Nanocellulose-based Hydrogels for Biomedical Applications

Author(s): Amalnath John, Wen Zhong*.

Journal Name: Current Nanoscience

Volume 15 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Hydrogels are three-dimensional polymer networks capable of absorbing and holding a large amount of water. They have a wide range of biomedical applications including drug carriers, biosensors, tissue scaffolds and wound dressings owning to their innate resemblance to the living tissue. Recently biodegradable and renewable natural polymers, especially nanocellulose, have gained immense attention in the development of hydrogels for biomedical applications. This review provides a brief analysis of the various nanocellulosic materials used in the fabrication of hydrogels for various biomedical applications. Recent developments in high performance hydrogels based on nanocellulose, including self-healing, highly tough and/or stretchable and 3D printable hydrogels will also be covered in this review.

Keywords: Hydrogels, nanocellulose, cellulose nanocrystal, bacterial cellulose, cellulose nanofibrils, biomedical applications, biocompatibility, biomaterial.

Garnica-Palafox, I.M.; Sánchez-Arévalo, F.M. Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels. Carbohydr. Polym., 2016, 151, 1073-1081.
Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 2000, 50, 27-46.
Liu, L.; Li, L.; Qing, Y.; Yan, N.; Wu, Y.; Li, X.; Tian, C. Mechanically strong and thermosensitive hydrogels reinforced with cellulose nanofibrils. Polym. Chem., 2016, 7, 7142-7151.
Lin, P.; Ma, S.; Wang, X.; Zhou, F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv. Mater., 2015, 27, 2054-2059.
Gong, J.P. Why are double network hydrogels so tough? Soft Matter, 2010, 6, 2583.
Liang, X.; Qu, B.; Li, J.; Xiao, H.; He, B.; Qian, L. Preparation of cellulose-based conductive hydrogels with ionic liquid. React. Funct. Polym., 2015, 86, 1-6.
Kong, Y.; Xu, R.; Darabi, M.A.; Zhong, W.; Luo, G.; Xing, M.M.Q.; Wu, J. Fast and safe fabrication of a free-standing chitosan/alginate nanomembrane to promote stem cell delivery and wound healing. Int. J. Nanomedicine, 2016, 11, 2543-2555.
Martínez-Sanz, M.; Mikkelsen, D.; Flanagan, B.M.; Rehm, C.; de Campo, L.; Gidley, M.J.; Gilbert, E.P. Investigation of the micro- and nano-scale architecture of cellulose hydrogels with plant cell wall polysaccharides: A combined USANS/SANS study. Polymer (Guildf.), 2016, 105, 449-460.
George, J.; Sabapathi, S. Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnol. Sci. Appl., 2015, 8, 45.
Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crops Prod., 2015, 93, 2-25.
Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed., 2011, 50, 5438-5466.
Helenius, G.; Bäckdahl, H.; Bodin, A.; Nannmark, U.; Gatenholm, P.; Risberg, B. In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. A, 2006, 76, 431-438.
Sannino, A.; Demitri, C.; Madaghiele, M. Biodegradable cellulose-based hydrogels: Design and applications. Materials (Basel), 2009, 2, 353-373.
Nair, S.S.; Zhu, J.Y.; Deng, Y.; Ragauskas, A.J. Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustain. Chem.& Eng., 2014, 2, 772-780.
García-Astrain, C.; González, K.; Gurrea, T.; Guaresti, O.; Algar, I.; Eceiza, A.; Gabilondo, N. Maleimide-grafted cellulose nanocrystals as cross-linkers for bionanocomposite hydrogels. Carbohydr. Polym., 2016, 149, 94-101.
Habibi, Y. Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev., 2014, 43, 1519-1542.
Xu, X.; Liu, F.; Jiang, L.; Zhu, J.Y.; Haagenson, D.; Wiesenborn, D.P. Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces, 2013, 5, 2999-3009.
Abitbol, T.; Johnstone, T.; Quinn, T.M.; Gray, D.G. Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter, 2011, 7, 2373.
Tummala, G.K.; Joffre, T.; Rojas, R.; Persson, C.; Mihranyan, A. Strain-induced stiffening of nanocellulose-reinforced poly(vinyl alcohol) hydrogels mimicking collagenous soft tissues. Soft Matter, 2017, 13, 3936-3945.
Ross, P.; Mayer, R.; Benziman, M. Cellulose biosynthesis and function in bacteria. Microbiol. Rev., 1991, 55, 35-58.
Lin, S.P.; Loira Calvar, I.; Catchmark, J.M.; Liu, J.R.; Demirci, A.; Cheng, K.C. Biosynthesis, production and applications of bacterial cellulose. Cellulose, 2013, 20, 2191-2219.
de Oliveira Barud, H.G.; da Silva, R.R.; da Silva Barud, H.; Tercjak, A.; Gutierrez, J.; Lustri, W.R.; de Oliveira, O.B.; Ribeiro, S.J.L. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr. Polym., 2016, 153, 406-420.
Coelho, Junior, E.R.; Costa, L.O.B.F.; Alencar, A.V.; Barbosa, A.P.G.; Pinto, F.C.M.; Aguiar, J.L.A. Prevention of peritoneal adhesion using a bacterial cellulose hydrogel, in experimental study. Acta Cir. Bras., 2015, 30, 194-198.
Hagiwara, Y.; Putra, A.; Kakugo, A.; Furukawa, H.; Gong, J.P. Ligament-like tough double-network hydrogel based on bacterial cellulose. Cellulose, 2010, 17, 93-101.
Shah, R.; Vyroubal, R.; Fei, H.; Saha, N.; Kitano, T.; Saha, P. Preparation of Bacterial Cellulose Based Hydrogels and Their Viscoelastic Behavior. In Novel Trends in Rheology VI; , 2015, 1662, p. 040007.
Gatenholm, P.; Klemm, D. Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull., 2010, 35, 208-213.
Ahmad, N.; Amin, M.C.I.M.; Mahali, S.M.; Ismail, I.; Chuang, V.T.G. Biocompatible and mucoadhesive bacterial cellulose-g-poly(acrylic acid) hydrogels for oral protein delivery. Mol. Pharm., 2014, 11, 4130-4142.
Pita, P.C.; Pinto, F.C.; Lira, M.M.; Melo Fde, A.; Ferreira, L.M.; Aguiar, J.L. Biocompatibility of the bacterial cellulose hydrogel in subcutaneous tissue of rabbits. Acta Cir. Bras., 2015, 30, 296-300.
Kim, J.; Kim, S.W.; Park, S.; Lim, K.T.; Seonwoo, H.; Kim, Y.; Hong, B.H.; Choung, Y.H.; Chung, J.H. Bacterial cellulose nanofibrillar patch as a wound healing platform of tympanic membrane perforation. Adv. Healthc. Mater., 2013, 2, 1525-1531.
Ciechańska, D. Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text. East. Eur., 2004, 12, 69-72.
de Sousa Moraes, P.R.F.; Saska, S.; Barud, H.; de Lima, L.R.; da Conceição Amaro Martins, V.; de Guzzi Plepis, A.M.; Ribeiro, S.J.L.; Gaspar, A.M.M. Bacterial cellulose/collagen hydrogel for wound healing. Mater. Res., 2016, 19, 106-116.
Duarte, A.S.; Correia, A.; Esteves, A.C. Bacterial collagenases - A review. Crit. Rev. Microbiol., 2016, 42, 106-126.
Yang, Q.; Ma, H.; Dai, Z.; Wang, J.; Dong, S.; Shen, J.; Dong, J. Improved thermal and mechanical properties of bacterial cellulose with the introduction of colleagn. Cellulose, 2017, 24, 3777-3787.
Treesuppharat, W.; Rojanapanthu, P.; Siangsanoh, C.; Manuspiya, H.; Ummartyotin, S. Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnol. Rep., 2017, 15, 84-91.
Nakayama, A.; Kakugo, A.; Gong, J.P.; Osada, Y.; Takai, M.; Erata, T.; Kawano, S. High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater., 2004, 14, 1124-1128.
Kirdponpattara, S.; Khamkeaw, A.; Sanchavanakit, N.; Pavasant, P.; Phisalaphong, M. Structural modification and characterization of bacterial cellulose-alginate composite scaffolds for tissue engineering. Carbohydr. Polym., 2015, 132, 146-155.
Shi, X.; Zheng, Y.; Wang, G.; Lin, Q.; Fan, J. PH- and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Advances, 2014, 4, 47056-47065.
Shao, W.; Liu, H.; Liu, X.; Wang, S.; Wu, J.; Zhang, R.; Min, H.; Huang, M. Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr. Polym., 2015, 132, 351-358.
Mohamad, N.; Mohd Amin, M.C.I.; Pandey, M.; Ahmad, N.; Rajab, N.F. Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr. Polym., 2014, 114, 312-320.
Mohd Amin, M.C.I.; Ahmad, N.; Pandey, M.; Jue Xin, J. C. Stimuli-responsive bacterial cellulose-g-poly(acrylic acid-co-acrylamide) hydrogels for oral controlled release drug delivery. Drug Dev. Ind. Pharm., 2014, 40, 1340-1349.
Pandey, M.; Amin, M.C.I.M.; Mohamad, N.; Ahmad, N.; Muda, S. Structure and characteristics of bacterial cellulose-based hydrogels prepared by cryotropic gelation and irradiation methods. Polym. Plast. Technol. Eng., 2013, 52, 1510-1518.
Czaja, W.K.; Young, D.J.; Kawecki, M.; Brown, R.M. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 2007, 8, 1-12.
Börjesson, M.; Westman, G. Crystalline Nanocellulose - Preparation, Modification, and Properties. In Cellulose - Fundamental Aspects and Current Trends; InTech. , 2015.
Sacui, I.A.; Nieuwendaal, R.C.; Burnett, D.J.; Stranick, S.J.; Jorfi, M.; Weder, C.; Foster, E.J.; Olsson, R.T.; Gilman, J.W. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl. Mater. Interfaces, 2014, 6, 6127-6138.
Stelte, W.; Sanadi, A.R. Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind. Eng. Chem. Res., 2009, 48, 11211-11219.
Kim, J-H.; Shim, B.S.; Kim, H.S.; Lee, Y-J.; Min, S-K.; Jang, D.; Abas, Z.; Kim, J. Review of nanocellulose for sustainable future materials. Int. J. Precis. Eng. Manuf. Technol., 2015, 2, 197-213.
Jorfi, M.; Foster, E.J. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci., 2015, 132, 1-19.
Lee, K.Y.; Aitomäki, Y.; Berglund, L.A.; Oksman, K.; Bismarck, A. On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol., 2014, 105, 15-27.
Arola, S.; Malho, J.; Laaksonen, P.; Lille, M.; Linder, M.B. The role of hemicellulose in nanofibrillated cellulose networks. Soft Matter, 2013, 9, 1319-1326.
Bajpai, S.K.; Pathak, V.; Soni, B. Minocycline-loaded cellulose nano whiskers/poly(sodium acrylate) composite hydrogel films as wound dressing. Int. J. Biol. Macromol., 2015, 79, 76-85.
Gonzalez, J.S.; Ludueña, L.N.; Ponce, A.; Alvarez, V.A. Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater. Sci. Eng. C, 2014, 34, 54-61.
Tummala, G.K.; Rojas, R.; Mihranyan, A. Poly(vinyl alcohol) hydrogels reinforced with nanocellulose for ophthalmic applications: General characteristics and optical properties. J. Phys. Chem. B, 2016, 120, 13094-13101.
Zubik, K.; Singhsa, P.; Wang, Y.; Manuspiya, H.; Narain, R. Thermo-responsive poly(N-isopropylacrylamide)-cellulose nano-crystals hybrid hydrogels for wound dressing. Polymers (Basel), 2017, 9, 119.
Domingues, R.M.A.; Silva, M.; Gershovich, P.; Betta, S.; Babo, P.; Caridade, S.G.; Mano, J.F.; Motta, A.; Reis, R.L.; Gomes, M.E. Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug. Chem., 2015, 26, 1571-1581.
Yang, X.; Bakaic, E.; Hoare, T.; Cranston, E.D. Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: Morphology, rheology, degradation, and cytotoxicity. Biomacromolecules, 2013, 14, 4447-4455.
Lu, T.; Li, Q.; Chen, W.; Yu, H. Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos. Sci. Technol., 2014, 94, 132-138.
Geng, L.; Peng, X.; Zhan, C.; Naderi, A.; Sharma, P.R.; Mao, Y.; Hsiao, B.S. Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength. Cellulose, 2017, 24, 5417-5429.
Varanasi, S.; He, R.; Batchelor, W. Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose, 2013, 20, 1885-1896.
Liu, J.; Chinga-Carrasco, G.; Cheng, F.; Xu, W.; Willför, S.; Syverud, K.; Xu, C. Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose, 2016, 23, 3129-3143.
Basu, A.; Hong, J.; Ferraz, N. Hemocompatibility of Ca2+ -crosslinked nanocellulose hydrogels: Toward efficient management of hemostasis. Macromol. Biosci., 2017, 17, 1700236.
Wang, X.; Cheng, F.; Liu, J.; Smått, J.H.; Gepperth, D.; Lastusaari, M.; Xu, C.; Hupa, L. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomater., 2016, 46, 286-298.
Billiet, S.; Hillewaere, X.K.D.; Teixeira, R.F.A.; Du Prez, F.E. Chemistry of crosslinking processes for self-healing polymers. Macromol. Rapid Commun., 2013, 34, 290-309.
Williams, K.A.; Dreyer, D.R.; Bielawski, C.W. The underlying chemistry of self-healing materials. MRS Bull., 2008, 33, 759-765.
Thakur, V.K.; Kessler, M.R. Self-healing polymer nanocomposite materials: A review. Polymer (Guildf.), 2015, 69, 369-383.
Yang, Y.; Ding, X.; Urban, M.W. Chemical and physical aspects of self-healing materials. Prog. Polym. Sci., 2015, 49-50, 34-59.
Li, Q.; Liu, C.; Wen, J.; Wu, Y.; Shan, Y.; Liao, J. The design, mechanism and biomedical application of self-healing hydrogels. Chin. Chem. Lett., 2017, 28, 1857-1874.
Yu, L.; Xu, K.; Ge, L.; Wan, W.; Darabi, A.; Xing, M.; Zhong, W. Cytocompatible, photoreversible, and self-healing hydrogels for regulating bone marrow stromal cell differentiation. Macromol. Biosci., 2016, 16, 1381-1390.
Shao, C.; Wang, M.; Chang, H.; Xu, F.; Yang, J. A self-healing cellulose nanocrystal-poly(ethylene glycol) nanocomposite hydrogel via diels-alder click reaction. ACS Sustain. Chem.& Eng., 2017, 5, 6167-6174.
Yang, X.; Liu, G.; Peng, L.; Guo, J.; Tao, L.; Yuan, J.; Chang, C.; Wei, Y.; Zhang, L. Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Adv. Funct. Mater., 2017, 27, 1-10.
Duan, J.; Jiang, J.; Li, J.; Liu, L.; Li, Y.; Guan, C. The preparation of a highly stretchable cellulose nanowhisker nanocomposite hydrogel. J. Nanomater., 2015, 2015, 1-8.
Spoljaric, S.; Salminen, A.; Luong, N.D.; Seppälä, J. Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. Eur. Polym. J., 2014, 56, 105-117.
Wang, Y.; Wang, Z.; Wu, K.; Wu, J.; Meng, G.; Liu, Z.; Guo, X. Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties. Carbohydr. Polym., 2017, 168, 112-120.
Shao, C.; Chang, H.; Wang, M.; Xu, F.; Yang, J. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces, 2017, 9, 28305-28318.
Yuan, N.; Xu, L.; Wang, H.; Fu, Y.; Zhang, Z.; Liu, L.; Wang, C.; Zhao, J.; Rong, J. Dual physically cross-linked double network hydrogels with high mechanical strength, fatigue resistance, notch-insensitivity, and self-healing properties. ACS Appl. Mater. Interfaces, 2016, 8, 34034-34044.
Liang, S.; Wu, J.; Tian, H.; Zhang, L.; Xu, J. High-strength cellulose/poly(ethylene glycol) gels. ChemSusChem, 2008, 1, 558-563.
Brown, H.R. A model of the fracture of double network gels. Macromolecules, 2007, 40, 3815-3818.
Buyanov, A.L.; Gofman, I.V.; Khripunov, A.K.; Tkachenko, A.A.; Ushakova, E.E. High-strength biocompatible hydrogels based on poly(acrylamide) and cellulose: Synthesis, mechanical properties and perspectives for use as artificial cartilage. Polym. Sci. Ser. A, 2013, 55, 302-312.
Zhao, D.; Huang, J.; Zhong, Y.; Li, K.; Zhang, L.; Cai, J. High-strength and high-toughness double-cross-linked cellulose hydrogels: A new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater., 2016, 26, 6279-6287.
Naseri, N.; Deepa, B.; Mathew, A.P.; Oksman, K.; Girandon, L. Nanocellulose-based Interpenetrating Polymer Network (IPN) hydrogels for cartilage applications. Biomacromolecules, 2016, 17, 3714-3723.
Tanpichai, S.; Oksman, K. Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: Mechanical properties and creep recovery. Compos., Part A Appl. Sci. Manuf., 2016, 88, 226-233.
Zhang, T.; Zuo, T.; Hu, D.; Chang, C. Dual physically cross-linked nanocomposite hydrogels reinforced by tunicate cellulose nanocrystals with high toughness and good self-recoverability. ACS Appl. Mater. Interfaces, 2017, 9, 24230-24237.
Choe, D.; Kim, Y.M.; Nam, J.E.; Nam, K.; Shin, C.S.; Roh, Y.H. Synthesis of high-strength microcrystalline cellulose hydrogel by viscosity adjustment. Carbohydr. Polym., 2018, 180, 231-237.
Li, V.C.F.; Dunn, C.K.; Zhang, Z.; Deng, Y.; Qi, H.J. Direct Ink Write (DIW) 3D printed cellulose nanocrystal aerogel structures. Sci. Rep., 2017, 7, 1-8.
Bakarich, S.E.; Gorkin, R.; Gately, R.; Naficy, S.; Panhuis, M.h.; Spinks, G.M. 3D printing of tough hydrogel composites with spatially varying materials properties. Addit. Manuf., 2017, 14, 24-30.
Mire, C.A.; Agrawal, A.; Wallace, G.G.; Calvert, P.; Panhuis, M.h. Inkjet and extrusion printing of conducting poly(3,4-ethylenedioxythiophene) tracks on and embedded in biopolymer materials. J. Mater. Chem., 2011, 21, 2671.
Palaganas, N.B.; Mangadlao, J.D.; De Leon, A.C.C.; Palaganas, J.O.; Pangilinan, K.D.; Lee, Y.J.; Advincula, R.C. 3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography. ACS Appl. Mater. Interfaces, 2017, 9, 34314-34324.
Pataky, K.; Braschler, T.; Negro, A.; Renaud, P.; Lutolf, M.P.; Brugger, J. Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv. Mater., 2012, 24, 391-396.
Siqueira, G.; Kokkinis, D.; Libanori, R.; Hausmann, M.K.; Gladman, A.S.; Neels, A.; Tingaut, P.; Zimmermann, T.; Lewis, J.A.; Studart, A.R. Cellulose nanocrystal inks for 3D Printing of textured cellular architectures. Adv. Funct. Mater., 2017, 27, 1-10.
Leppiniemi, J.; Lahtinen, P.; Paajanen, A.; Mahlberg, R.; Metsä-Kortelainen, S.; Pinomaa, T.; Pajari, H.; Vikholm-Lundin, I.; Pursula, P.; Hytönen, V.P. 3D-printable bioactivated nanocellulose-alginate hydrogels. ACS Appl. Mater. Interfaces, 2017, 9, 21959-21970.
Prince, E.; Alizadehgiashi, M.; Campbell, M.; Khuu, N.; Albulescu, A.; De France, K.; Ratkov, D.; Li, Y.; Hoare, T.; Kumacheva, E. Patterning of structurally anisotropic composite hydrogel sheets. Biomacromolecules, 2018, 19, 1276-1284.
Sultan, S.; Mathew, A. 3D printed scaffolds with gradient porosity based on cellulose nanocrystal hydrogel. Nanoscale, 2018, 10(9), 4421-4431.
Kumar, S.; Hofmann, M.; Steinmann, B.; Foster, E.J.; Weder, C. Reinforcement of stereolithographic resins for rapid prototyping with cellulose nanocrystals. ACS Appl. Mater. Interfaces, 2012, 4, 5399-5407.
Dean, D.; Wallace, J.; Siblani, A.; Wang, M.O.; Kim, K.; Mikos, A.G.; Fisher, J.P. Continuous Digital Light Processing (CDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds. Virtual Phys. Prototyp., 2012, 7, 13-24.
Wang, J.; Chiappone, A.; Roppolo, I.; Shao, F.; Fantino, E.; Lorusso, M.; Rentsch, D.; Dietliker, K.; Pirri, C.F.; Grützmacher, H. All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels. Angew. Chem. Int. Ed., 2018, 2959, 2353-2356.
Hoeng, F.; Bras, J.; Gicquel, E.; Krosnicki, G.; Denneulin, A. Inkjet Printing of nanocellulose-silver ink onto nanocellulose coated cardboard. RSC Advances, 2017, 7, 15372-15381.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [371 - 381]
Pages: 11
DOI: 10.2174/1573413714666180723145038
Price: $58

Article Metrics

PDF: 56
PRC: 1