Determination of Verapamil in Exhaled Breath Condensate by Using Microextraction and Liquid Chromatography

Author(s): Fariba Pourkarim , Ali Shayanfar , Maryam Khoubnasabjafari , Fariborz Akbarzadeh , Sanaz Sajedi-Amin , Vahid Jouyban-Gharamaleki , Abolghasem Jouyban* .

Journal Name: Current Pharmaceutical Analysis

Volume 15 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Developing a simple analysis method for quantification of drug concentration is one of the essential issues in pharmacokinetic and therapeutic drug monitoring studies.

Objective: A fast and reliable dispersive liquid-liquid microextraction procedure was employed for preconcentration of verapamil in exhaled breath condensate (EBC) samples and this was followed by the determination with high-performance liquid chromatography-ultraviolet detection.

Methods: A reverse-phase high-performance liquid chromatography (RP-HPLC) combined with a dispersive liquid-liquid microextraction method (DLLME) was applied for quantification of verapamil in the EBC samples. The developed method was validated according to FDA guidelines.

Results: Under the optimum conditions, the method provided a linear range between 0.07 and 0.8 µg.mL-1 with a coefficient of determination of 0.998. The intra- and inter-day relative standard deviation and relative error values of the method were below 15%, which indicated good precision and accuracy. The proposed method was successfully applied for the analysis of verapamil in two real samples with concentrations of 0.07 and 0.09 µg.mL-1.

Conclusion: The established HPLC-UV-DLLME method could be applied for the analysis of verapamil in human EBC samples.

Keywords: Verapamil, dispersive liquid-liquid microextraction, high-performance liquid chromatography, exhaled breath condensate, cardiovascular diseases, mortality.

[1]
Jouyban, A.; Sorouraddin, M.H.; Farajzadeh, M.A.; Somi, M.H.; Fazeli-Bakhtiyari, R. Determination of five antiarrhythmic drugs in human plasma by dispersive liquid-liquid microextraction and high-performance liquid chromatography. Talanta, 2015, 134, 681-689.
[2]
Garcia, M.A.; Aramayona, J.J.; Bregante, M.A.; Fraile, L.J.; Solans, C. Simultaneous determination of verapamil and norverapamil in biological samples by high-performance liquid chromatography using ultraviolet detection. J. Chromatogr. B , 1997, 693, 377-382.
[3]
Kirsten, R.; Nelson, K.; Kirsten, D.; Heintz, B. Clinical Pharmacokinetics of Vasodilators. Clin. Pharmacokinet., 1998, 34, 457-482.
[4]
Moffat, A.C.; Osselton, M.D.; Widdop, B.; Watts, J. Clarke's Analysis of Drugs and Poisons. Pharmaceutical Press, 2004. London, UK
[5]
Regenthal, R.; Krueger, M.; Koeppel, C.; Preiss, R. Drug levels: therapeutic and toxic serum/plasma concentrations of common drugs. Clin. Monit. Comput., 1999, 15, 529-544.
[6]
Soltani, S.; Jouyban, A. A validated micellar LC method for simultaneous determination of furosemide, metoprolol and verapamil in human plasma. Bioanalysis, 2012, 4, 41-48.
[7]
Eisenberg, J.N.; Oakley, G.D. Probable adverse interaction between oral metoprolol and verapamil. Postgrad. Med. J., 1984, 60, 705-706.
[8]
Ivanova, V.; Zendelovska, D.; Stefova, M.; Stafilov, T. HPLC method for determination of verapamil in human plasma after solid-phase extraction. J. Biochem. Biophys. Methods, 2008, 70, 1297-1303.
[9]
Hynnlng, P.A.; Anderson, P.; Bondesson, U.; Boreus, L.O. Liquid-Chromatographic Quantification Compared with Gas-Chromatographic-Mass-Spectrometric Determination of Verapamil and Norverapamil in Plasma. Clin. Chem., 1988, 34, 2502-2503.
[10]
Arayne, M.S.; Mirza, A.Z.; Sultana, N. Simultaneous Determination of Gliquidone, Pioglitazone Hydrochloride, and Verapamil in Formulation and Human Serum by RP-HPLC. J. Chromatogr. Sci., 2011, 49, 114-117.
[11]
Asafu-Adjaye, E.B.; Shiu, G.K. Solid-phase extraction-high-perfomance liquid chromatography determination of verapamil and norverapamil enantiomers in urine. J. Chromatogr. B, 1998, 707, 161-167.
[12]
Sawicki, W. A validated method for the determination of verapamil and norverapamil in human plasma. J. Pharm. Biomed. Anal., 2001, 25, 689-695.
[13]
Sultana, N.; Arayne, M.S.; Waheed, A. Method Development of Verapamil in Presence of NSAIDs using RP-HPLC Technique. Bull. Korean Chem. Soc., 2011, 32, 2274-2278.
[14]
Piotrovskii, V.K.; Rumiantsev, D.O.; Metelitsa, V.I. Ion-exchange high-performance liquid chromatography in drug assay in biological fluids: II. Verapamil. J. Chromatogr. A, 1983, 275, 507-512.
[15]
Borges, N.C.; Mendes, G.D.; Barrientos-Astigarraga, R.E.; Galvinas, P.; Oliveira, C.H.; Nucci, G.D. Verapamil quantification in human plasma by liquid chromatography coupled to tandem mass spectrometry an application for bioequivalence study. J. Chromatogr. B , 2005, 827, 165-172.
[16]
Hasanzadeh, M.; Pournaghi-Azar, M.H.; Shadjou, N.; Jouyban, A. A verapamil electrochemical sensor based on magnetic mobile crystalline material-41 grafted by sulfonic acid. Electrochim. Acta, 2013, 89, 660-668.
[17]
Hunt, J. Exhaled breath condensate: an evolving tool for noninvasive evaluation of lung disease. J. Allergy Clin. Immunol., 2002, 110, 28-34.
[18]
Manolis, A.; McBurney, L.J.; Bobbie, B.A. The detection of delta 9-tetrahydrocannabinol in the breath of human subjects. Clin. Biochem., 1983, 16, 229-233.
[19]
Beck, O.; Sandqvist, S.; Dubbelboer, I.; Franck, J. Detection of Δ9-tetrahydrocannabinol in exhaled breath collected from cannabis users. J. Anal. Toxicol., 2011, 35, 541-544.
[20]
Coucke, L.; Massarini, E.; Ostijn, Z.; Beck, O.; Verstraete, A.G.Δ. 9-Tetrahydrocannabinol concentrations in exhaled breath and physiological effects following cannabis intake-A pilot study using illicit cannabis. Clin. Biochem., 2016, 49, 1072-1077.
[21]
Himes, S.K.; Scheidweiler, K.B.; Beck, O.; Gorelick, D.A.; Desrosiers, N.A.; Huestis, M.A. Cannabinoids in exhaled breath following controlled administration of smoked cannabis. Clin. Chem., 2013, 59, 1780-1789.
[22]
Beck, O.; Onlin, A.; Mirgorodskaya, E. Potential of mass spectrometry in developing clinical laboratory biomarkers of nonvolatiles in exhaled breath. Clin. Chem., 2016, 62, 84-91.
[23]
Beck, O.; Leine, K.; Palmskog, G.; Franck, J. Amphetamines detected in exhaled breath from drug addicts: A new possible method for drugs-of-abuse testing. J. Anal. Toxicol., 2010, 34, 233-237.
[24]
Beck, O.; Stephanson, N.; Sandqvist, S.; Franck, J. Detection of drugs of abuse in exhaled breath from users following recovery from intoxication. J. Anal. Toxicol., 2012, 36, 638-646.
[25]
Beck, O.; Sandqvist, S.; Eriksen, P.; Franck, J.; Palmskog, G. Determination of methadone in exhaled breath condensate by liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol., 2011, 35, 129-133.
[26]
Beck, O.; Sandqvist, S.; Böttcher, M.; Eriksen, P.; Franck, J.; Palmskog, G. Study on the sampling of methadone from exhaled breath. J. Anal. Toxicol., 2011, 35, 257-263.
[27]
Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamaleki, V.; Panahi-Azar, V.; Azarmir, Z.; Hamidi, S.; Jouyban, A. Methadone concentrations in exhaled breath condensate, serum and urine of patients under maintenance treatment. Iran. J. Pharm. Res., 2017. in press
[28]
Wang, C.; Li, E.; Xu, G.; Wang, H.; Gong, Y.; Li, P.; Liu, Sh.; He, Y. Determination of fentanyl in human breath by solid-phase microextraction and gas chromatography-mass spectrometry. Microchem. J., 2009, 91, 149-152.
[29]
Meyer, M.R.; Rosenborg, S.; Stenberg, M.; Beck, O. First report on the pharmacokinetics of tramadol and O-desmethyltramadol in exhaled breath compared to plasma and oral fluid after a single oral dose. Biochem. Pharmacol., 2015, 98, 502-510.
[30]
Harrison, G.R.; Critchley, A.D.J.; Mayhew, C.A.; Thompson, J.M. Real‐time breath monitoring of propofol and its volatile metabolites during surgery using a novel mass spectrometric technique: a feasibility study. Br. J. Anaesth., 2003, 91, 797-799.
[31]
Grossherr, M.; Hengstenberg, A.; Meier, T.; Dibbelt, L.; Igl, B.W.; Ziegler, A.; Schmucker, P.; Gehring, H. Propofol concentration in exhaled air and arterial plasma in mechanically ventilated patients undergoing cardiac surgery. Br. J. Anaesth., 2009, •••, 608-613.
[32]
Miekisch, W.; Fuchs, P.; Kamysek, S.; Neumann, C.; Schubert, J.K. Assessment of propofol concentrations in human breath and blood by means of HS-SPME-GC-MS. Clin. Chim. Acta, 2008, 395, 32-37.
[33]
Ghimenti, S.; Di Francesco, F. Onor, M.; Stiegel, M.A.; Trivella, M.G.; Comite, C.; Catania, N.; Fuoco, R.; Pleil, J.D. Post-operative elimination of sevoflurane anesthetic and hexafluoroisopropanol metabolite in exhaled breath: pharmacokinetic models for assessing liver function. J. Breath Res., 2013, 7, 036001.
[34]
Jouyban, A.; Samadi, A.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Ranjbar, F. Amidosulfonic acid capped silver nanoparticles as a new spectrophotometric probe for rapid quantification of lamotrigine in exhaled breath condensate. Mikrochim. Acta, 2017, 184, 2991-2998.
[35]
Hamidi, S.; Amini, M.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Sate, H.; Jouyban, A. LC-MS determination of propranolol in exhaled breath condensate. Pharm. Sci., 2017, 23, 264-270.
[36]
Jouyban, A.; Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamaleki, V. Breath sampling setup, Iranian Patent, 81363, 2013.
[37]
Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamaleki, V.; Panahi-Azar, V.; Shayanfar, A.; Mohammadzadeh, L.; Jouyban, A. Methadone concentrations in exhaled breath condensate, serum and urine of patients under maintenance treatment. J. Pharm. Pharm. Sci., 2015, 18, 207-219.
[38]
Hamidi, S.; Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamaleki, V.; Jouyban, A. Direct analysis of methadone in exhaled breath condensate by capillary zone electrophoresis. Curr. Pharm. Anal., 2016, 12, 137-145.
[39]
Jouyban, A.; Rahimpour, E.; Jouyban-Gharamaleki, V.; Khoubnasabjafari, M.; Abdolmohamad-Zadeh, H. Development and validation of a novel fluorometric sensor for hydrogen peroxide monitoring in exhaled breath condensate. Anal. Methods, 2017, 9, 4371-4379.
[40]
Sepehr, B.; Bavili-Tabrizi, A.; Jouyban-Gharamaleki, V.; Khoubnasabjafari, M.; Jouyban, A. A sensitive determination of ammonia and nitrite in exhaled breath condensate of healthy humans by using berthelot reaction. Curr. Pharm. Anal., 2017, •••
[http://dx.doi.org/10.2174/1573412913666170918162236]
[41]
Mohamadian, E.; Shayanfar, A.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Ghaffary, S.; Jouyban, A. Analysis of deferiprone in exhaled breath condensate using silver nanoparticle-enhanced terbium fluorescence. Anal. Methods, 2017, 9, 5640-5645.
[42]
Walles, M.; Mullett, W.M.; Levsen, K.; Borlak, J.; Wünsch, G.; Pawliszyn, J. Verapamil drug metabolism studies by automated in-tube solid phase microextraction. J. Pharm. Biomed. Anal., 2002, 30, 307-319.
[43]
Farajbakhsh, F.; Amjadi, M.; Manzoori, J.L.; Ardalan, M.R.; Jouyban, A. Microextraction methods for preconcentration of aluminium in urine samples. Pharm. Sci., 2016, 22, 87-95.
[44]
Bansal, S.; DeStefano, A. Key elements of bioanalytical method validation for small molecules. AAPS J., 2007, 9, E109-E114.
[45]
Abernethy, D.R.; Todd, E.L.; Mitchell, J.R. Verapamil and norverapamil determination in human plasma by gas-liquid chromatography using nitrogen-phosphorous detection: Application to single-dose pharmacokinetic studies. Pharmacology, 1984, 29, 264-268.
[46]
Chytil, L.; Strauch, B.; Cvacka, J.; Maresova, V.; Jr, J.W.; Holaj, R.; Slanar, O. Determination of doxazosin and verapamil in human serum by fast LC-MS/MS: application to document non-compliance of patients. J. Chromatogr. B , 2010, 878, 3167-3173.
[47]
Vasillades, J.; Wilkerson, K.; Ellul, D.; Anticoli, M.; Rocchini, A.P. Gas-chromatographic determination of verapamil and norverapamil, with a nitrogen-selective detector. Clin. Chem., 1982, 28, 638-641.
[48]
Fazeli-Bakhtiyari, R.; Sorouraddin, M.H.; Farajzadeh, M.A.; Jouyban, A. Detection limit enhancement of antiarrythmic drugs in human plasma using capillary electrophoresis with dispersive liquid-liquid microextraction and field-amplified sample stacking method. Bioanalysis, 2015, 7, 21-37.
[49]
Jouyban, A.; Hamidi, S. Dispersive micro-solid-phase extraction using carbon-based adsorbents for the sensitive determination of verapamil in plasma samples coupled with capillary electrophoresis. J. Sep. Sci., 2017, 40, 3318-3326.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 5
Year: 2019
Page: [535 - 541]
Pages: 7
DOI: 10.2174/1573412914666180717125434
Price: $58

Article Metrics

PDF: 36
HTML: 2