Autoantibodies for Cardiac Channels and Sudden Cardiac Death and its Relationship to Autoimmune Disorders

Author(s): Hymie Chera*, Menachem Nagar, Aaron Richler, Mahyar Pourriahi, Mohammed Al-Sadawi, Moshe Gunsburg, Yehuda Shoenfeld, Yitzhak Rosen.

Journal Name: Current Cardiology Reviews

Volume 15 , Issue 1 , 2019

Become EABM
Become Reviewer

Abstract:

Background: Sudden Cardiac Death (SCD) is an unexpected death caused by heart dysfunction. Autoantibodies against cardiac proteins may be potentially involved in the occurrence and progression of cardiac disease and SCD. The first report on the role of autoantibodies in idiopathic dilated cardiomyopathy appeared in the 1980s. In recent years new studies on the effects of the presence of specific autoantibodies and their relationship to ventricular arrhythmias and SCD were published. The purpose of the current mini-review is to analyze the results of the research studies focused on the relationship between anti-cardiomyocyte autoantibodies and SCD with respect to autoimmune disorders.

Conclusion: According to our analysis, more research is needed to understand the role of these autoantibodies against cardiac proteins in the SCD pathogenesis, and potentially employ this knowledge for improving prognosis of SCD.

Keywords: Sudden cardiac death, autoantibodies, channels, autoimmune disorders, heart dysfunction, cardiomyopathy.

[1]
Gami AS, Olson EJ, Shen WK, et al. Obstructive sleep apnea and the risk of sudden cardiac death: a longitudinal study of 10,701 adults. J Am Coll Cardiol 2013; 62(7): 610-6.
[2]
Deo R, Albert CM. Epidemiology and genetics of sudden cardiac death. Circulation 2012; 125(4): 620-37.
[3]
Ilkhanoff L, Goldberger JJ. Out-of-hospital cardiac arrest. Circulation 2012; 126: 793-6.
[4]
Deo R, Norby FL, Katz R, et al. Development and validation of a sudden cardiac death prediction model for the general population. Circulation 2016; 134(11): 806-16.
[5]
Chugh SS, Jui J, Gunson K, et al. Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate-based review in a large US community. J Am Coll Cardiol 2004; 44(6): 1268-75.
[6]
Sorensen C. Recent trends in survival from out-of-hospital cardiac arrest in the United States. J Emerg Med 2015; 48(3): 399-400.
[7]
Behere SP, Weindling SN. Inherited arrhythmias: The cardiac channelopathies. Ann Pediatr Cardiol 2015; 8(3): 210.
[8]
Gollob MH, Redpath CJ, Roberts JD. The short QT syndrome: Proposed diagnostic criteria. J Am Coll Cardiol 2011; 57(7): 802-12.
[9]
Kim JB, Kim SJ, Kang SY, Yi JW, Kim SM. The large-conductance calcium-activated potassium channel holds the key to the conundrum of familial hypokalemic periodic paralysis. Korean J Pediatr 2014; 57(10): 445-50.
[10]
Amin AS, Asghari-Roodsari A, Tan HL. Cardiac sodium channelopathies. Pflugers Arch 2010; 460(2): 223-37.
[11]
Wilde AA, Antzelevitch C, Borggrefe M, et al. Proposed diagnostic criteria for the Brugada syndrome. Circulation 2002; 106(19): 2514-9.
[12]
Kim JB. Channelopathies. Korean J Pediatr 2014; 57(1): 1-18.
[13]
Chugh SS, Socoteanu C, Reinier K, Waltz J, Jui J, Gunson K. A community-based evaluation of sudden death associated with therapeutic levels of methadone. Am J Med 2008; 121(1): 66-71.
[14]
Ambrosi A, Sonesson SE, Wahren-Herlenius M. Molecular mechanisms of congenital heart block. Exp Cell Res 2014; 325(1): 2-9.
[15]
Lazzerini PE, Capecchi PL, Guideri F, et al. Autoantibody-mediated cardiac arrhythmias: Mechanisms and clinical implications. Basic Res Cardiol 2008; 103(1): 1-11.
[16]
Rehsia NS, Dhalla NS. Mechanisms of the beneficial effects of beta-adrenoceptor antagonists in congestive heart failure. Exp Clin Cardiol 2010; 15(4): e86.
[17]
Lazzerini PE, Capecchi PL, Laghi-Pasini F, Boutjdir M. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. Nat Rev Cardiol 2017; 14(9): 521-35.
[18]
Bornholz B, Roggenbuck D, Jahns R, Boege F. Diagnostic and therapeutic aspects of β 1-adrenergic receptor autoantibodies in human heart disease. Autoimmun Rev 2014; 13(9): 954-62.
[19]
Zuo L, Du Y, Ma J, et al. Pro-arrhythmic action of autoantibodies against the second extracellular loop of β 1-adrenoceptor and its underlying molecular mechanisms. Int J Cardiol 2015; 198: 251-8.
[20]
Zhu WZ, Wang SQ, Chakir K, et al. Linkage of β1-adrenergic stimulation to apoptotic heart cell death through protein kinase A–independent activation of Ca2+/calmodulin kinase II. J Clin Invest 2003; 111(5): 617.
[21]
Dandel M, Wallukat G, Englert A, Hetzer R. Immunoadsorption therapy for dilated cardiomyopathy and pulmonary arterial hypertension. Atheroscler Suppl 2013; 14(1): 203-11.
[22]
Patel PA, Hernandez AF. Targeting anti‐beta‐1‐adrenergic receptor antibodies for dilated cardiomyopathy. Eur J Heart Fail 2013; 15(7): 724-9.
[23]
Jahns R, Boivin V, Siegmund C, Inselmann G, Lohse MJ, Boege F. Autoantibodies activating human β 1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation 1999; 99(5): 649-54.
[24]
Störk S, Boivin V, Horf R, et al. Stimulating autoantibodies directed against the cardiac β 1-adrenergic receptor predict increased mortality in idiopathic cardiomyopathy. Am Heart J 2006; 152(4): 697-704.
[25]
Chiale PA, Ferrari I, Mahler E, et al. Differential profile and biochemical effects of antiautonomic membrane receptor antibodies in ventricular arrhythmias and sinus node dysfunction. Circulation 2001; 103(13): 1765-71.
[26]
Iwata M, Yoshikawa T, Baba A, Anzai T, Mitamura H, Ogawa S. Autoantibodies against the second extracellular loop of beta 1-adrenergic receptors predict ventricular tachycardia and sudden death in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2001; 37(2): 418-24.
[27]
Pei J, Li N, Chen J, et al. The predictive values of beta1‐adrenergic and M2 muscarinic receptor autoantibodies for sudden cardiac death in patients with chronic heart failure. Eur J Heart Fail 2012; 14(8): 887-94.
[28]
Xiao H, Wang M, Du Y, et al. Arrhythmogenic autoantibodies against calcium channel lead to sudden death in idiopathic dilated cardiomyopathy. Eur J Heart Fail 2011; 13(3): 264-70.
[29]
Yu H, Pei J, Liu X, et al. Calcium channel autoantibodies predicted sudden cardiac death and all-cause mortality in patients with ischemic and nonischemic chronic heart failure. Dis Markers 2014; 2014: 796075.
[30]
Baba A, Yoshikawa T, Ogawa S. Autoantibodies produced against sarcolemmal Na-K-ATPase: Possible upstream targets of arrhythmias and sudden death in patients with dilated cardiomyopathy. J Am Coll Cardiol 2002; 40(6): 1153-9.
[31]
Lazzerini P, Capecchi P, Laghi‐Pasini F. Anti‐Ro/SSA antibodies and cardiac arrhythmias in the adult: Facts and hypotheses. Scand J Immunol 2010; 72(3): 213-22.
[32]
Lazzerini PE, Capecchi PL, Acampa M, et al. Arrhythmogenic effects of anti-Ro/SSA antibodies on the adult heart: More than expected? Autoimmun Rev 2009; 9(1): 40-4.
[33]
Karnabi E, Boutjdir M. Role of calcium channels in congenital heart block. Scand J Immunol 2010; 72(3): 226-34.
[34]
Fabris F, Yue Y, Qu Y, et al. Induction of autoimmune response to the extracellular loop of the HERG channel pore induces QTc prolongation in guinea‐pigs. J Physiol 2016; 594(21): 6175-87.
[35]
Lazzerini PE, Yue Y, Srivastava U, et al. Arrhythmogenicity of anti-Ro/SSA antibodies in patients with torsades de pointes. Circ Arrhythm Electrophysiol 2016; 9(4): e003419.
[36]
Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340(2): 115-26.
[37]
Liuzzo G, Goronzy JJ, Yang H, et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 2000; 101(25): 2883-8.
[38]
Solomon DH, Curhan GC, Rimm EB, Cannuscio CC, Karlson EW. Cardiovascular risk factors in women with and without rheumatoid arthritis. Arthritis Rheum 2004; 50(11): 3444-9.
[39]
Schirmer M, Vallejo AN, Weyand CM, Goronzy JJ. Resistance to apoptosis and elevated expression of Bcl-2 in clonally expanded CD4+CD28- T cells from rheumatoid arthritis patients. J Immunol 1998; 161(2): 1018-25.
[40]
Lazzerini PE, Yue Y, Srivastava U, et al. Arrhythmogenicity of anti-Ro/SSA antibodies in patients with torsades de pointes. Circ Arrhythm Electrophysiol 2016; 9(4): e003419.
[41]
Liautaud S, Khan AJ, Nalamasu SR, Tan IJ, Onwuanyi AE. Variable atrioventricular block in systemic lupus erythematosus. Clin Rheumatol 2005; 24(2): 162-5.
[42]
Abu-Shakra M, Urowitz M, Gladman D, Gough J. Mortality studies in systemic lupus erythematosus. Results from a single center. II. Predictor variables for mortality. J Rheumatol 1995; 22(7): 1265-70.
[43]
Godeau P, Guillevin L, Fechner J, Bletry O, Herreman G, Eds. Disorders of conduction in lupus erythematosus: Frequency and incidence in a group of 112 patients (author's transl). Annales de medecine interne 1981.
[44]
Xie SK, Feng SF, Fu H. Long term follow‐up of patients with systemic lupus erythematosus. J Dermatol 1998; 25(6): 367-73.
[45]
Champion HC. The heart in scleroderma. Rheumatic diseases clinics of North America 2008; 34(1): 181-viii.
[46]
Logar D, Kveder T, Rozman B, Dobovisek J. Possible association between anti-Ro antibodies and myocarditis or cardiac conduction defects in adults with systemic lupus erythematosus. Ann Rheum Dis 1990; 49(8): 627-9.
[47]
Teixeira RA, Borba EF, Bonfá E, Martinelli Filho M. Eventos arrítmicos no lúpus eritematoso sistêmico. Revista Brasileira de Reumatologia 2010; 50: 81-9.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2019
Page: [49 - 54]
Pages: 6
DOI: 10.2174/1573403X14666180716095201
Price: $58

Article Metrics

PDF: 26
HTML: 2