C-cinnamoyl Glycosides: An Emerging “Tail” for the Development of Selective Carbonic Anhydrase Inhibitors

Author(s): Helberth Llantén Martínez, Leonardo E. Riafrecha, Pedro A. Colinas*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 15 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Attachment of different tails to the well-known carbonic anhydrase (CA) pharmacophores has led to the development of several new CA inhibitors (CAIs). A very good example of such “tails” is constituted by carbohydrates, which represent a wide range of chemotypes, leading thus to a high number of new CAIs. In the last years, several C-cinnamoyl glycosides containing different scaffolds have been prepared and investigated as carbonic anhydrase inhibitors, showing that some of them are very potent and selective CAIs. This article will review the latest developments in the synthesis and biological activity of these Cglycosides.

Keywords: Carbohydrate, enzyme inhibition, antitumoral, tuberculosis, heterocycle, CAIs, carbonic anhydrase.

[1]
Supuran, C.T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov., 2008, 7(2), 168-181.
[http://dx.doi.org/10.1038/nrd2467] [PMID: 18167490]
[2]
Supuran, C.T. Carbonic anhydrase inhibitors and activators for novel therapeutic applications. Future Med. Chem., 2011, 3(9), 1165-1180.
[http://dx.doi.org/10.4155/fmc.11.69] [PMID: 21806379]
[3]
(a)Capasso, C.; Supuran, C.T. Inhibition of bacterial carbonic anhydrases as a novel approach to escape drug resistance. Curr. Top. Med. Chem., 2017, 17(11), 1237-1248.
[http://dx.doi.org/10.2174/1568026617666170104101058] [PMID: 28049405]
(b)Capasso, C.; Supuran, C.T. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin. Ther. Targets, 2015, 19(12), 1689-1704.
[http://dx.doi.org/10.1517/14728222.2015.1067685] [PMID: 26235676]
(c)Capasso, C.; Supuran, C.T. Anti-infective carbonic anhydrase inhibitors: a patent and literature review. Expert Opin. Ther. Pat., 2013, 23(6), 693-704.
[http://dx.doi.org/10.1517/13543776.2013.778245] [PMID: 23488877]
[4]
Winum, J.Y.; Poulsen, S.A.; Supuran, C.T. Therapeutic applications of glycosidic carbonic anhydrase inhibitors. Med. Res. Rev., 2009, 29(3), 419-435.
[http://dx.doi.org/10.1002/med.20141] [PMID: 19058143]
[5]
Ernst, B.; Magnani, J.L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov., 2009, 8(8), 661-677.
[http://dx.doi.org/10.1038/nrd2852] [PMID: 19629075]
[6]
(a)Liao, H.; Ma, J.; Yao, H.; Liu, X.W. Recent progress of C-glycosylation methods in the total synthesis of natural products and pharmaceuticals. Org. Biomol. Chem., 2018, 16(11), 1791-1806.
[http://dx.doi.org/10.1039/C8OB00032H] [PMID: 29464265]
(b)Sadraei, S.I.; Reynolds, M.R.; Trant, J.F. The synthesis and biological characterization of acetal-free mimics of the tumor-associated carbohydrate antigens. Adv. Carbohydr. Chem. Biochem., 2017, 74, 137-237.
[http://dx.doi.org/10.1016/bs.accb.2017.10.003] [PMID: 29173726]
(c)Yang, Y.; Yu, B. Recent Advances in the chemical synthesis of C-glycosides. Chem. Rev., 2017, 117(19), 12281-12356.
[http://dx.doi.org/10.1021/acs.chemrev.7b00234] [PMID: 28915018]
(d)Koester, D.C.; Holkenbrink, A.; Werz, D.B. Recent advances in the synthesis of carbohydrate mimetics. Synthesis, 2010, 19, 3217-3242.
[7]
Sattin, S.; Bernardi, A. Design and synthesis of glycomimetics. Carbohydr. Chem., 2016, 41, 1-25.
[8]
Asensio, J.L.; Cañada, F.J.; Cheng, X.; Khan, N.; Mootoo, D.R.; Jiménez-Barbero, J. Conformational differences between O- and C-glycosides: the α-O-man-(1-->1)-β-Gal/α-C-Man-(1-->1)-β-Gal case-a decisive demonstration of the importance of the exo-anomeric effect on the conformation of glycosides. Chemistry, 2000, 6(6), 1035-1041.
[http://dx.doi.org/10.1002/(SICI)1521-3765(20000317)6:6<1035:AID-CHEM1035>3.0.CO;2-G] [PMID: 10785824]
[9]
Bisht, S.S.; Pandey, J.; Sharma, A.; Tripathi, R.P. Aldol reaction of β-C-glycosylic ketones: synthesis of C-(E)-cinnamoyl glycosylic compounds as precursors for new biologically active C-glycosides. Carbohydr. Res., 2008, 343(9), 1399-1406.
[http://dx.doi.org/10.1016/j.carres.2008.04.021] [PMID: 18474364]
[10]
Roy, P.; Dhara, D.; Parida, P.K.; Kar, R.K.; Bhunia, A.; Jana, K.; Sinha Babu, S.P.; Misra, A.K. C-cinnamoyl glycosides as a new class of anti-filarial agents. Eur. J. Med. Chem., 2016, 114, 308-317.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.001] [PMID: 27015610]
[11]
Mugunthan, G.; Ramakrishna, K.; Sriram, D.; Yogeeswari, P.; Ravindranathan Kartha, K.P. Synthesis and screening of (E)-1-(β-D-galactopyranosyl)-4-(aryl)but-3-ene-2-one against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2011, 21(13), 3947-3950.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.037] [PMID: 21641797]
[12]
(a)Bragnier, N.; Scherrmann, M.C. One-step synthesis of β-C-glycosidic ketones in aqueous media: the case of 2-acetamido sugars. Synthesis, 2005, 5, 814-818.
(b)Wang, J.; Li, Q.; Ge, Z.; Li, R. A versatile and convenient route to ketone C-pyranosides and ketone C-furanosides from unprotected sugars. Tetrahedron, 2012, 68(4), 1315-1320.
[http://dx.doi.org/10.1016/j.tet.2011.11.029]
[13]
Bisht, S.S.; Pandey, J.; Sharma, A.; Tripathi, R.P. Aldol reaction of β-C-glycosylic ketones: synthesis of C-(E)-cinnamoyl glycosylic compounds as precursors for new biologically active C-glycosides. Carbohydr. Res., 2008, 343(9), 1399-1406.
[http://dx.doi.org/10.1016/j.carres.2008.04.021] [PMID: 18474364]
[14]
Supuran, C.T. Carbonic anhydrase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(12), 3467-3474.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.009] [PMID: 20529676]
[15]
(a)Maresca, A.; Temperini, C.; Vu, H.; Pham, N.B.; Poulsen, S.A.; Scozzafava, A.; Quinn, R.J.; Supuran, C.T. Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors. J. Am. Chem. Soc., 2009, 131(8), 3057-3062.
[http://dx.doi.org/10.1021/ja809683v] [PMID: 19206230]
(b)Maresca, A.; Temperini, C.; Pochet, L.; Masereel, B.; Scozzafava, A.; Supuran, C.T. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J. Med. Chem., 2010, 53(1), 335-344.
[http://dx.doi.org/10.1021/jm901287j] [PMID: 19911821]
(c)Temperini, C.; Innocenti, A.; Scozzafava, A.; Parkkila, S.; Supuran, C.T. The coumarin-binding site in carbonic anhydrase accommodates structurally diverse inhibitors: the antiepileptic lacosamide as an example and lead molecule for novel classes of carbonic anhydrase inhibitors. J. Med. Chem., 2010, 53(2), 850-854.
[http://dx.doi.org/10.1021/jm901524f] [PMID: 20028100]
(d)Maresca, A.; Supuran, C.T. Coumarins incorporating hydroxy- and chloro-moieties selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II. Bioorg. Med. Chem. Lett., 2010, 20(15), 4511-4514.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.040] [PMID: 20580555]
[16]
Carta, F.; Temperini, C.; Innocenti, A.; Scozzafava, A.; Kaila, K.; Supuran, C.T. Polyamines inhibit carbonic anhydrases by anchoring to the zinc-coordinated water molecule. J. Med. Chem., 2010, 53(15), 5511-5522.
[http://dx.doi.org/10.1021/jm1003667] [PMID: 20590092]
[17]
(a)Innocenti, A.; Vullo, D.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors: interactions of phenols with the 12 catalytically active mammalian isoforms (CA I-XIV). Bioorg. Med. Chem. Lett., 2008, 18(5), 1583-1587.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.077] [PMID: 18242985]
(b)Innocenti, A.; Hilvo, M.; Scozzafava, A.; Parkkila, S.; Supuran, C.T. Carbonic anhydrase inhibitors: Inhibition of the new membrane-associated isoform XV with phenols. Bioorg. Med. Chem. Lett., 2008, 18(12), 3593-3596.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.077] [PMID: 18501600]
(c)Innocenti, A.; Vullo, D.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorg. Med. Chem., 2008, 16(15), 7424-7428.
[http://dx.doi.org/10.1016/j.bmc.2008.06.013] [PMID: 18579385]
(d)Bayram, E.; Senturk, M.; Kufrevioglu, O.I.; Supuran, C.T. In vitro inhibition of salicylic acid derivatives on human cytosolic carbonic anhydrase isozymes I and II. Bioorg. Med. Chem., 2008, 16(20), 9101-9105.
[http://dx.doi.org/10.1016/j.bmc.2008.09.028] [PMID: 18819808]
(e)Oztürk Sarikaya, S.B.; Topal, F.; Sentürk, M.; Gülçin, I.; Supuran, C.T. In vitro inhibition of α-carbonic anhydrase isozymes by some phenolic compounds. Bioorg. Med. Chem. Lett., 2011, 21(14), 4259-4262.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.071] [PMID: 21669522]
[18]
Riafrecha, L.E.; Rodríguez, O.M.; Vullo, D.; Supuran, C.T.; Colinas, P.A. Synthesis of C-cinnamoyl glycosides and their inhibitory activity against mammalian carbonic anhydrases. Bioorg. Med. Chem., 2013, 21(6), 1489-1494.
[http://dx.doi.org/10.1016/j.bmc.2012.09.002] [PMID: 23010455]
[19]
Buchieri, M.V.; Riafrecha, L.E.; Rodríguez, O.M.; Vullo, D.; Morbidoni, H.R.; Supuran, C.T.; Colinas, P.A. Inhibition of the β-carbonic anhydrases from mycobacterium tuberculosis with C-cinnamoyl glycosides: identification of the first inhibitor with anti-mycobacterial activity. Bioorg. Med. Chem. Lett., 2013, 23(3), 740-743.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.085] [PMID: 23265903]
[20]
Durdagi, S.; Şentürk, M.; Ekinci, D.; Balaydın, H.T.; Göksu, S.; Küfrevioğlu, Ö.İ.; Innocenti, A.; Scozzafava, A.; Supuran, C.T. Kinetic and docking studies of phenol-based inhibitors of carbonic anhydrase isoforms I, II, IX and XII evidence a new binding mode within the enzyme active site. Bioorg. Med. Chem., 2011, 19(4), 1381-1389.
[http://dx.doi.org/10.1016/j.bmc.2011.01.016] [PMID: 21282059]
[21]
Riafrecha, L.E.; Rodríguez, O.M.; Vullo, D.; Supuran, C.T.; Colinas, P.A. Attachment of carbohydrates to methoxyaryl moieties leads to highly selective inhibitors of the cancer associated carbonic anhydrase isoforms IX and XII. Bioorg. Med. Chem., 2014, 22(19), 5308-5314.
[http://dx.doi.org/10.1016/j.bmc.2014.07.052] [PMID: 25156300]
[22]
Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C.T.; De Simone, G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem. Rev., 2012, 112(8), 4421-4468.
[http://dx.doi.org/10.1021/cr200176r] [PMID: 22607219]
[23]
Riafrecha, L.E.; Vullo, D.; Ouahrani-Bettache, S.; Köhler, S.; Dumy, P.; Winum, J.Y.; Supuran, C.T.; Colinas, P.A. Inhibition of β-carbonic anhydrases from Brucella suis with C-cinnamoyl glycosides incorporating the phenol moiety. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 1017-1020.
[http://dx.doi.org/10.3109/14756366.2014.986120] [PMID: 25676329]
[24]
Riafrecha, L.E.; Bua, S.; Supuran, C.T.; Colinas, P.A. Improving the carbonic anhydrase inhibition profile of the sulfamoylphenyl pharmacophore by attachment of carbohydrate moieties. Bioorg. Chem., 2018, 76, 61-66.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.020] [PMID: 29136525]
[25]
Llantén, H.; Barata-Vallejo, S.; Postigo, A.; Colinas, P.A. Synthesis of C-glycosylmethyl isoxazoles via aerobic oxidation of ketoximes catalyzed by TEMPO. Tetrahedron Lett., 2017, 58(15), 1507-1511.
[http://dx.doi.org/10.1016/j.tetlet.2017.03.005]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 15
Year: 2019
Page: [2601 - 2608]
Pages: 8
DOI: 10.2174/0929867325666180713122907
Price: $58

Article Metrics

PDF: 16