Silver Nanoparticle-Based Arrays into Mesoporous Thin Films Structures for Photoelectronic Circuits

Author(s): Diana Catherine Delgado González, Andrés Di Donato, Paolo Nicolas Catalano*, Martín Gonzalo Bellino*.

Journal Name: Current Nanoscience

Volume 15 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Silver nanosystems have attracted considerable attention for numerous applications in optoelectronics. The localized surface plasmon of silver nanoparticles embedded into mesoporous titania gives rise to an enhancement of local optical field in the vicinity of Ag nanoparticles which act as efficient light-trapping components, resulting in a visible wavelength-dependent photocurrent.

Objective: In this paper, we synthetized patterned nanocomposites formed by titania mesoporous thin films loaded with alkanethiol functionalized Ag nanoparticles and we demonstrated that these stable and accessible nanostructures possess a photocurrent response.

Method: Mesoporous thin films are created by combining sol-gel synthesis and template selfassembly. Based on a photolithography technique, silver nanoparticles were selectively photodeposited and then stabilized with octanethiols. Current vs. voltage curves with and without light were compared, where selective light wavelength measurements were achieved by using visible bandpass filters. The optofluidic behavior was evaluated by placing a drop of solutions on the mesoporous film.

Results: We demonstrate photocurrent in these mesoporous thin film structures decorated with chemistabilized Ag nanoparticle-based conductive arrays, with significantly enhanced photocurrent peak at the plasmon resonant wavelength around 540 nm. Our findings offer a possibility to perform improved fluid detection with silver-mesoporous titania electronic devices.

Conclusion: We showed that an optofluidic sensitive nanocomposite circuit consisting of alkanethiol- functionalized metal nanoparticles embedded in a mesoporous oxide thin film matrix can be produced.

Keywords: Mesoporous oxide thin films, silver nanoelectrodes, surface plasmon resonance, photocurrent, nanosystems, optoelectronic.

[1]
Nejadi, S.M.; Samane, S.G.; Rahime, E. Characterization of responsivity and quantum efficiency of TiO2- based photodetectors doped with Ag N anoparticles. 2nd Int. Conf. Mech. Electron. Eng, 2010, 2, pp. 394-397.
[2]
Wang, Y.; Zhai, J.; Song, Y. Feather-like Ag@TiO2 nanostructures as plasmonic antenna to enhance optoelectronic performance. Phys. Chem. Chem. Phys., 2015, 17, 5051-5056.
[3]
Chen, H.; Wang, Q.; Lyu, M.; Zhang, Z.; Wang, L. Wavelength-switchable photocurrent in a hybrid TiO2 –Ag nanocluster photoelectrode. Chem. Commun., 2015, 51, 12072-12075.
[4]
Barad, H.N.; Ginsburg, A.; Cohen, H.; Rietwyk, K.J.; Keller, D.A.; Tirosh, S.; Bouhadana, Y.; Anderson, A.Y.; Zaban, A. Hot electron-based solid state TiO2|Ag solar cells. Adv. Mater. Interfaces, 2016, 3, 1500789.
[5]
Takai, A.; Kamat, P.V. Capture, store, and discharge. Shuttling photogenerated electrons across TiO2-silver interface. ACS Nano, 2011, 5, 7369-7376.
[6]
Linsebigler, A.L.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev., 1995, 95, 735-758.
[7]
Miyasaka, T.; Kijitori, Y.; Ikegami, M. Plastic dye-sensitized photovoltaic cells and modules based on low-temperature preparation of mesoscopic titania electrodes. Electrochemistry, 2007, 75, 2-12.
[8]
Štangar, U.L.; Černigoj, U.; Trebše, P.; Maver, K.; Gross, S. Photocatalytic TiO2 coatings: Effect of substrate and template. Monatshefte Fur Chemie., 2006, 137, 647-655.
[9]
Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem. Rev., 2007, 107, 2891-2959.
[10]
Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon, 2014, 8, 95-103.
[11]
Tian, Y.; Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun., 2004, 0, 1810-1811.
[12]
Zhao, Z.; Wang, Y.; Xu, J.; Wang, Y. Mesoporous Ag/TiO2 nanocomposites with greatly enhanced photocatalytic performance towards degradation of methyl orange under visible light. RSC Adv, 2015, 5, 59297-59305.
[13]
Jaafar, N.F.; Jalil, A.A.; Triwahyono, S. Visible-light photoactivity of plasmonic silver supported on mesoporous TiO2 nanoparticles (Ag-MTN) for enhanced degradation of 2-chlorophenol: Limitation of Ag-Ti interaction. Appl. Surf. Sci., 2017, 392, 1068-1077.
[14]
Coneo Rodríguez, R.; Bruno, M.M.; Angelomé, P.C. Au nanoparticles embedded in mesoporous ZrO2 films: Multifunctional materials for electrochemical detection. Sens. Actuators B Chem., 2018, 254, 603-612.
[15]
Martínez Gazoni, R.; Bellino, M.G.; Fuertes, M.C.; Giménez, G.; Soler-Illia, G.J.A.A.; Martínez Ricci, M.L. Designed nanoparticle–mesoporous multilayer nanocomposites as tunable plasmonic–photonic architectures for electromagnetic field enhancement. J. Mater. Chem. C , 2017, 5, 3445-355.
[16]
Angelomé, P.C.; Liz-Marzán, L.M. Synthesis and applications of mesoporous nanocomposites containing metal nanoparticles. J. Sol-Gel Sci. Technol., 2014, 70, 180-190.
[17]
Delgado, D.C.; Pérez Gagni, D.E.; Catalano, P.N.; Bellino, M.G. Mesoporous thin film structures as metal nanoparticle reactors for electronic circuits: Effects of matrix crystallinity and nanoparticle functionalization. Superlattices Microstruct., 2017, 109, 286-295.
[18]
White, R.J.; Luque, R.; Budarin, V.L.; Clark, J.H.; Macquarrie, D.J. Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev., 2009, 38, 481-494.
[19]
Stathatos, E.; Lianos, P.; Falaras, P.; Siokou, A. Photocatalytically deposited silver nanoparticles on mesoporous TiO2 films. Langmuir, 2000, 16, 2398-2400.
[20]
Wolosiuk, A.; Tognalli, N.G.; Martínez, E.D.; Granada, M.; Fuertes, M.C.; Troiani, H.; Bilmes, S.A.; Fainstein, A.; Soler-Illia, G.J. Silver nanoparticle-mesoporous oxide nanocomposite thin films: A platform for spatially homogeneous SERS-active substrates with enhanced stability. ACS Appl. Mater. Interfaces, 2014, 6, 5263-5272.
[21]
Krylova, G.V.; Gnatyuk, Y.I.; Smirnova, N.P.; Eremenko, A.M.; Gun’Ko, V.M. Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol-gel template method. J. Sol-Gel Sci. Technol., 2009, 50, 216-228.
[22]
Bandarenka, H.V.; Girel, K.V.; Bondarenko, V.P.; Khodasevich, I.A.; Panarin, A.Y.; Terekhov, S.N. Formation regularities of plasmonic silver nanostructures on porous silicon for effective surface-enhanced raman scattering. Nanoscale Res. Lett., 2016, 11, 262.
[23]
Wang, X.; Wu, Y.; Liu, X.; Chen, J.; Zhen, C.; Ma, L.; Hou, D. A template-based method for preparing ordered porous silicon. J. Porous Mater., 2015, 22, 1431-1435.
[24]
Zhao, L.L.; Kelly, K.L.; Schatz, G.C. The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B, 2003, 107, 7343-7350.
[25]
Halas, N.J.; Lal, S.; Chang, W.S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev., 2011, 111, 3913-3961.
[26]
Sánchez, V.M.; Martínez, E.D.; Martínez Ricci, M.L.; Troiani, H.; Soler-Illia, G.J.A.A. Optical properties of Au nanoparticles included in mesoporous TiO2 thin films: A dual experimental and modeling study. J. Phys. Chem. C, 2013, 117, 7246-7259.
[27]
Tognalli, N.; Fainstein, A.; Calvo, E.; Bonazzola, C.; Pietrasanta, L.; Campoy-Quiles, M.; Etchegoin, P. SERS in PAH-Os and gold nanoparticle self-assembled multilayers. J. Chem. Phys., 2005, 123(4), 044707.
[28]
Jain, P.K.; El-Sayed, M.A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett., 2010, 487, 153-164.
[29]
Ung, T.; Liz-Marzan, L.M.; Mulvaney, P. Optical properties of thin films of Au@SiO2 particles. J. Phys. Chem. B, 2001, 105, 3441-3452.
[30]
Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B. Characterization of nanostructured TiO2:Ag films: Structural and optical properties. J. Phys. Conf. Ser., 2016, 764, 012019.
[31]
Jung, S.Y.; Ha, T.J.; Park, C.S.; Seo, W.S.; Lim, Y.S.; Shin, S.; Cho, H.H.; Park, H.H. Improvement in the conductivity ratio of ordered mesoporous Ag-TiO2 thin films for thermoelectric materials. Thin Solid Films, 2013, 529, 94-97.
[32]
Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed; New York: John Wiley & Sons, 1974.
[33]
Kuzma, A.; Weis, M.; Flickyngerova, S.; Jakabovic, J.; Satka, A.; Dobrocka, E.; Chlpik, J.; Cirak, J.; Donoval, M.; Telek, P.; Uherek, F.; Donoval, D. Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles. J. Appl. Phys., 2012, 112, 103531.
[34]
Nishijima, Y.; Ueno, K.; Yokota, Y.; Murakoshi, K.; Misawa, H. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett., 2010, 1, 2031-2036.
[35]
Daniel, L.S.; Nagai, H.; Sato, M. Absorption spectra and photocurrent densities of Ag nanoparticle/TiO2 composite thin films with various amounts of Ag. J. Mater. Sci., 2013, 48, 7162-7170.
[36]
Christopher, P.; Moskovits, M. Hot charge carrier transmission from plasmonic nanostructures. Annu. Rev. Phys. Chem., 2017, 68, 379-398.
[37]
Mercuri, M.; Pierpauli, K.; Bellino, M.G.; Berli, C.L.A. Complex filling dynamics in mesoporous thin films. Langmuir, 2017, 33, 152-157.
[38]
Berli, C.L.A.; Mercuri, M.; Bellino, M.G. Modeling the abnormally slow infiltration rate in mesoporous films. Phys. Chem. Chem. Phys., 2017, 19, 1731-1734.
[39]
Gimenez, R.; Delgado, D.C.; Palumbo, F.; Berli, C.L.A.; Bellino, M.G. Mesoporous metal-oxide-semiconductor capacitors detect intra-porous fluid changes. Colloids Surf. A Physicochem. Eng. Asp., 2017, 524, 66-70.
[40]
Matsubara, K.; Kelly, K.L.; Sakai, N.; Tatsuma, T. Effects of adsorbed water on plasmon-based dissolution, redeposition and resulting spectral changes of Ag nanoparticles on single-crystalline TiO2. Phys. Chem. Chem. Phys., 2008, 10, 2263-2269.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 3
Year: 2019
Page: [304 - 308]
Pages: 5
DOI: 10.2174/1573413714666180716153501
Price: $58

Article Metrics

PDF: 19
HTML: 1