Antimicrobial Peptides: Amphibian Host Defense Peptides

Author(s): Jiri Patocka, Eugenie Nepovimova, Blanka Klimova, Qinghua Wu*, Kamil Kuca*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 32 , 2019

  Journal Home
Translate in Chinese

Abstract:

Antimicrobial Peptides (AMPs) are one of the most common components of the innate immune system that protect multicellular organisms against microbial invasion. The vast majority of AMPs are isolated from the frog skin. Anuran (frogs and toads) skin contains abundant AMPs that can be developed therapeutically. Such peptides are a unique but diverse group of molecules. In general, more than 50% of the amino acid residues form the hydrophobic part of the molecule. Normally, there are no conserved structural motifs responsible for activity, although the vast majority of the AMPs are cationic due to the presence of multiple lysine residues; this cationicity has a close relationship with antibacterial activity. Notably, recent evidence suggests that synthesis of AMPs in frog skin may confer an advantage on a particular species, although they are not essential for survival. Frog skin AMPs exert potent activity against antibiotic-resistant bacteria, protozoa, yeasts, and fungi by permeating and destroying the plasma membrane and inactivating intracellular targets. Importantly, since they do not bind to a specific receptor, AMPs are less likely to induce resistance mechanisms. Currently, the best known amphibian AMPs are esculentins, brevinins, ranacyclins, ranatuerins, nigrocin-2, magainins, dermaseptins, bombinins, temporins, and japonicins-1 and -2, and palustrin-2. This review focuses on these frog skin AMPs and the mechanisms underlying their antimicrobial activity. We hope that this review will provide further information that will facilitate further study of AMPs and cast new light on novel and safer microbicides.

Keywords: Antimicrobial peptide, (AMPs), antibacterial, amphibian defense peptides, esculentins, brevinins, ranacyclins, ranatuerins.

[1]
König, E.; Bininda-Emonds, O.R.; Shaw, C. The diversity and evolution of anuran skin peptides. Peptides, 2015, 63, 96-117.
[http://dx.doi.org/10.1016/j.peptides.2014.11.003] [PMID: 25464160]
[2]
Xu, X.; Lai, R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem. Rev., 2015, 115(4), 1760-1846.
[http://dx.doi.org/10.1021/cr4006704] [PMID: 25594509]
[3]
Ladram, A.; Nicolas, P. Antimicrobial peptides from frog skin: biodiversity and therapeutic promises. Front. Biosci., 2016, 21, 1341-1371.
[http://dx.doi.org/10.2741/4461] [PMID: 27100511]
[4]
Conlon, J.M.; Kolodziejek, J.; Nowotny, N. Antimicrobial peptides from the skins of North American frogs. Biochim. Biophys. Acta, 2009, 1788(8), 1556-1563.
[http://dx.doi.org/10.1016/j.bbamem.2008.09.018] [PMID: 18983817]
[5]
Conlon, J.M. Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell. Mol. Life Sci., 2011, 68(13), 2303-2315.
[http://dx.doi.org/10.1007/s00018-011-0720-8] [PMID: 21560068]
[6]
Conlon, J.M.; Mechkarska, M. Host-defense peptides with therapeutic potential from skin secretions of frogs from the family pipidae. Pharmaceuticals (Basel), 2014, 7(1), 58-77.
[http://dx.doi.org/10.3390/ph7010058] [PMID: 24434793]
[7]
Mergaert, P.; Kikuchi, Y.; Shigenobu, S.; Nowack, E.C.M. Metabolic integration of bacterial endosymbionts through antimicrobial peptides. Trends Microbiol., 2017, 25(9), 703-712.
[http://dx.doi.org/10.1016/j.tim.2017.04.007] [PMID: 28549825]
[8]
Boland, M.P.; Separovic, F. Membrane interactions of antimicrobial peptides from Australian tree frogs. Biochim. Biophys. Acta, 2006, 1758(9), 1178-1183.
[http://dx.doi.org/10.1016/j.bbamem.2006.02.010] [PMID: 16580625]
[9]
Amiche, M.; Galanth, C. Dermaseptins as models for the elucidation of membrane-acting helical amphipathic antimicrobial peptides. Curr. Pharm. Biotechnol., 2011, 12(8), 1184-1193.
[http://dx.doi.org/10.2174/138920111796117319] [PMID: 21470155]
[10]
Kang, S.J.; Kim, D.H.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides: their physicochemical properties and therapeutic application. Arch. Pharm. Res., 2012, 35(3), 409-413.
[http://dx.doi.org/10.1007/s12272-012-0302-9] [PMID: 22477186]
[11]
Casciaro, B.; Cappiello, F.; Cacciafesta, M.; Mangoni, M.L. Promising approaches to optimize the biological properties of the antimicrobial peptide esculentin-1a(1-21)NH2: amino acids substitution and conjugation to nanoparticles. Front Chem., 2017, 5, 26.
[http://dx.doi.org/10.3389/fchem.2017.00026] [PMID: 28487853]
[12]
Thomas, P.; Kumar, T.V.; Reshmy, V.; Kumar, K.S.; George, S. A mini review on the antimicrobial peptides isolated from the genus Hylarana (Amphibia: Anura) with a proposed nomenclature for amphibian skin peptides. Mol. Biol. Rep., 2012, 39(6), 6943-6947.
[http://dx.doi.org/10.1007/s11033-012-1521-3] [PMID: 22307792]
[13]
Wang, H.; Yu, Z.; Hu, Y.; Yu, H.; Ran, R.; Xia, J.; Wang, D.; Yang, S.; Yang, X.; Liu, J. Molecular cloning and characterization of antimicrobial peptides from skin of the broad-folded frog, Hylarana latouchii. Biochimie, 2012, 94(6), 1317-1326.
[http://dx.doi.org/10.1016/j.biochi.2012.02.032] [PMID: 22426384]
[14]
Conlon, J.M.; Musale, V.; Attoub, S.; Mangoni, M.L.; Leprince, J.; Coquet, L.; Jouenne, T.; Abdel-Wahab, Y.H.A.; Flatt, P.R.; Rinaldi, A.C. Cytotoxic peptides with insulin-releasing activities from skin secretions of the Italian stream frog Rana italica (Ranidae). J. Pept. Sci., 2017, 23(10), 769-776.
[http://dx.doi.org/10.1002/psc.3025] [PMID: 28699258]
[15]
Pantic, J.M.; Jovanovic, I.P.; Radosavljevic, G.D.; Gajovic, N.M.; Arsenijevic, N.N.; Conlon, J.M.; Lukic, M.L. The frog skin host-defense peptide frenatin 2.1S enhances recruitment, activation and tumoricidal capacity of NK cells. Peptides, 2017, 93, 44-50.
[http://dx.doi.org/10.1016/j.peptides.2017.05.006] [PMID: 28526557]
[16]
Wiesner, J.; Vilcinskas, A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence, 2010, 1(5), 440-464.
[http://dx.doi.org/10.4161/viru.1.5.12983] [PMID: 21178486]
[17]
Mangoni, M.L.; Grazia, A.D.; Cappiello, F.; Casciaro, B.; Luca, V. Naturally occurring peptides from Rana temporaria: antimicrobial properties and more. Curr. Top. Med. Chem., 2016, 16(1), 54-64.
[http://dx.doi.org/10.2174/1568026615666150703121403] [PMID: 26139114]
[18]
Deslouches, B.; Di, Y.P. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget, 2017, 8(28), 46635-46651.
[http://dx.doi.org/10.18632/oncotarget.16743] [PMID: 28422728]
[19]
Felgueiras, H.P.; Amorim, M.T.P. Functionalization of electrospun polymeric wound dressings with antimicrobial peptides. Colloids Surf. B Biointerfaces, 2017, 156, 133-148.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.001] [PMID: 28527357]
[20]
Uccelletti, D.; Zanni, E.; Marcellini, L.; Palleschi, C.; Barra, D.; Mangoni, M.L. Anti-Pseudomonas activity of frog skin antimicrobial peptides in a Caenorhabditis elegans infection model: a plausible mode of action in vitro and in vivo. Antimicrob. Agents Chemother., 2010, 54(9), 3853-3860.
[http://dx.doi.org/10.1128/AAC.00154-10] [PMID: 20606068]
[21]
Zairi, A.; Tangy, F.; Bouassida, K.; Hani, K. Dermaseptins and magainins: antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides-a mini review. J. Biomed. Biotechnol., 2009, 2009(3)452567
[http://dx.doi.org/10.1155/2009/452567] [PMID: 19893636]
[22]
Cantillo, J.H.; García, F.N. Properties and design of antimicrobial peptides as potential tools against pathogens and malignant cells Investig. Discapac., 2016, 5(2), 96. e115
[23]
Conlon, J.M.; Kolodziejek, J.; Nowotny, N. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim. Biophys. Acta, 2004, 1696(1), 1-14.
[http://dx.doi.org/10.1016/j.bbapap.2003.09.004] [PMID: 14726199]
[24]
Huang, Y.; Huang, J.; Chen, Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell, 2010, 1(2), 143-152.
[http://dx.doi.org/10.1007/s13238-010-0004-3] [PMID: 21203984]
[25]
Holthausen, D.J.; Lee, S.H.; Kumar, V.T.; Bouvier, N.M.; Krammer, F.; Ellebedy, A.H.; Wrammert, J.; Lowen, A.C.; George, S.; Pillai, M.R.; Jacob, J. An amphibian host defense peptide is virucidal for human H1 hemagglutinin-bearing influenza viruses. Immunity, 2017, 46(4), 587-595.
[http://dx.doi.org/10.1016/j.immuni.2017.03.018] [PMID: 28423338]
[26]
Vineeth Kumar, T.V.; Sanil, G. A review of the mechanism of action of amphibian antimicrobial peptides focusing on peptide-membrane interaction and membrane curvature. Curr. Protein Pept. Sci., 2017, 18(12), 1263-1272.
[http://dx.doi.org/10.2174/1389203718666170710114932] [PMID: 28699512]
[27]
Gehman, J.D.; Luc, F.; Hall, K.; Lee, T.H.; Boland, M.P.; Pukala, T.L.; Bowie, J.H.; Aguilar, M.I.; Separovic, F. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Biochemistry, 2008, 47(33), 8557-8565.
[http://dx.doi.org/10.1021/bi800320v] [PMID: 18652483]
[28]
Hale, J.D.; Hancock, R.E. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther., 2007, 5(6), 951-959.
[http://dx.doi.org/10.1586/14787210.5.6.951] [PMID: 18039080]
[29]
Fjell, C.D.; Hiss, J.A.; Hancock, R.E.; Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov., 2011, 11(1), 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[30]
Ghosh, A.; Kar, R.K.; Jana, J.; Saha, A.; Jana, B.; Krishnamoorthy, J.; Kumar, D.; Ghosh, S.; Chatterjee, S.; Bhunia, A. Indolicidin targets duplex DNA: structural and mechanistic insight through a combination of spectroscopy and microscopy. ChemMedChem, 2014, 9(9), 2052-2058.
[http://dx.doi.org/10.1002/cmdc.201402215] [PMID: 25044630]
[31]
Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55(1), 27-55.
[http://dx.doi.org/10.1124/pr.55.1.2] [PMID: 12615953]
[32]
Nguyen, L.T.; Haney, E.F.; Vogel, H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol., 2011, 29(9), 464-472.
[http://dx.doi.org/10.1016/j.tibtech.2011.05.001] [PMID: 21680034]
[33]
Wu, Q.; Patocka, J.; Kuca, K. Insect antimicrobial peptides, a mini review. Toxins , 2018, 10(11), 461.
[http://dx.doi.org/10.3390/toxins10110461] [PMID: 30413046]
[34]
Mookherjee, N.; Hancock, R.E. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell. Mol. Life Sci., 2007, 64(7-8), 922-933.
[http://dx.doi.org/10.1007/s00018-007-6475-6] [PMID: 17310278]
[35]
Mansour, S.C.; Pena, O.M.; Hancock, R.E. Host defense peptides: front-line immunomodulators. Trends Immunol., 2014, 35(9), 443-450.
[http://dx.doi.org/10.1016/j.it.2014.07.004] [PMID: 25113635]
[36]
Conlon, J.M. Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae. Peptides, 2008, 29(10), 1815-1819.
[http://dx.doi.org/10.1016/j.peptides.2008.05.029] [PMID: 18585417]
[37]
Haney, E.F.; Hunter, H.N.; Matsuzaki, K.; Vogel, H.J. Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? Biochim. Biophys. Acta, 2009, 1788(8), 1639-1655.
[http://dx.doi.org/10.1016/j.bbamem.2009.01.002] [PMID: 19272309]
[38]
Yan, X.; Liu, H.; Yang, X.; Che, Q.; Liu, R.; Yang, H.; Liu, X.; You, D.; Wang, A.; Li, J.; Lai, R. Bi-functional peptides with both trypsin-inhibitory and antimicrobial activities are frequent defensive molecules in Ranidae amphibian skins. Amino Acids, 2012, 43(1), 309-316.
[http://dx.doi.org/10.1007/s00726-011-1079-8] [PMID: 21927839]
[39]
Kang, S.J.; Son, W.S.; Han, K.D.; Mishig-Ochir, T.; Kim, D.W.; Kim, J.I.; Lee, B.J. Solution structure of antimicrobial peptide esculentin-1c from skin secretion of Rana esculenta. Mol. Cells, 2010, 30(5), 435-441.
[http://dx.doi.org/10.1007/s10059-010-0135-7] [PMID: 20848230]
[40]
Won, H.S.; Kim, S.S.; Jung, S.J.; Son, W.S.; Lee, B.; Lee, B.J. Structure-activity relationships of antimicrobial peptides from the skin of Rana esculenta inhabiting in Korea. Mol. Cells, 2004, 17(3), 469-476.
[PMID: 15232222]
[41]
Mangoni, M.L.; Fiocco, D.; Mignogna, G.; Barra, D.; Simmaco, M. Functional characterisation of the 1-18 fragment of esculentin-1b, an antimicrobial peptide from Rana esculenta. Peptides, 2003, 24(11), 1771-1777.
[http://dx.doi.org/10.1016/j.peptides.2003.07.029] [PMID: 15019209]
[42]
Marenah, L.; Flatt, P.R.; Orr, D.F.; Shaw, C.; Abdel-Wahab, Y.H. Skin secretions of Rana saharica frogs reveal antimicrobial peptides esculentins-1 and -1B and brevinins-1E and -2EC with novel insulin releasing activity. J. Endocrinol., 2006, 188(1), 1-9.
[http://dx.doi.org/10.1677/joe.1.06293] [PMID: 16394170]
[43]
Islas-Rodrìguez, A.E.; Marcellini, L.; Orioni, B.; Barra, D.; Stella, L.; Mangoni, M.L. Esculentin 1-21: a linear antimicrobial peptide from frog skin with inhibitory effect on bovine mastitis-causing bacteria. J. Pept. Sci., 2009, 15(9), 607-614.
[http://dx.doi.org/10.1002/psc.1148] [PMID: 19507197]
[44]
Graham, C.; Richter, S.C.; McClean, S.; O’Kane, E.; Flatt, P.R.; Shaw, C. Histamine-releasing and antimicrobial peptides from the skin secretions of the dusky gopher frog, Rana sevosa. Peptides, 2006, 27(6), 1313-1319.
[http://dx.doi.org/10.1016/j.peptides.2005.11.021] [PMID: 16386333]
[45]
Simmaco, M.; Mignogna, G.; Barra, D.; Bossa, F. Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J. Biol. Chem., 1994, 269(16), 11956-11961.
[PMID: 8163497]
[46]
Roice, M.; Suma, G.; Kumar, K.S.; Pillai, V.N. Synthesis of esculentin-1 antibacterial peptide fragments on 1,4-butanediol dimethacrylate cross-linked polystyrene support. J. Protein Chem., 2001, 20(1), 25-32.
[http://dx.doi.org/10.1023/A:1011048919748] [PMID: 11330345]
[47]
Kolar, S.S.N.; Luca, V.; Baidouri, H.; Mannino, G.; McDermott, A.M.; Mangoni, M.L. Esculentin-1a(1-21)NH2: a frog skin-derived peptide for microbial keratitis. Cell. Mol. Life Sci., 2015, 72(3), 617-627.
[http://dx.doi.org/10.1007/s00018-014-1694-0] [PMID: 25086859]
[48]
Morikawa, N.; Hagiwara, K.; Nakajima, T. Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem. Biophys. Res. Commun., 1992, 189(1), 184-190.
[http://dx.doi.org/10.1016/0006-291X(92)91542-X] [PMID: 1449472]
[49]
Goraya, J.; Wang, Y.; Li, Z.; O’Flaherty, M.; Knoop, F.C.; Platz, J.E.; Conlon, J.M. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur. J. Biochem., 2000, 267(3), 894-900.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01074.x] [PMID: 10651828]
[50]
Basir, Y.J.; Knoop, F.C.; Dulka, J.; Conlon, J.M. Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris. Biochim. Biophys. Acta, 2000, 1543(1), 95-105.
[http://dx.doi.org/10.1016/S0167-4838(00)00191-6] [PMID: 11087945]
[51]
Ali, M.F.; Lips, K.R.; Knoop, F.C.; Fritzsch, B.; Miller, C.; Conlon, J.M. Antimicrobial peptides and protease inhibitors in the skin secretions of the crawfish frog, Rana areolata. Biochim. Biophys. Acta, 2002, 1601(1), 55-63.
[http://dx.doi.org/10.1016/S1570-9639(02)00432-6] [PMID: 12429503]
[52]
Ali, M.F.; Knoop, F.C.; Vaudry, H.; Conlon, J.M. Characterization of novel antimicrobial peptides from the skins of frogs of the Rana esculenta complex. Peptides, 2003, 24(7), 955-961.
[http://dx.doi.org/10.1016/S0196-9781(03)00193-1] [PMID: 14499272]
[53]
Conlon, J.M.; Sonnevend, A.; Jouenne, T.; Coquet, L.; Cosquer, D.; Vaudry, H.; Iwamuro, S. A family of acyclic brevinin-1 peptides from the skin of the Ryukyu brown frog Rana okinavana. Peptides, 2005, 26(2), 185-190.
[http://dx.doi.org/10.1016/j.peptides.2004.08.008] [PMID: 15629529]
[54]
Chen, Q.; Wade, D.; Kurosaka, K.; Wang, Z.Y.; Oppenheim, J.J.; Yang, D. Temporin A and related frog antimicrobial peptides use formyl peptide receptor-like 1 as a receptor to chemoattract phagocytes. J. Immunol., 2004, 173(4), 2652-2659.
[http://dx.doi.org/10.4049/jimmunol.173.4.2652] [PMID: 15294982]
[55]
Conlon, J.M.; Al-Ghaferi, N.; Abraham, B.; Sonnevend, A.; Coquet, L.; Leprince, J.; Jouenne, T.; Vaudry, H.; Iwamuro, S. Antimicrobial peptides from the skin of the Tsushima brown frog Rana tsushimensis. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2006, 143(1), 42-49.
[http://dx.doi.org/10.1016/j.cbpc.2005.11.022] [PMID: 16413829]
[56]
Matutte, B.; Storey, K.B.; Knoop, F.C.; Conlon, J.M. Induction of synthesis of an antimicrobial peptide in the skin of the freeze-tolerant frog, Rana sylvatica, in response to environmental stimuli. FEBS Lett., 2000, 483(2-3), 135-138.
[http://dx.doi.org/10.1016/S0014-5793(00)02102-5] [PMID: 11042268]
[57]
Conlon, J.M.; Sonnevend, A.; Patel, M.; Al-Dhaheri, K.; Nielsen, P.F.; Kolodziejek, J.; Nowotny, N.; Iwamuro, S.; Pál, T. A family of brevinin-2 peptides with potent activity against Pseudomonas aeruginosa from the skin of the Hokkaido frog, Rana pirica. Regul. Pept., 2004, 118(3), 135-141.
[http://dx.doi.org/10.1016/j.regpep.2003.12.003] [PMID: 15003829]
[58]
Conlon, J.M.; Kolodziejek, J.; Nowotny, N.; Leprince, J.; Vaudry, H.; Coquet, L.; Jouenne, T.; Iwamuro, S. Cytolytic peptides belonging to the brevinin-1 and brevinin-2 families isolated from the skin of the Japanese brown frog, Rana dybowskii. Toxicon, 2007, 50(6), 746-756.
[http://dx.doi.org/10.1016/j.toxicon.2007.06.023] [PMID: 17688900]
[59]
Ma, Y.; Liu, C.; Liu, X.; Wu, J.; Yang, H.; Wang, Y.; Li, J.; Yu, H.; Lai, R. Peptidomics and genomics analysis of novel antimicrobial peptides from the frog, Rana nigrovittata. Genomics, 2010, 95(1), 66-71.
[http://dx.doi.org/10.1016/j.ygeno.2009.09.004] [PMID: 19778602]
[60]
Pál, T.; Abraham, B.; Sonnevend, A.; Jumaa, P.; Conlon, J.M. Brevinin-1BYa: a naturally occurring peptide from frog skin with broad-spectrum antibacterial and antifungal properties. Int. J. Antimicrob. Agents, 2006, 27(6), 525-529.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.01.010] [PMID: 16713189]
[61]
Marenah, L.; Flatt, P.R.; Orr, D.F.; McClean, S.; Shaw, C.; Abdel-Wahab, Y.H. Brevinin-1 and multiple insulin-releasing peptides in the skin of the frog Rana palustris. J. Endocrinol., 2004, 181(2), 347-354.
[http://dx.doi.org/10.1677/joe.0.1810347] [PMID: 15128283]
[62]
Yasin, B.; Pang, M.; Turner, J.S.; Cho, Y.; Dinh, N.N.; Waring, A.J.; Lehrer, R.I.; Wagar, E.A. Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides. Eur. J. Clin. Microbiol. Infect. Dis., 2000, 19(3), 187-194.
[http://dx.doi.org/10.1007/s100960050457] [PMID: 10795591]
[63]
Dong, Z.; Luo, W.; Zhong, H.; Wang, M.; Song, Y.; Deng, S.; Zhang, Y. Molecular cloning and characterization of antimicrobial peptides from skin of Hylarana guentheri. Acta Biochim. Biophys. Sin. (Shanghai), 2017, 49(5), 450-457.
[http://dx.doi.org/10.1093/abbs/gmx023] [PMID: 28338958]
[64]
Vasu, S.; McGahon, M.K.; Moffett, R.C.; Curtis, T.M.; Conlon, J.M.; Abdel-Wahab, Y.H.; Flatt, P.R. Esculentin-2CHa(1-30) and its analogues: stability and mechanisms of insulinotropic action. J. Endocrinol., 2017, 232(3), 423-435.
[http://dx.doi.org/10.1530/JOE-16-0453] [PMID: 28115493]
[65]
Tv, V. R, A.; G, S.; George, S. Post-translationally modified frog skin-derived antimicrobial peptides are effective against Aeromonas sobria. Microb. Pathog., 2017, 104, 287-288.
[http://dx.doi.org/10.1016/j.micpath.2017.01.052] [PMID: 28153544]
[66]
Mangoni, M.L.; Papo, N.; Mignogna, G.; Andreu, D.; Shai, Y.; Barra, D.; Simmaco, M. Ranacyclins, a new family of short cyclic antimicrobial peptides: biological function, mode of action, and parameters involved in target specificity. Biochemistry, 2003, 42(47), 14023-14035.
[http://dx.doi.org/10.1021/bi034521l] [PMID: 14636071]
[67]
Salmon, A.L.; Cross, L.J.M.; Irvine, A.E.; Lappin, T.R.J.; Dathe, M.; Krause, G.; Canning, P.; Thim, L.; Beyermann, M.; Rothemund, S.; Bienert, M.; Shaw, C. Peptide leucine arginine, a potent immunomodulatory peptide isolated and structurally characterized from the skin of the Northern Leopard frog, Rana pipiens. J. Biol. Chem., 2001, 276(13), 10145-10152.
[http://dx.doi.org/10.1074/jbc.M009680200] [PMID: 11099505]
[68]
Goraya, J.; Knoop, F.C.; Conlon, J.M. Ranatuerins: antimicrobial peptides isolated from the skin of the American bullfrog, Rana catesbeiana. Biochem. Biophys. Res. Commun., 1998, 250(3), 589-592.
[http://dx.doi.org/10.1006/bbrc.1998.9362] [PMID: 9784389]
[69]
Antimicrobial Peptide Database (ADP). Available at:. http://aps.unmc.edu/AP/database/mysql.php [Accessed: September, 2017]
[70]
Sonnevend, A.; Knoop, F.C.; Patel, M.; Pál, T.; Soto, A.M.; Conlon, J.M. Antimicrobial properties of the frog skin peptide, ranatuerin-1 and its [Lys-8]-substituted analog. Peptides, 2004, 25(1), 29-36.
[http://dx.doi.org/10.1016/j.peptides.2003.11.011] [PMID: 15003353]
[71]
Halverson, T.; Basir, Y.J.; Knoop, F.C.; Conlon, J.M. Purification and characterization of antimicrobial peptides from the skin of the North American green frog Rana clamitans. Peptides, 2000, 21(4), 469-476.
[http://dx.doi.org/10.1016/S0196-9781(00)00178-9] [PMID: 10822101]
[72]
Zhou, M.; Liu, Y.; Chen, T.; Fang, X.; Walker, B.; Shaw, C. Components of the peptidome and transcriptome persist in lin wa pi: the dried skin of the Heilongjiang brown frog (Rana amurensis) as used in traditional Chinese medicine. Peptides, 2006, 27(11), 2688-2694.
[http://dx.doi.org/10.1016/j.peptides.2006.05.009] [PMID: 16790295]
[73]
Conlon, J.M.; Sonnevend, A.; Davidson, C.; Demandt, A.; Jouenne, T. Host-defense peptides isolated from the skin secretions of the Northern red-legged frog Rana aurora aurora. Dev. Comp. Immunol., 2005, 29(1), 83-90.
[http://dx.doi.org/10.1016/j.dci.2004.05.003] [PMID: 15325526]
[74]
Chinchar, V.G.; Wang, J.; Murti, G.; Carey, C.; Rollins-Smith, L. Inactivation of frog virus 3 and channel catfish virus by esculentin-2P and ranatuerin-2P, two antimicrobial peptides isolated from frog skin. Virology, 2001, 288(2), 351-357.
[http://dx.doi.org/10.1006/viro.2001.1080] [PMID: 11601906]
[75]
Rollins-Smith, L.A.; Carey, C.; Conlon, J.M.; Reinert, L.K.; Doersam, J.K.; Bergman, T.; Silberring, J.; Lankinen, H.; Wade, D. Activities of temporin family peptides against the chytrid fungus (Batrachochytrium dendrobatidis) associated with global amphibian declines. Antimicrob. Agents Chemother., 2003, 47(3), 1157-1160.
[http://dx.doi.org/10.1128/AAC.47.3.1157-1160.2003] [PMID: 12604562]
[76]
Subasinghage, A.P.; Conlon, J.M.; Hewage, C.M. Conformational analysis of the broad-spectrum antibacterial peptide, ranatuerin-2CSa: identification of a full length helix-turn-helix motif. Biochim. Biophys. Acta, 2008, 1784(6), 924-929.
[http://dx.doi.org/10.1016/j.bbapap.2008.02.019] [PMID: 18387372]
[77]
Park, S.; Park, S.H.; Ahn, H.C.; Kim, S.; Kim, S.S.; Lee, B.J.; Lee, B.J. Structural study of novel antimicrobial peptides, nigrocins, isolated from Rana nigromaculata. FEBS Lett., 2001, 507(1), 95-100.
[http://dx.doi.org/10.1016/S0014-5793(01)02956-8] [PMID: 11682065]
[78]
Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA, 1987, 84(15), 5449-5453.
[http://dx.doi.org/10.1073/pnas.84.15.5449] [PMID: 3299384]
[79]
Lamba, P.; Kar, M.; Sengupta, J.; Ghosh, D. Effect of (Ala8,13,18)-magainin II amide on human trophoblast cells in vitro. Indian J. Physiol. Pharmacol., 2005, 49(1), 27-38.
[PMID: 15881856]
[80]
Park, Y.; Lee, D.G.; Hahm, K.S. HP(2-9)-magainin 2(1-12), a synthetic hybrid peptide, exerts its antifungal effect on Candida albicans by damaging the plasma membrane. J. Pept. Sci., 2004, 10(4), 204-209.
[http://dx.doi.org/10.1002/psc.489] [PMID: 15119592]
[81]
Clara, A.; Manjramkar, D.D.; Reddy, V.K. Preclinical evaluation of magainin-A as a contraceptive antimicrobial agent. Fertil. Steril., 2004, 81(5), 1357-1365.
[http://dx.doi.org/10.1016/j.fertnstert.2003.09.073] [PMID: 15136102]
[82]
Juretić, D.; Chen, H.C.; Brown, J.H.; Morell, J.L.; Hendler, R.W.; Westerhoff, H.V. Magainin 2 amide and analogues. Antimicrobial activity, membrane depolarization and susceptibility to proteolysis. FEBS Lett., 1989, 249(2), 219-223.
[http://dx.doi.org/10.1016/0014-5793(89)80627-1] [PMID: 2544449]
[83]
Zairi, A.; Tangy, F.; Ducos-Galand, M.; Alonso, J.M.; Hani, K. Susceptibility of Neisseria gonorrhoeae to antimicrobial peptides from amphibian skin, dermaseptin, and derivatives. Diagn. Microbiol. Infect. Dis., 2007, 57(3), 319-324.
[http://dx.doi.org/10.1016/j.diagmicrobio.2006.11.006] [PMID: 17254733]
[84]
Ohsaki, Y.; Gazdar, A.F.; Chen, H.C.; Johnson, B.E. Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res., 1992, 52(13), 3534-3538.
[PMID: 1319823]
[85]
Edelstein, M.C.; Gretz, J.E.; Bauer, T.J.; Fulgham, D.L.; Alexander, N.J.; Archer, D.F. Studies on the in vitro spermicidal activity of synthetic magainins. Fertil. Steril., 1991, 55(3), 647-649.
[http://dx.doi.org/10.1016/S0015-0282(16)54205-8] [PMID: 2001767]
[86]
Reddy, K.V.; Shahani, S.K.; Meherji, P.K. Spermicidal activity of Magainins: in vitro and in vivo studies. Contraception, 1996, 53(4), 205-210.
[http://dx.doi.org/10.1016/0010-7824(96)00038-8] [PMID: 8706437]
[87]
Reddy, V.R.; Manjramkar, D.D. Evaluation of the antifertility effect of magainin-A in rabbits: in vitro and in vivo studies. Fertil. Steril., 2000, 73(2), 353-358.
[http://dx.doi.org/10.1016/S0015-0282(99)00499-9] [PMID: 10685543]
[88]
Reddy, K.V.; Yedery, R.D.; Aranha, C. Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Agents, 2004, 24(6), 536-547.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.09.005] [PMID: 15555874]
[89]
Fleury, Y.; Vouille, V.; Beven, L.; Amiche, M.; Wróblewski, H.; Delfour, A.; Nicolas, P. Synthesis, antimicrobial activity and gene structure of a novel member of the dermaseptin B family. Biochim. Biophys. Acta, 1998, 1396(2), 228-236.
[http://dx.doi.org/10.1016/S0167-4781(97)00194-2] [PMID: 9540838]
[90]
Pouny, Y.; Rapaport, D.; Mor, A.; Nicolas, P.; Shai, Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry, 1992, 31(49), 12416-12423.
[http://dx.doi.org/10.1021/bi00164a017] [PMID: 1463728]
[91]
La Rocca, P.; Shai, Y.; Sansom, M.S. Peptide-bilayer interactions: simulations of dermaseptin B, an antimicrobial peptide. Biophys. Chem., 1999, 76(2), 145-159.
[http://dx.doi.org/10.1016/S0301-4622(98)00232-4] [PMID: 10063609]
[92]
Mor, A.; Nguyen, V.H.; Delfour, A.; Migliore-Samour, D.; Nicolas, P. Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry, 1991, 30(36), 8824-8830.
[http://dx.doi.org/10.1021/bi00100a014] [PMID: 1909573]
[93]
Mor, A.; Nicolas, P. The NH2-terminal alpha-helical domain 1-18 of dermaseptin is responsible for antimicrobial activity. J. Biol. Chem., 1994, 269(3), 1934-1939.
[PMID: 8294443]
[94]
Savoia, D.; Donalisio, M.; Civra, A.; Salvadori, S.; Guerrini, R. In vitro activity of dermaseptin S1 derivatives against genital pathogens. APMIS, 2010, 118(9), 674-680.
[http://dx.doi.org/10.1111/j.1600-0463.2010.02637.x] [PMID: 20718719]
[95]
Lequin, O.; Ladram, A.; Chabbert, L.; Bruston, F.; Convert, O.; Vanhoye, D.; Chassaing, G.; Nicolas, P.; Amiche, M. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Biochemistry, 2006, 45(2), 468-480.
[http://dx.doi.org/10.1021/bi051711i] [PMID: 16401077]
[96]
Ghosh, J.K.; Shaool, D.; Guillaud, P.; Cicéron, L.; Mazier, D.; Kustanovich, I.; Shai, Y.; Mor, A. Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis. J. Biol. Chem., 1997, 272(50), 31609-31616.
[http://dx.doi.org/10.1074/jbc.272.50.31609] [PMID: 9395500]
[97]
Mor, A.; Amiche, M.; Nicolas, P. Structure, synthesis, and activity of dermaseptin b, a novel vertebrate defensive peptide from frog skin: relationship with adenoregulin. Biochemistry, 1994, 33(21), 6642-6650.
[http://dx.doi.org/10.1021/bi00187a034] [PMID: 8204601]
[98]
Strahilevitz, J.; Mor, A.; Nicolas, P.; Shai, Y. Spectrum of antimicrobial activity and assembly of dermaseptin-b and its precursor form in phospholipid membranes. Biochemistry, 1994, 33(36), 10951-10960.
[http://dx.doi.org/10.1021/bi00202a014] [PMID: 8086412]
[99]
Amiche, M.; Ducancel, F.; Mor, A.; Boulain, J.C.; Menez, A.; Nicolas, P. Precursors of vertebrate peptide antibiotics dermaseptin b and adenoregulin have extensive sequence identities with precursors of opioid peptides dermorphin, dermenkephalin, and deltorphins. J. Biol. Chem., 1994, 269(27), 17847-17852.
[PMID: 8074751]
[100]
Mangoni, M.L.; Grovale, N.; Giorgi, A.; Mignogna, G.; Simmaco, M.; Barra, D. Structure-function relationships in bombinins H, antimicrobial peptides from Bombina skin secretions. Peptides, 2000, 21(11), 1673-1679.
[http://dx.doi.org/10.1016/S0196-9781(00)00316-8] [PMID: 11090921]
[101]
Simmaco, M.; Kreil, G.; Barra, D. Bombinins, antimicrobial peptides from Bombina species. Biochim. Biophys. Acta, 2009, 1788(8), 1551-1555.
[http://dx.doi.org/10.1016/j.bbamem.2009.01.004] [PMID: 19366600]
[102]
Simmaco, M.; Barra, D.; Chiarini, F.; Noviello, L.; Melchiorri, P.; Kreil, G.; Richter, K. A family of bombinin-related peptides from the skin of Bombina variegata. Eur. J. Biochem., 1991, 199(1), 217-222.
[http://dx.doi.org/10.1111/j.1432-1033.1991.tb16112.x] [PMID: 1712299]
[103]
Gibson, B.W.; Tang, D.Z.; Mandrell, R.; Kelly, M.; Spindel, E.R. Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad, Bombina orientalis. J. Biol. Chem., 1991, 266(34), 23103-23111.
[PMID: 1744108]
[104]
Miele, R.; Ponti, D.; Boman, H.G.; Barra, D.; Simmaco, M. Molecular cloning of a bombinin gene from Bombina orientalis: detection of NF-kappaB and NF-IL6 binding sites in its promoter. FEBS Lett., 1998, 431(1), 23-28.
[http://dx.doi.org/10.1016/S0014-5793(98)00718-2] [PMID: 9684858]
[105]
Mignogna, G.; Simmaco, M.; Kreil, G.; Barra, D. Antibacterial and haemolytic peptides containing D-alloisoleucine from the skin of Bombina variegata. EMBO J., 1993, 12(12), 4829-4832.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb06172.x] [PMID: 8223491]
[106]
Mangoni, M.L.; Papo, N.; Saugar, J.M.; Barra, D.; Shai, Y.; Simmaco, M.; Rivas, L. Effect of natural L- to D-amino acid conversion on the organization, membrane binding, and biological function of the antimicrobial peptides bombinins H. Biochemistry, 2006, 45(13), 4266-4276.
[http://dx.doi.org/10.1021/bi052150y] [PMID: 16566601]
[107]
Mangoni, M.L. A lesson from Bombinins H, mildly cationic diastereomeric antimicrobial peptides from Bombina skin. Curr. Protein Pept. Sci., 2013, 14(8), 734-743.
[http://dx.doi.org/10.2174/138920371408131227171817] [PMID: 24384035]
[108]
Simmaco, M.; Mignogna, G.; Canofeni, S.; Miele, R.; Mangoni, M.L.; Barra, D. Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur. J. Biochem., 1996, 242(3), 788-792.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0788r.x] [PMID: 9022710]
[109]
Wade, D.; Silberring, J.; Soliymani, R.; Heikkinen, S.; Kilpeläinen, I.; Lankinen, H.; Kuusela, P. Antibacterial activities of temporin A analogs. FEBS Lett., 2000, 479(1-2), 6-9.
[http://dx.doi.org/10.1016/S0014-5793(00)01754-3] [PMID: 10940378]
[110]
Urbán, E.; Nagy, E.; Pál, T.; Sonnevend, A.; Conlon, J.M. Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria. Int. J. Antimicrob. Agents, 2007, 29(3), 317-321.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.09.007] [PMID: 17196372]
[111]
Mangoni, M.L.; Saugar, J.M.; Dellisanti, M.; Barra, D.; Simmaco, M.; Rivas, L. Temporins, small antimicrobial peptides with leishmanicidal activity. J. Biol. Chem., 2005, 280(2), 984-990.
[http://dx.doi.org/10.1074/jbc.M410795200] [PMID: 15513914]
[112]
Mahalka, A.K.; Kinnunen, P.K. Binding of amphipathic alpha-helical antimicrobial peptides to lipid membranes: lessons from temporins B and L. Biochim. Biophys. Acta, 2009, 1788(8), 1600-1609.
[http://dx.doi.org/10.1016/j.bbamem.2009.04.012] [PMID: 19394305]
[113]
Bevier, C.R.; Sonnevend, A.; Kolodziejek, J.; Nowotny, N.; Nielsen, P.F.; Conlon, J.M. Purification and characterization of antimicrobial peptides from the skin secretions of the mink frog (Rana septentrionalis). Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2004, 139(1-3), 31-38.
[http://dx.doi.org/10.1016/j.cca.2004.08.019] [PMID: 15556063]
[114]
Conlon, J.M.; Al-Ghaferi, N.; Abraham, B.; Jiansheng, H.; Cosette, P.; Leprince, J.; Jouenne, T.; Vaudry, H. Antimicrobial peptides from diverse families isolated from the skin of the Asian frog, Rana grahami. Peptides, 2006, 27(9), 2111-2117.
[http://dx.doi.org/10.1016/j.peptides.2006.03.002] [PMID: 16621155]
[115]
Wade, D.; Flock, J.I.; Edlund, C.; Löfving-Arvholm, I.; Sällberg, M.; Bergman, T.; Silveira, A.; Unson, C.; Rollins-Smith, L.; Silberring, J.; Richardson, M.; Kuusela, P.; Lankinen, H. Antibiotic properties of novel synthetic temporin A analogs and a cecropin A-temporin A hybrid peptide. Protein Pept. Lett., 2002, 9(6), 533-543.
[http://dx.doi.org/10.2174/0929866023408409] [PMID: 12553862]
[116]
Giacometti, A.; Cirioni, O.; Kamysz, W.; Silvestri, C.; Licci, A.; Riva, A.; Łukasiak, J.; Scalise, G. In vitro activity of amphibian peptides alone and in combination with antimicrobial agents against multidrug-resistant pathogens isolated from surgical wound infection. Peptides, 2005, 26(11), 2111-2116.
[http://dx.doi.org/10.1016/j.peptides.2005.03.009] [PMID: 16269345]
[117]
Wade, D.; Silveira, A.; Rollins-Smith, L.; Bergman, T.; Silberring, J.; Lankinen, H. Hematological and antifungal properties of temporin A and a cecropin A-temporin A hybrid. Acta Biochim. Pol., 2001, 48(4), 1185-1189.
[PMID: 11995990]
[118]
Montville, T.J.; De Siano, T.; Nock, A.; Padhi, S.; Wade, D. Inhibition of Bacillus anthracis and potential surrogate bacilli growth from spore inocula by nisin and other antimicrobial peptides. J. Food Prot., 2006, 69(10), 2529-2533.
[http://dx.doi.org/10.4315/0362-028X-69.10.2529] [PMID: 17066940]
[119]
Chinchar, V.G.; Bryan, L.; Silphadaung, U.; Noga, E.; Wade, D.; Rollins-Smith, L. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology, 2004, 323(2), 268-275.
[http://dx.doi.org/10.1016/j.virol.2004.02.029] [PMID: 15193922]
[120]
Cirioni, O.; Giacometti, A.; Ghiselli, R.; Kamysz, W.; Orlando, F.; Mocchegiani, F.; Silvestri, C.; Licci, A.; Łukasiak, J.; Saba, V.; Scalise, G. Temporin A alone and in combination with imipenem reduces lethality in a mouse model of staphylococcal sepsis. J. Infect. Dis., 2005, 192(9), 1613-1620.
[http://dx.doi.org/10.1086/496888] [PMID: 16206076]
[121]
Lu, Y.; Li, J.; Yu, H.; Xu, X.; Liang, J.; Tian, Y.; Ma, D.; Lin, G.; Huang, G.; Lai, R. Two families of antimicrobial peptides with multiple functions from skin of rufous-spotted torrent frog, Amolops loloensis. Peptides, 2006, 27(12), 3085-3091.
[http://dx.doi.org/10.1016/j.peptides.2006.08.017] [PMID: 17000029]
[122]
Mangoni, M.L.; Rinaldi, A.C.; Di Giulio, A.; Mignogna, G.; Bozzi, A.; Barra, D.; Simmaco, M. Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur. J. Biochem., 2000, 267(5), 1447-1454.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01143.x] [PMID: 10691983]
[123]
Zhao, H.; Rinaldi, A.C.; Di Giulio, A.; Simmaco, M.; Kinnunen, P.K. Interactions of the antimicrobial peptides temporins with model biomembranes. Comparison of temporins B and L. Biochemistry, 2002, 41(13), 4425-4436.
[http://dx.doi.org/10.1021/bi011929e] [PMID: 11914090]
[124]
Rosenfeld, Y.; Barra, D.; Simmaco, M.; Shai, Y.; Mangoni, M.L. A synergism between temporins toward Gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer. J. Biol. Chem., 2006, 281(39), 28565-28574.
[http://dx.doi.org/10.1074/jbc.M606031200] [PMID: 16867990]
[125]
Rinaldi, A.C.; Mangoni, M.L.; Rufo, A.; Luzi, C.; Barra, D.; Zhao, H.; Kinnunen, P.K.; Bozzi, A.; Di Giulio, A.; Simmaco, M. Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. Biochem. J., 2002, 368(Pt 1), 91-100.
[http://dx.doi.org/10.1042/bj20020806] [PMID: 12133008]
[126]
Giacometti, A.; Cirioni, O.; Ghiselli, R.; Mocchegiani, F.; Orlando, F.; Silvestri, C.; Bozzi, A.; Di Giulio, A.; Luzi, C.; Mangoni, M.L.; Barra, D.; Saba, V.; Scalise, G.; Rinaldi, A.C. Interaction of antimicrobial peptide temporin L with lipopolysaccharide in vitro and in experimental rat models of septic shock caused by gram-negative bacteria. Antimicrob. Agents Chemother., 2006, 50(7), 2478-2486.
[http://dx.doi.org/10.1128/AAC.01553-05] [PMID: 16801429]
[127]
Wang, H.; Yan, X.; Yu, H.; Hu, Y.; Yu, Z.; Zheng, H.; Chen, Z.; Zhang, Z.; Liu, J. Isolation, characterization and molecular cloning of new antimicrobial peptides belonging to the brevinin-1 and temporin families from the skin of Hylarana latouchii (Anura: Ranidae). Biochimie, 2009, 91(4), 540-547.
[http://dx.doi.org/10.1016/j.biochi.2009.01.007] [PMID: 19340924]
[128]
Conlon, J.M.; Sonnevend, A.; Patel, M.; Davidson, C.; Nielsen, P.F.; Pál, T.; Rollins-Smith, L.A. Isolation of peptides of the brevinin-1 family with potent candidacidal activity from the skin secretions of the frog Rana boylii. J. Pept. Res., 2003, 62(5), 207-213.
[http://dx.doi.org/10.1034/j.1399-3011.2003.00090.x] [PMID: 14531844]
[129]
Wang, C.; Li, H.B.; Li, S.; Tian, L.L.; Shang, D.J. Antitumor effects and cell selectivity of temporin-1CEa, an antimicrobial peptide from the skin secretions of the Chinese brown frog (Rana chensinensis). Biochimie, 2012, 94(2), 434-441.
[http://dx.doi.org/10.1016/j.biochi.2011.08.011] [PMID: 21871946]
[130]
Kim, J.B.; Halverson, T.; Basir, Y.J.; Dulka, J.; Knoop, F.C.; Abel, P.W.; Conlon, J.M. Purification and characterization of antimicrobial and vasorelaxant peptides from skin extracts and skin secretions of the North American pig frog Rana grylio. Regul. Pept., 2000, 90(1-3), 53-60.
[http://dx.doi.org/10.1016/S0167-0115(00)00107-5] [PMID: 10828493]
[131]
Kim, J.B.; Iwamuro, S.; Knoop, F.C.; Conlon, J.M. Antimicrobial peptides from the skin of the Japanese mountain brown frog, Rana ornativentris. J. Pept. Res., 2001, 58(5), 349-356.
[http://dx.doi.org/10.1034/j.1399-3011.2001.00947.x] [PMID: 11892844]
[132]
Isaacson, T.; Soto, A.; Iwamuro, S.; Knoop, F.C.; Conlon, J.M. Antimicrobial peptides with atypical structural features from the skin of the Japanese brown frog Rana japonica. Peptides, 2002, 23(3), 419-425.
[http://dx.doi.org/10.1016/S0196-9781(01)00634-9] [PMID: 11835990]
[133]
Abbassi, F.; Raja, Z.; Oury, B.; Gazanion, E.; Piesse, C.; Sereno, D.; Nicolas, P.; Foulon, T.; Ladram, A. Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide. Biochimie, 2013, 95(2), 388-399.
[http://dx.doi.org/10.1016/j.biochi.2012.10.015] [PMID: 23116712]
[134]
Ohnuma, A.; Conlon, J.M.; Kawasaki, H.; Iwamuro, S. Developmental and triiodothyronine-induced expression of genes encoding preprotemporins in the skin of Tago’s brown frog Rana tagoi. Gen. Comp. Endocrinol., 2006, 146(3), 242-250.
[http://dx.doi.org/10.1016/j.ygcen.2005.11.015] [PMID: 16403501]
[135]
Iwamuro, S.; Nakamura, M.; Ohnuma, A.; Conlon, J.M. Molecular cloning and sequence analyses of preprotemporin mRNAs containing premature stop codons from extradermal tissues of Rana tagoi. Peptides, 2006, 27(9), 2124-2128.
[http://dx.doi.org/10.1016/j.peptides.2006.03.023] [PMID: 16675060]
[136]
Abbassi, F.; Lequin, O.; Piesse, C.; Goasdoué, N.; Foulon, T.; Nicolas, P.; Ladram, A. Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide. J. Biol. Chem., 2010, 285(22), 16880-16892.
[http://dx.doi.org/10.1074/jbc.M109.097204] [PMID: 20308076]
[137]
Koyama, T.; Conlon, J.M.; Iwamuro, S. Molecular cloning and characterization of cDNAs encoding biosynthetic precursors for the antimicrobial peptides japonicin-1Ja, japonicin-2Ja, and temporin-1Ja in the Japanese brown frog, Rana japonica. Zool. Sci., 2011, 28(5), 339-347.
[http://dx.doi.org/10.2108/zsj.28.339] [PMID: 21557657]
[138]
Lu, Z.; Zhai, L.; Wang, H.; Che, Q.; Wang, D.; Feng, F.; Zhao, Z.; Yu, H. Novel families of antimicrobial peptides with multiple functions from skin of Xizang plateau frog, Nanorana parkeri. Biochimie, 2010, 92(5), 475-481.
[http://dx.doi.org/10.1016/j.biochi.2010.01.025] [PMID: 20153801]
[139]
Conlon, J.M.; Leprince, J.; Vaudry, H.; Jiansheng, H.; Nielsen, P.F. A family of antimicrobial peptides related to japonicin-2 isolated from the skin of the chaochiao brown frog Rana chaochiaoensis. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2006, 144(1), 101-105.
[http://dx.doi.org/10.1016/j.cbpc.2006.07.007] [PMID: 16928470]
[140]
Basir, Y.J.; Knoop, F.C.; Dulka, J.; Conlon, J.M. Multiple antimicrobial peptides andpeptides related to bradykinin and neuromedin N isolated from skin sec-retions of the pickerel frog, Rana palustris. BBA-Protein Struct. Mol. Struct., 2000, 1543, 95-105.
[PMID: 11087945]
[141]
Iwakoshi-Ukena, E.; Okada, G.; Okimoto, A.; Fujii, T.; Sumida, M.; Ukena, K. Identification and structure-activity relationship of an antimicrobial peptide of the palustrin-2 family isolated from the skin of the endangered frog Odorrana ishikawae. Peptides, 2011, 32(10), 2052-2057.
[http://dx.doi.org/10.1016/j.peptides.2011.08.024] [PMID: 21911019]
[142]
Che, Q.; Zhou, Y.; Yang, H.; Li, J.; Xu, X.; Lai, R. A novel antimicrobial peptide from amphibian skin secretions of Odorrana grahami. Peptides, 2008, 29(4), 529-535.
[http://dx.doi.org/10.1016/j.peptides.2008.01.004] [PMID: 18282640]
[143]
Yu, H.; Qiao, X.; Gao, J.; Wang, C.; Cai, S.; Feng, L.; Wang, H.; Wang, Y.P. Identification and characterization of novel antioxidant peptides involved in redox homeostasis of frog, Limnonectes fragilis. Protein Pept. Lett., 2015, 22(9), 776-784.
[http://dx.doi.org/10.2174/0929866522666150630104815] [PMID: 26122987]
[144]
Chen, H.; Wang, L.; Zeller, M.; Hornshaw, M.; Wu, Y.; Zhou, M.; Li, J.; Hang, X.; Cai, J.; Chen, T.; Shaw, C. Kassorins: novel innate immune system peptides from skin secretions of the African hyperoliid frogs, Kassina maculata and Kassina senegalensis. Mol. Immunol., 2011, 48(4), 442-451.
[http://dx.doi.org/10.1016/j.molimm.2010.09.018] [PMID: 21040978]
[145]
Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[146]
Azevedo Calderon, Ld. Silva, Ade.A.; Ciancaglini, P.; Stábeli, R.G. Antimicrobial peptides from Phyllomedusa frogs: from biomolecular diversity to potential nanotechnologic medical applications. Amino Acids, 2011, 40(1), 29-49.
[http://dx.doi.org/10.1007/s00726-010-0622-3] [PMID: 20526637]
[147]
Simmaco, M.; Mignogna, G.; Barra, D.; Bossa, F. Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. FEBS Lett., 1993, 324, 159-161.
[http://dx.doi.org/10.1016/0014-5793(93)81384-C] [PMID: 8508915]
[148]
Marcellini, L.; Borro, M.; Gentile, G.; Rinaldi, A.C.; Stella, L.; Aimola, P.; Barra, D.; Mangoni, M.L. Esculentin-1b(1-18)--a membrane-active antimicrobial peptide that synergizes with antibiotics and modifies the expression level of a limited number of proteins in Escherichia coli. FEBS J., 2009, 276(19), 5647-5664.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07257.x] [PMID: 19725877]
[149]
Wang, M.; Wang, Y.; Wang, A.; Song, Y.; Ma, D.; Yang, H.; Ma, Y.; Lai, R. Five novel antimicrobial peptides from skin secretions of the frog, Amolops loloensis. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2010, 155(1), 72-76.
[http://dx.doi.org/10.1016/j.cbpb.2009.10.003] [PMID: 19843479]
[150]
Conlon, J.M.; Halverson, T.; Dulka, J.; Platz, J.E.; Knoop, F.C. Peptides with antimicrobial activity of the brevinin-1 family isolated from skin secretions of the southern leopard frog, Rana sphenocephala. J. Pept. Res., 1999, 54(6), 522-527.
[http://dx.doi.org/10.1034/j.1399-3011.1999.00123.x] [PMID: 10604597]
[151]
Wang, L.; Evaristo, G.; Zhou, M.; Pinkse, M.; Wang, M.; Xu, Y.; Jiang, X.; Chen, T.; Rao, P.; Verhaert, P.; Shaw, C. Nigrocin-2 peptides from Chinese Odorrana frogs--integration of UPLC/MS/MS with molecular cloning in amphibian skin peptidome analysis. FEBS J., 2010, 277(6), 1519-1531.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07580.x] [PMID: 20158520]
[152]
Liu, C.; Hong, J.; Yang, H.; Wu, J.; Ma, D.; Li, D.; Lin, D.; Lai, R. Frog skins keep redox homeostasis by antioxidant peptides with rapid radical scavenging ability. Free Radic. Biol. Med., 2010, 48(9), 1173-1181.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.01.036] [PMID: 20138142]
[153]
Yang, X.; Xia, J.; Yu, Z.; Hu, Y.; Li, F.; Meng, H.; Yang, S.; Liu, J.; Wang, H. Characterization of diverse antimicrobial peptides in skin secretions of Chungan torrent frog Amolops chunganensis. Peptides, 2012, 38(1), 41-53.
[http://dx.doi.org/10.1016/j.peptides.2012.08.008] [PMID: 22951323]
[154]
Chen, Z.; Yang, X.; Liu, Z.; Zeng, L.; Lee, W.; Zhang, Y. Two novel families of antimicrobial peptides from skin secretions of the Chinese torrent frog, Amolops jingdongensis. Biochimie, 2012, 94(2), 328-334.
[http://dx.doi.org/10.1016/j.biochi.2011.07.021] [PMID: 21816202]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 26
ISSUE: 32
Year: 2019
Page: [5924 - 5946]
Pages: 23
DOI: 10.2174/0929867325666180713125314
Price: $65

Article Metrics

PDF: 25
HTML: 2