Understanding Process Variables and their Interactions for Maximizing Production of Artemisinin Derivative Artemether (Anti-Malarial Drug) Through Cunninghamella echinulata var elegans at 5 L Bioreactor Level

Author(s): Kashyap Kumar Dubey*, Punit Kumar.

Journal Name: Current Bioactive Compounds

Volume 15 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Malaria is one of the life threatening diseases which is caused by Plasmodium sp. of protozoa and uses Anopheles mosquitos as vector. Plasmodium vivax and Plasmodium falciparum are common form of malaria parasite. Artemisinin is reported for its antimalarial activities and Artemether which is a methyl ether derivative of Artemisinin, has been found effective against P. falciparum.

Methods: In the present study, bioconversion of Artemisinin into Artemether was carried out experimentally and the statistical tools like experimental factorial design and Response Surface Methodology were used to find optimal conditions (concentration of Artemisinin, age of inoculum, temperature & pH) using Cunninghamella echinulata var. elegans. Experimental conditions for maximum product recovery from culture broth were also optimized using various polar and non-polar solvents for extraction. Artemether purity was analyzed by reverse-phase HPLC. Experimental data was fitted in a quadratic model and effect of various parameters was analyzed.

Results: It was found that bioconversion of Artemisinin into Artemether is growth associated process. It was observed that molasses used as carbon source supported production of Artemether to 3.4g/L. The biomass and oxygen are key element affecting of bioconversion of Artemisinin into Artemether such as higher dissolved oxygen reduced the Artemether bioconversion. The highest bioconversion of Artemisinin into Artemether was obtained at temperature 25.5°C, 5g/L concentration of Artemisinin, at age of inoculum of 44.5 h and at pH 6.0. Model suggested the highest bioconversion of Artemisinin into Artemether was 54% at shake flask level which was near about experimental finding. An optimal condition for bioconversion was also analyzed and 64% bioconversion was obtained in 5L bioreactor.

Conclusion: The outcomes of the study provided optimum conditions for bioconversion of Artemisinin into Artemether.

Keywords: Cunninghamela, bioconversion, RSM, Artemisinin, Artemether, lactone.

[1]
Sheet, F. World Malaria Report, 2015.
[2]
Skinner, T.S.; Manning, L.S.; Johnston, W.A.; Davis, T.M. In vitro stage-specific sensitivity of Plasmodium falciparum to quinine and artemisinin drugs. Int. J. Parasitol., 1996, 26(5), 519-525.
[3]
White, N.J. Qinghaosu (artemisinin): The price of success. Science, 2008, 320(5874), 330-334.
[4]
Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med., 2011, 17(10), 1217-1220.
[5]
Bhakuni, R.S.; Jain, D.C.; Sharma, R.P. Phytochemistry of Artemisia annua and the development of artemisinin-derived antimalarial agents. Artemisia. Medicinal and aromatic plants-Industrial profiles; Wright, C.W., Ed.; Taylor & Francis Inc: London, 2002, pp. 211-247.
[6]
Olliaro, P.L.; Taylor, W.R. Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: A review. J. Postgrad. Med., 2004, 50(1), 40-44.
[7]
Cockburn, I.A.; Mackinnon, M.J.; O’Donnell, A.; Allen, S.J.; Moulds, J.M.; Baisor, M.; Bockarie, M.; Reeder, J.C.; Rowe, J.A. A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc. Natl. Acad. Sci. USA, 2004, 101(1), 272-277.
[8]
Jambou, R.; Legrand, E.; Niang, M.; Khim, N.; Lim, P.; Volney, B.; Ekala, M.T.; Bouchier, C.; Esterre, P.; Fandeur, T.; Mercereau-Puijalon, O. Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet, 2005, 366(9501), 1960-1963.
[9]
Hale, V.; Keasling, J.D.; Renninger, N.; Diagana, T.T. Microbially derived artemisinin: A biotechnology solution to the global problem of access to affordable antimalarial drugs. Am. J. Trop. Med. Hyg., 2007, 77(6)(Suppl.), 198-202.
[10]
Westfall, P.J.; Pitera, D.J.; Lenihan, J.R.; Eng, D.; Woolard, F.X.; Regentin, R.; Horning, T.; Tsuruta, H.; Melis, D.J.; Owens, A.; Fickes, S.; Diola, D.; Benjamin, K.R.; Keasling, J.D.; Leavell, M.D.; McPhee, D.J.; Renninger, N.S.; Newman, J.D.; Paddon, C.J. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl. Acad. Sci. USA, 2012, 109(3), E111-E118.
[11]
Paddon, C.J.; Westfall, P.J.; Pitera, D.J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.D.; Tai, A.; Main, A.; Eng, D.; Polichuk, D.R.; Teoh, K.H.; Reed, D.W.; Treynor, T.; Lenihan, J.; Fleck, M.; Bajad, S.; Dang, G.; Dengrove, D.; Diola, D.; Dorin, G.; Ellens, K.W.; Fickes, S.; Galazzo, J.; Gaucher, S.P.; Geistlinger, T.; Henry, R.; Hepp, M.; Horning, T.; Iqbal, T.; Jiang, H.; Kizer, L.; Lieu, B.; Melis, D.; Moss, N.; Regentin, R.; Secrest, S.; Tsuruta, H.; Vazquez, R.; Westblade, L.F.; Xu, L.; Yu, M.; Zhang, Y.; Zhao, L.; Lievense, J.; Covello, P.S.; Keasling, J.D.; Reiling, K.K.; Renninger, N.S.; Newman, J.D. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446), 528-532.
[12]
Azerad, R. Microbial transformations of artemisinin and artemisinin derivatives: An example of the microbial generation of molecular diversity. Curr. Bioact. Compd., 2012, 8(2), 151-158.
[13]
Zeng, Q.; Qiu, F.; Yuan, L. Production of artemisinin by genetically-modified microbes. Biotechnol. Lett., 2008, 30(4), 581-592.
[14]
Turschner, S.; Efferth, T. Drug resistance in Plasmodium: Natural products in the fight against malaria. Mini Rev. Med. Chem., 2009, 9(2), 206-224.
[15]
Ekthawatchai, S.; Kamchonwongpaisan, S.; Kongsaeree, P.; Tarnchompoo, B.; Thebtaranonth, Y.; Yuthavong, Y. C-16 artemisinin derivatives and their antimalarial and cytotoxic activities: Syntheses of artemisinin monomers, dimers, trimers, and tetramers by nucleophilic additions to artemisitene. J. Med. Chem., 2001, 44(26), 4688-4695.
[16]
Brisibe, E.A.; Uyoh, E.A.; Brisibe, F.; Magalhaes, P.M.; Ferreira, J.F.S. Building a golden triangle for the production and use of artemisinin derivatives against falciparum malaria in Africa. Afr. J. Biotechnol., 2008, 7(25), 4884-4896.
[17]
Chaturvedi, D.; Goswami, A.; Saikia, P.P.; Barua, N.C.; Rao, P.G. Artemisinin and its derivatives: a novel class of anti-malarial and anti-cancer agents. Chem. Soc. Rev., 2010, 39(2), 435-454.
[18]
World Health Organization WHO Model List of Essential Medicines, 18th List,, 2013. [Retrieved July 29, 2016];
[19]
Esu, E.; Effa, E.E.; Opie, O.N.; Uwaoma, A.; Meremikwu, M.M. Artemether for severe malaria. Cochrane Database Syst. Rev., 2014, 9(9)CD010678
[20]
Kumar, P.; Dubey, K.K. Current trends and future prospects of lipstatin: A lipase inhibitor and pro-drug for obesity. RSC Advances, 2015, 5, 86954-86966.
[21]
Dubey, K.K.; Jawed, A.; Haque, S. Enhanced extraction of 3‐demethylated colchicine from fermentation broth of Bacillus megaterium: Optimization of process parameters by statistical experimental design. Eng. Life Sci., 2011, 11(6), 598-606.
[22]
Dhingra, S.; Bhushan, G.; Dubey, K.K. Development of a combined approach for improvement and optimization of karanja biodiesel using response surface methodology and genetic algorithm. Front. Energy, 2013, 7(4), 495-505.
[23]
Chakravarti, R.; Sahai, V. Optimization of compactin production in chemically defined production medium by Penicillium citrinum using statistical methods. Process Biochem., 2002, 38(4), 481-486.
[24]
Guantai, E.; Chibale, K. How can natural products serve as a viable source of lead compounds for the development of new/novel anti-malarials? Malar. J., 2011, 10(Suppl. 1), S2.
[25]
Gamo, F.J.; Sanz, L.M.; Vidal, J.; de Cozar, C.; Alvarez, E.; Lavandera, J.L.; Vanderwall, D.E.; Green, D.V.; Kumar, V.; Hasan, S.; Brown, J.R.; Peishoff, C.E.; Cardon, L.R.; Garcia-Bustos, J.F. Thousands of chemical starting points for antimalarial lead identification. Nature, 2010, 465(7296), 305-310.
[26]
Tabanca, N.; Demirci, B.; Ali, A.; Khan, S.I.; Jacob, M.R.; Aytac, Z.; Khan, I.A. Chemical composition, biting deterrent, antimalarial and antimicrobial activity of essential oil from hypericum scabrum l. Curr. Bioact. Compd., 2015, 11, 62-72.
[27]
Goswami, A.; Saikia, P.P.; Barua, N.C.; Bordoloi, M.; Yadav, A.; Bora, T.C.; Gogoi, B.K.; Saxena, A.K.; Suri, N.; Sharma, M. Bio-transformation of artemisinin using soil microbe: Direct C-acetoxylation of artemisinin at C-9 by Penicillium simplissimum. Bioorg. Med. Chem. Lett., 2010, 20(1), 359-361.
[28]
Gaur, R.; Darokar, M.P.; Ajayakumar, P.V.; Shukla, R.S.; Bhakuni, R.S. In vitro antimalarial studies of novel artemisinin biotransformed products and its derivatives. Phytochemistry, 2014, 107, 135-140.
[29]
Stringham, R.W.; Teager, D.S. Streamlined process for the conversion of artemisinin to artemether. Org. Process Res. Dev., 2012, 16(5), 764-768.
[30]
Azerad, R. Microbial transformations of artemisinin and artemisinin derivatives: An example of the microbial generation of molecular diversity. Curr. Bioact. Compd., 2012, 8, 151-158.
[31]
Zhan, J.; Guo, H.; Dai, J.; Zhang, Y.; Guo, G. Microbial transformations of artemisinin by Cunninghamella echinulata and Aspergillus niger. Tetrahedron Lett., 2002, 43(25), 4519-4521.
[32]
Hashizume, T.; Higa, S.; Sasaki, Y.; Yamazaki, H.; Iwamura, H. Matsuda. H. Constituents of cane molasses. Agric. Biol. Chem., 1966, 30(4), 319-329.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 4
Year: 2019
Page: [442 - 452]
Pages: 11
DOI: 10.2174/1573407214666180720115505
Price: $58

Article Metrics

PDF: 43
HTML: 1