S.; Zhao, H.; Madri, J.A.; Baker, D.; Cheng, Y.C.; Yin, Z. Effects of a novel tylophorine analog on collagen-induced arthritis through inhibition of the innate immune response. Arthritis Rheum., 2006, 54(3), 877-886.
[http://dx.doi.org/10.1002/art.21640] [PMID: 16508970]
[70]
Wen, T.; Li, Y.; Wu, M.; Chen, X.; Han, L.; Bao, X.; Wang, Z.; Wang, K.; Hu, Y.; Zhou, X.; Wu, Z.; Wang, P.; Hong, Z.; Zhao, L.; Wang, Q.; Yin, Z. A novel tylophorine analog NK-007 ameliorates colitis through inhibition of innate immune response. Int. Immunopharmacol., 2012, 14(4), 487-494.
[http://dx.doi.org/10.1016/j.intimp.2012.08.008] [PMID: 22929538]
[71]
Wen, T.; Li, Y.; Wu, M.; Sun, X.; Bao, X.; Lin, Y.; Hao, J.; Han, L.; Cao, G.; Wang, Z.; Liu, Y.; Wu, Z.; Hong, Z.; Wang, P.; Zhao, L.; Li, Z.; Wang, Q.; Yin, Z. Therapeutic effects of a novel tylophorine analog, NK-007, on collagen-induced arthritis through suppressing tumor necrosis factor α production and Th17 cell differentiation. Arthritis Rheum., 2012, 64(9), 2896-2906.
[http://dx.doi.org/10.1002/art.34528] [PMID: 22576707]
[72]
Meng, X.; Zhang, Y.; Jia, Z.; Huo, X.; He, X.; Tian, G.; Wu, M.; Wang, Z.; Zhou, X.; Xiong, S.; Gao, X.; Wu, Z.; Han, J.; Zhao, L.; Wang, P.; Hong, Z.; Wang, Q.; Yin, Z. A novel tylophorine analog W-8 up-regulates forkhead boxP3 expression and ameliorates murine colitis. J. Leukoc. Biol., 2013, 93(1), 83-93.
[http://dx.doi.org/10.1189/jlb.0812402] [PMID: 23142729]
[73]
Chen, C.Y.; Yang, S.C.; Lee, K.H.; Yang, X.; Wei, L.Y.; Chow, L.P.; Wang, T.C.; Hong, T.M.; Lin, J.C.; Kuan, C.; Yang, P.C. The antitumor agent PBT-1 directly targets HSP90 and hnRNP A2/B1 and inhibits lung adenocarcinoma growth and metastasis. J. Med. Chem., 2014, 57(3), 677-685.
[http://dx.doi.org/10.1021/jm401686b] [PMID: 24428777]
[74]
Qiu, Y.Q.; Yang, C.W.; Lee, Y.Z.; Yang, R.B.; Lee, C.H.; Hsu, H.Y.; Chang, C.C.; Lee, S.J. Targeting a ribonucleoprotein complex containing the caprin-1 protein and the c-Myc mRNA suppresses tumor growth in mice: an identification of a novel oncotarget. Oncotarget, 2015, 6(4), 2148-2163.
[http://dx.doi.org/10.18632/oncotarget.3236] [PMID: 25669982]
[75]
Yang, C.W.; Lee, Y.Z.; Hsu, H.Y.; Shih, C.; Chao, Y.S.; Chang, H.Y.; Lee, S.J. Targeting coronaviral replication and cellular JAK2 mediated dominant NF-kappaB activation for comprehensive and ultimate inhibition of coronaviral activity. Sci. Rep., 2017, 7(1), 4105.
[http://dx.doi.org/10.1038/s41598-017-04203-9] [PMID: 28642467]
[76]
Wang, Y.; Lee, S.; Ha, Y.; Lam, W.; Chen, S.R.; Dutschman, G.E.; Gullen, E.A.; Grill, S.P.; Cheng, Y.; Fürstner, A.; Francis, S.; Baker, D.C.; Yang, X.; Lee, K.H.; Cheng, Y.C. Tylophorine analogs allosterically regulates heat shock cognate protein 70 and inhibits hepatitis C virus replication. Sci. Rep., 2017, 7(1), 10037.
[http://dx.doi.org/10.1038/s41598-017-08815-z] [PMID: 28855547]
[77]
Xi, Z.; Zhang, R.; Yu, Z.; Ouyang, D. The interaction between tylophorine B and TMV RNA. Bioorg. Med. Chem. Lett., 2006, 16(16), 4300-4304.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.059] [PMID: 16759858]
[78]
Yang, C.W.; Lee, Y.Z.; Kang, I.J.; Barnard, D.L.; Jan, J.T.; Lin, D.; Huang, C.W.; Yeh, T.K.; Chao, Y.S.; Lee, S.J. Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus. Antiviral Res., 2010, 88(2), 160-168.
[http://dx.doi.org/10.1016/j.antiviral.2010.08.009] [PMID: 20727913]
[79]
Guo, X.; Zheng, L.; Jiang, J.; Zhao, Y.; Wang, X.; Shen, M.; Zhu, F.; Tian, R.; Shi, C.; Xu, M.; Li, X.; Peng, F.; Zhang, H.; Feng, Y.; Xie, Y.; Xu, X.; Jia, W.; He, R.; Xie, C.; Hu, J.; Ye, D.; Wang, M.; Qin, R. Blocking NF-kappaB is essential for the immunotherapeutic effect of recombinant IL18 in pancreatic cancer. Clin. Cancer Res., 2016, 22(23), 5939-5950.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1144] [PMID: 27297583]
[80]
Gao, W.; Gullen, E.; Shiah, H-S.; Lam, W.; Kaczmarek, C.; Baker, D.; Yin, Z.; Choi, J-Y.; Craft, J.; Cheng, Y-C. Po-tent inhibitory effect of a tylophorine analog DCB-3503 against NF-κB and its rapid induction of proteasomal degradation. Cancer Res., 2006, 66(8)(Suppl.), 1096-1096.
[81]
Gao, W.; Lam, W.; Zhong, S.; Kaczmarek, C.; Baker, D.C.; Cheng, Y.C. Novel mode of action of tylophorine analogs as antitumor compounds. Cancer Res., 2004, 64(2), 678-688.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-1904] [PMID: 14744785]
[82]
Sarid, R.; Gao, S-J. Viruses and human cancer: from detection to causality. Cancer Lett., 2011, 305(2), 218-227.
[http://dx.doi.org/10.1016/j.canlet.2010.09.011] [PMID: 20971551]
[83]
Liu, Z.; Dai, X.; Wang, T.; Zhang, C.; Zhang, W.; Zhang, W.; Zhang, Q.; Wu, K.; Liu, F.; Liu, Y.; Wu, J. Hepatitis B virus PreS1 facilitates hepatocellular carcinoma development by promoting appearance and self-renewal of liver cancer stem cells. Cancer Lett., 2017, 400, 149-160.
[http://dx.doi.org/10.1016/j.canlet.2017.04.017] [PMID: 28455240]
[84]
Zhou, C.; Cheng, H.; Qin, W.; Zhang, Y.; Xiong, H.; Yang, J.; Huang, H.; Wang, Y.; Chen, X.Z.; Tang, J. Pygopus2 inhibits the efficacy of paclitaxel-induced apoptosis and in-duces multidrug resistance in human glioma cells. Oncotarget, 2017, 8(17), 27915-27928.
[http://dx.doi.org/10.18632/oncotarget.15843] [PMID: 28427190]
[85]
Arzumanyan, A.; Reis, H.M.G.P.V.; Feitelson, M.A. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat. Rev. Cancer, 2013, 13(2), 123-135.
[http://dx.doi.org/10.1038/nrc3449] [PMID: 23344543]
[86]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[87]
Rehermann, B.; Nascimbeni, M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat. Rev. Immunol., 2005, 5(3), 215-229.
[http://dx.doi.org/10.1038/nri1573] [PMID: 15738952]
[88]
Nakamura, H.; Aoki, H.; Hino, O.; Moriyama, M. HCV core protein promotes heparin binding EGF-like growth factor expression and activates Akt. Hepatol. Res., 2011, 41(5), 455-462.
[http://dx.doi.org/10.1111/j.1872-034X.2011.00792.x] [PMID: 21418450]
[89]
Jiang, Y.F.; He, B.; Li, N.P.; Ma, J.; Gong, G.Z.; Zhang, M. The oncogenic role of NS5A of hepatitis C virus is mediated by up-regulation of survivin gene expression in the hepatocellular cell through p53 and NF-κB pathways. Cell Biol. Int., 2011, 35(12), 1225-1232.
[http://dx.doi.org/10.1042/CBI20110102] [PMID: 21612579]
[90]
Tsang, W.Y.; Wang, L.; Chen, Z.; Sánchez, I.; Dynlacht, B.D. SCAPER, a novel cyclin A-interacting protein that regulates cell cycle progression. J. Cell Biol., 2007, 178(4), 621-633.
[http://dx.doi.org/10.1083/jcb.200701166] [PMID: 17698606]
[91]
Wu, C.M.; Yang, C.W.; Lee, Y.Z.; Chuang, T.H.; Wu, P.L.; Chao, Y.S.; Lee, S.J. Tylophorine arrests carcinoma cells at G1 phase by downregulating cyclin A2 expression. Biochem. Biophys. Res. Commun., 2009, 386(1), 140-145.
[http://dx.doi.org/10.1016/j.bbrc.2009.05.138] [PMID: 19501048]
[92]
Parent, R.; Qu, X.; Petit, M.A.; Beretta, L. The heat shock cognate protein 70 is associated with hepatitis C virus particles and modulates virus infectivity. Hepatology, 2009, 49(6), 1798-1809.
[http://dx.doi.org/10.1002/hep.22852] [PMID: 19434724]
[93]
Wang, Y.; Lam, W.; Chen, S.R.; Guan, F.L.; Dutchman, G.E.; Francis, S.; Baker, D.C.; Cheng, Y.C. Tylophorine analog DCB-3503 inhibited cyclin D1 translation through al-losteric regulation of heat shock cognate protein 70. Sci. Rep., 2016, 6, 32832.
[http://dx.doi.org/10.1038/srep32832] [PMID: 27596272]
[94]
Gan, Y. The design of novel DCB-3503 analogues: ligand-based and structure-based approaches; PhD dissertation [Knoxville] University of Tennessee.. http://trace.tennessee.edu/utk_graddiss/3546, 2015.
[95]
Hambardzumyan, D.; Gutmann, D.H.; Kettenmann, H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci., 2016, 19(1), 20-27.
[http://dx.doi.org/10.1038/nn.4185] [PMID: 26713745]
[96]
Gutmann, D.H.; McLellan, M.D.; Hussain, I.; Wallis, J.W.; Fulton, L.L.; Fulton, R.S.; Magrini, V.; Demeter, R.; Wylie, T.; Kandoth, C.; Leonard, J.R.; Guha, A.; Miller, C.A.; Ding, L.; Mardis, E.R. Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma. Genome Res., 2013, 23(3), 431-439.
[http://dx.doi.org/10.1101/gr.142604.112] [PMID: 23222849]
[97]
Simmons, G.W.; Pong, W.W.; Emnett, R.J.; White, C.R.; Gianino, S.M.; Rodriguez, F.J.; Gutmann, D.H. Neurofibromatosis-1 heterozygosity increases microglia in a spatially and temporally restricted pattern relevant to mouse optic glioma formation and growth. J. Neuropathol. Exp. Neurol., 2011, 70(1), 51-62.
[http://dx.doi.org/10.1097/NEN.0b013e3182032d37] [PMID: 21157378]
[98]
Morantz, R.A.; Wood, G.W.; Foster, M.; Clark, M.; Gollahon, K. Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors. J. Neurosurg., 1979, 50(3), 305-311.
[http://dx.doi.org/10.3171/jns.1979.50.3.0305] [PMID: 422981]
[99]
Rossi, M.L.; Cruz Sanchez, F.; Hughes, J.T.; Esiri, M.M.; Coakham, H.B. Immunocytochemical study of the cellular immune response in meningiomas. J. Clin. Pathol., 1988, 41(3), 314-319.
[http://dx.doi.org/10.1136/jcp.41.3.314] [PMID: 3258871]
[100]
Abudara, V.; Roux, L.; Dallérac, G.; Matias, I.; Dulong, J.; Mothet, J.P.; Rouach, N.; Giaume, C. Activated microglia impairs neuroglial interaction by opening Cx43 hemichannels in hippocampal astrocytes. Glia, 2015, 63(5), 795-811.
[http://dx.doi.org/10.1002/glia.22785] [PMID: 25643695]
[101]
Froger, N.; Orellana, J.A.; Calvo, C.F.; Amigou, E.; Kozoriz, M.G.; Naus, C.C.; Sáez, J.C.; Giaume, C. Inhibition of cytokine-induced connexin43 hemichannel activity in astrocytes is neuroprotective. Mol. Cell. Neurosci., 2010, 45(1), 37-46.
[http://dx.doi.org/10.1016/j.mcn.2010.05.007] [PMID: 20684043]
[102]
Huang, Y.F.; Liao, C.K.; Lin, J.C.; Jow, G.M.; Wang, H.S.; Wu, J.C. Antofine-induced connexin43 gap junction disassembly in rat astrocytes involves protein kinase Cβ. Neurotoxicology, 2013, 35, 169-179.
[http://dx.doi.org/10.1016/j.neuro.2013.02.001] [PMID: 23403203]
[103]
Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol., 2001, 54(3), 176-186.
[http://dx.doi.org/10.1136/jcp.54.3.176] [PMID: 11253127]
[104]
Brambilla, D.; Mancuso, C.; Scuderi, M.R.; Bosco, P.; Cantarella, G.; Lempereur, L.; Di Benedetto, G.; Pezzino, S.; Bernardini, R. The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk/benefit profile. Nutr. J., 2008, 7, 29-29.
[http://dx.doi.org/10.1186/1475-2891-7-29] [PMID: 18826565]
[105]
Jagetia, G.C.; Baliga, M.S. The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: a preliminary study. J. Med. Food, 2004, 7(3), 343-348.
[http://dx.doi.org/10.1089/jmf.2004.7.343] [PMID: 15383230]
[106]
Pratibha Chaturvedi, A.C. Enhancement of antioxidant compound in Tylophora indica (Asclepeadaceae) callus Adv. Appl. Sci. Res., 2013, 4(2), 325-330.
[107]
Ziwen, W.; Mingxiao, W.; Lei, W.; Xue, Y.; Yue, L.; Juan, T.; Wentao, Q.; Yunqi, G.; Yuxiu, L.; Qingmin, W. First discovery of tylophora alkaloids as HIV inhibitors. Lett. Drug Des. Discov., 2015, 12(4), 277-283.
[http://dx.doi.org/10.2174/1570180811666141009235124]
[108]
Wang, Y.; Chen, S-R.; Yang, X.; Lee, K-H.; Cheng, Y-C. Structure-activity relationships of cryptopleurine analogs with E-ring modifications as anti-hepatitis C virus agents. Bioorg. Med. Chem., 2018, 26(3), 630-636.
[http://dx.doi.org/10.1016/j.bmc.2017.12.027] [PMID: 29317151]
[109]
Han, G.; Chen, L.; Wang, Q.; Wu, M.; Liu, Y.; Wang, Q. Design, synthesis, and antitobacco mosaic virus activity of water-soluble chiral quaternary ammonium salts of phenan-throindolizidines alkaloids. J. Agric. Food Chem., 2018, 66(4), 780-788.
[http://dx.doi.org/10.1021/acs.jafc.7b03418] [PMID: 29355318]
[110]
Wang, K.; Hu, Y.; Liu, Y.; Mi, N.; Fan, Z.; Liu, Y.; Wang, Q. Design, synthesis, and antiviral evaluation of phenanthrene-based tylophorine derivatives as potential antiviral agents. J. Agric. Food Chem., 2010, 58(23), 12337-12342.
[http://dx.doi.org/10.1021/jf103440s] [PMID: 21058739]
[111]
Kim, W.K.; Bach, D-H.; Ryu, H.W.; Oh, J.; Park, H.J.; Hong, J-Y.; Song, H-H.; Eum, S.; Bach, T.T.; Lee, S.K. Cytotoxic activities of Telectadium dongnaiense and its con-stituents by inhibition of the Wnt/β-catenin signaling pathway. Phytomed, 2017, 15, 136-142.
[http://dx.doi.org/10.1016/j.phymed.2017.08.008]
[112]
Um, S.; Bach, D-H.; Shin, B.; Ahn, C-H.; Kim, S-H.; Bang, H-S.; Oh, K-B.; Lee, S.K.; Shin, J.; Oh, D-C. Naphthoquinone–oxindole alkaloids, coprisidins A and B, from a gut-associated bacterium in the dung beetle, copris tri-partitus. Org. Lett., 2016, 18(22), 5792-5795.
[http://dx.doi.org/10.1021/acs.orglett.6b02555] [PMID: 27934498]
[113]
Bach, D.H.; Kim, S.H.; Hong, J.Y.; Park, H.J.; Oh, D.C.; Lee, S.K. Salternamide A suppresses hypoxia-induced accumulation of HIF-1alpha and induces apoptosis in human colorectal cancer cells. Mar. Drugs, 2015, 13(11), 6962-6976.
[http://dx.doi.org/10.3390/md13116962] [PMID: 26610526]
[114]
Bach, D-H.; Park, H.J.; Lee, S.K. The dual role of bone morphogenetic proteins in cancer. Mol. Ther. Oncolytics, 2017, 8, 1-13.
[http://dx.doi.org/10.1016/j.omto.2017.10.002] [PMID: 29234727]
[115]
Tel, J.; Hato, S.V.; Torensma, R.; Buschow, S.I.; Figdor, C.G.; Lesterhuis, W.J.; de Vries, I.J. The chemotherapeutic drug oxaliplatin differentially affects blood DC function dependent on environmental cues. Cancer Immunol. Immunother., 2012, 61(7), 1101-1111.
[http://dx.doi.org/10.1007/s00262-011-1189-x] [PMID: 22193989]
[116]
Kłósek, M.; Mertas, A.; Król, W.; Jaworska, D.; Szymszal, J.; Szliszka, E. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in prostate cancer cells after treatment with xanthohumol-A natural compound present in humulus lupulus L. Int. J. Mol. Sci., 2016, 17(6)E837
[http://dx.doi.org/10.3390/ijms17060837] [PMID: 27338375]
[117]
Carvalho, P.C.; Santos, E.A.; Schneider, B.U.; Matuo, R.; Pesarini, J.R.; Cunha-Laura, A.L.; Monreal, A.C.; Lima, D.P.; Antoniolli, A.C.; Oliveira, R.J. Diaryl sulfide analogs of combretastatin A-4: Toxicogenetic, immunomodulatory and apoptotic evaluations and prospects for use as a new chemotherapeutic drug. Environ. Toxicol. Pharmacol., 2015, 40(3), 715-721.
[http://dx.doi.org/10.1016/j.etap.2015.08.028] [PMID: 26410090]
[118]
Dang, H.; Wang, J.; Cheng, J.X.; Wang, P.Y.; Wang, Y.; Cheng, L.F.; Du, C.; Wang, X.J. Efficacy of local delivery of ardipusilloside I using biodegradable implants against cerebral tumor growth. Am. J. Cancer Res., 2014, 5(1), 243-254.
[PMID: 25628934]
[119]
Bozeman, E.N.; Srivatsan, S.; Mohammadi, H.; Daniels, D.; Shashidharamurthy, R.; Selvaraj, P. Ukrain, a plant derived semi-synthetic compound, exerts antitumor effects against murine and human breast cancer and induce protective antitumor immunity in mice. Exp. Oncol., 2012, 34(4), 340-347.
[PMID: 23302993]
[120]
Oh, J.; Kim, G.D.; Kim, S.; Lee, S.K. Antofine, a natural phenanthroindolizidine alkaloid, suppresses angiogenesis via regulation of AKT/mTOR and AMPK pathway in endothelial cells and endothelial progenitor cells derived from mouse embryonic stem cells Food Chem. Toxicol., 2017, 107(Pt A), 201-207.
[http://dx.doi.org/10.1016/j.fct.2017.06.036] [PMID: 28666888]
[121]
You, X.; Pan, M.; Gao, W.; Shiah, H-S.; Tao, J.; Zhang, D.; Koumpouras, F.; Wang, S.; Zhao, H.; Madri, J.A.; Baker, D.; Cheng, Y-C.; Yin, Z. Effects of a novel tylophorine analog on collagen-induced arthritis through inhibition of the innate immune response. Arthritis Rheum., 2006, 54(3), 877-886.
[http://dx.doi.org/10.1002/art.21640] [PMID: 16508970]
[122]
Choi, J.Y.; Gao, W.; Odegard, J.; Shiah, H.S.; Kashgarian, M.; McNiff, J.M.; Baker, D.C.; Cheng, Y.C.; Craft, J. Abrogation of skin disease in LUPUS-prone MRL/FASlpr mice by means of a novel tylophorine analog. Arthritis Rheum., 2006, 54(10), 3277-3283.
[http://dx.doi.org/10.1002/art.22119] [PMID: 17009262]
[123]
Shiah, H.S.; Gao, W.; Baker, D.C.; Cheng, Y.C. Inhibition of cell growth and nuclear factor-kappaB activity in pancreatic cancer cell lines by a tylophorine analogue, DCB-3503. Mol. Cancer Ther., 2006, 5(10), 2484-2493.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0146] [PMID: 17041092]
[124]
Meng, X.; Zhang, Y.; Jia, Z.; Huo, X.; He, X.; Tian, G.; Wu, M.; Wang, Z.; Zhou, X.; Xiong, S.; Gao, X.; Wu, Z.; Han, J.; Zhao, L.; Wang, P.; Hong, Z.; Wang, Q.; Yin, Z. A novel tylophorine analog W-8 up-regulates forkhead boxP3 expression and ameliorates murine colitis. J. Leukoc. Biol., 2013, 93(1), 83-93.
[http://dx.doi.org/10.1189/jlb.0812402] [PMID: 23142729]
[125]
Xi, Z.; Zhang, R.; Yu, Z.; Ouyang, D.; Huang, R. Selective interaction between tylophorine B and bulged DNA. Bioorg. Med. Chem. Lett., 2005, 15(10), 2673-2677.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.022] [PMID: 15863340]
[126]
Jin, H.R.; Jin, S.Z.; Cai, X.F.; Li, D.; Wu, X.; Nan, J.X.; Lee, J.J.; Jin, X. Cryptopleurine targets NF-κB pathway, leading to inhibition of gene products associated with cell survival, proliferation, invasion, and angiogenesis. PLoS One, 2012, 7(6)e40355
[http://dx.doi.org/10.1371/journal.pone.0040355] [PMID: 22768286]
[127]
Donaldson, G.R.; Atkinson, M.R.; Murray, A.W. Inhibition of protein synthesis in Ehrlich ascites-tumour cells by the phenanthrene alkaloids tylophorine, tylocrebrine and cryptopleurine. Biochem. Biophys. Res. Commun., 1968, 31(1), 104-109.
[http://dx.doi.org/10.1016/0006-291X(68)90037-5] [PMID: 4869942]
[128]
Lin, J-C.; Yang, S-C.; Hong, T-M.; Yu, S-L.; Shi, Q.; Wei, L.; Chen, H-Y.; Yang, P-C.; Lee, K-H. Phenanthrene-based tylophorine-1 (PBT-1) inhibits lung cancer cell growth through the Akt and NF-kappaB pathways. J. Med. Chem., 2009, 52(7), 1903-1911.
[http://dx.doi.org/10.1021/jm801344j] [PMID: 19284764]
[129]
Chen, C-Y.; Yang, S-C.; Lee, K-H.; Yang, X.; Wei, L-Y.; Chow, L-P.; Wang, T-C.V.; Hong, T-M.; Lin, J-C.; Kuan, C.; Yang, P-C. The antitumor agent PBT-1 directly targets HSP90 and hnRNP A2/B1 and inhibits lung adenocarcinoma growth and metastasis. J. Med. Chem., 2014, 57(3), 677-685.
[http://dx.doi.org/10.1021/jm401686b] [PMID: 24428777]
[130]
Shao, Y.; Zhu, W.; Da, J.; Xu, M.; Wang, Y.; Zhou, J.; Wang, Z. Bisdemethoxycurcumin in combination with α-PD-L1 antibody boosts immune response against bladder cancer. OncoTargets Ther., 2017, 10, 2675-2683.
[http://dx.doi.org/10.2147/OTT.S130653] [PMID: 28579805]
[131]
Lim, S-O.; Li, C-W.; Xia, W.; Cha, J-H.; Chan, L-C.; Wu, Y.; Chang, S-S.; Lin, W-C.; Hsu, J-M.; Hsu, Y-H.; Kim, T.; Chang, W-C.; Hsu, J.L.; Yamaguchi, H.; Ding, Q.; Wang, Y.; Yang, Y.; Chen, C-H.; Sahin, A.A.; Yu, D.; Hortobagyi, G.N.; Hung, M-C. Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell, 2016, 30(6), 925-939.
[http://dx.doi.org/10.1016/j.ccell.2016.10.010] [PMID: 27866850]
[132]
Chandrasekaran, C.V.; Deepak, H.B.; Thiyagarajan, P.; Kathiresan, S.; Sangli, G.K.; Deepak, M.; Agarwal, A. Dual inhibitory effect of Glycyrrhiza glabra (GutGard™) on COX and LOX products. Phytomedicine, 2011, 18(4), 278-284.
[http://dx.doi.org/10.1016/j.phymed.2010.08.001] [PMID: 20864324]
[133]
Mu, J.; Ning, S.; Wang, X.; Si, L.; Jiang, F.; Li, Y.; Li, Z. The repressive effect of miR-520a on NF-ĸB/IL-6/STAT-3 signal involved in the glabridin-induced anti-angiogenesis in human breast cancer cells. RSC Advances, 2015, 5(43), 34257-34264.
[http://dx.doi.org/10.1039/C4RA17062H]
[134]
Prabhala, R.H.; Garewal, H.S.; Hicks, M.J.; Sampliner, R.E.; Watson, R.R. The effects of 13-cis-retinoic acid and beta-carotene on cellular immunity in humans. Cancer, 1991, 67(6), 1556-1560.
[http://dx.doi.org/10.1002/1097-0142(19910315)67:61556:AID-CNCR28206706163.0.CO;2-O] [PMID: 1825802]
[135]
Bendich, A.; Shapiro, S.S. Effect of beta-carotene and canthaxanthin on the immune responses of the rat. J. Nutr., 1986, 116(11), 2254-2262.
[http://dx.doi.org/10.1093/jn/116.11.2254] [PMID: 3098935]
[136]
Hoskinson, C.D.; Chew, B.P.; Wong, T.S. Effects of injectable beta-carotene and vitamin A on lymphocyte proliferation and polymorphonuclear neutrophil function in piglets. Biol. Neonate, 1992, 62(5), 325-336.
[http://dx.doi.org/10.1159/000243889] [PMID: 1467371]
[137]
Daniel, L.R.; Chew, B.P.; Tanaka, T.S.; Tjoelker, L.W. Beta-carotene and vitamin A effects on bovine phagocyte function in vitro during the peripartum period. J. Dairy Sci., 1991, 74(1), 124-131.
[http://dx.doi.org/10.3168/jds.S0022-0302(91)78152-6] [PMID: 2030167]
[138]
Alexander, M.; Newmark, H.; Miller, R.G. Oral beta-carotene can increase the number of OKT4+ cells in human blood. Immunol. Lett., 1985, 9(4), 221-224.
[http://dx.doi.org/10.1016/0165-2478(85)90036-7] [PMID: 3158598]
[139]
Watson, R.R.; Prabhala, R.H.; Plezia, P.M.; Alberts, D.S. Effect of beta-carotene on lymphocyte subpopulations in elderly humans: evidence for a dose-response relationship. Am. J. Clin. Nutr., 1991, 53(1), 90-94.
[http://dx.doi.org/10.1093/ajcn/53.1.90] [PMID: 1824583]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 25
Year: 2019
Page: [4709 - 4725]
Pages: 17
DOI: 10.2174/0929867325666180726123339
Price: $58

Article Metrics

PDF: 43