A Proteomic Analysis of Mitochondrial Complex III Inhibition in SH-SY5Y Human Neuroblastoma Cell Line

Author(s): Cigdem Acioglu, Mete Bora Tuzuner, Muge Serhatli, Ceyda Acilan, Betul Sahin, Emel Akgun, Zelal Adiguzel, Busra Gurel, Ahmet Tarik Baykal*.

Journal Name: Current Proteomics

Volume 16 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background and Objective: Antimycin A (AntA) is a potent Electron Transport System (ETS) inhibitor exerting its effect through inhibiting the transfer of the electrons by binding to the quinone reduction site of the cytochrome bc1 complex (Complex III), which is known to be impaired in Huntington’s Disease (HD). The current studies were undertaken to investigate the effect of complex III inhibition in the SH-SY5Y cell line to delineate the molecular and cellular processes, which may play a role in the pathogenesis of HD.

Method: We treated SH-SY5Y neuroblastoma cells with AntA in order to establish an in vitro mitochondrial dysfunction model for HD. Differential proteome analysis was performed by the nLCMS/ MS system. Protein expression was assessed by western blot analysis.

Results: Thirty five differentially expressed proteins as compared to the vehicle-treated controls were detected. Functional pathway analysis indicated that proteins involved in ubiquitin-proteasomal pathway were up-regulated in AntA-treated SH-SY5Y neuroblastoma cells and the ubiquitinated protein accumulation was confirmed by immunoblotting. We found that Prothymosin α (ProT α) was downregulated. Furthermore, we demonstrated that nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression was co-regulated with ProT α expression, hence knockdown of ProT α in SH-SY5Y cells decreased Nrf2 protein level.

Conclusion: Our findings suggest that complex III impairment might downregulate ubiquitinproteasome function and NRF2/Keap1 antioxidant response. In addition, it is likely that downregulation of Nrf2 is due to the decreased expression of ProT α in AntA-treated SH-SY5Y cells. Our results could advance the understanding of mechanisms involved in neurodegenerative diseases.

Keywords: ProT α, Nrf2/KEAP1, ubiquitin-proteasome system, label-free proteomics, mitochondrial complex III impairment, Huntington's Disease.

[1]
Murphy, A.N.; Fiskum, G.; Beal, M.F. Mitochondria in neurodegeneration: Bioenergetic function in cell life and death. J. Cereb. Blood Flow Metab., 1999, 19(3), 231-245.
[2]
Browne, S.E.; Bowling, A.C.; MacGarvey, U.; Baik, M.J.; Berger, S.C.; Muqit, M.M.; Bird, E.D.; Beal, M.F. Oxidative damage and metabolic dysfunction in Huntington’s disease: Selective vulnerability of the basal ganglia. Ann. Neurol., 1997, 41(5), 646-653.
[3]
Milakovic, T.; Johnson, G.V.W. Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. J. Biol. Chem., 2005, 280(35), 30773-30782.
[4]
Pathak, D.; Berthet, A.; Nakamura, K. Energy failure: Does it contributre to neurodegeneration? Ann. Neurol., 2013, 74(4), 506-516.
[5]
Bates, T.E.; Heales, S.J.; Davies, S.E.; Boakye, P.; Clark, J.B. Effects of 1-methyl-4-phenylpyridinium on isolated rat brain mitochondria: Evidence for a primary involvement of energy depletion. J. Neurochem., 1994, 63(2), 640-648.
[6]
Sipos, I.; Tretter, L.; Adam-Vizi, V. Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J. Neurochem., 2002, 84(1), 112-118.
[7]
Scheffler, I.E. A century of mitochondrial research: Achievements and perspectives. Mitochondrion, 2001, 1(1), 3-31.
[8]
Sherer, T.B.; Betarbet, R.; Stout, A.K.; Lund, S.; Baptista, M.; Panov, A.V.; Cookson, M.R.; Greenamyre, J. An in vitro model of parkinson’s disease: Linking mitochondrial impairment to altered α-synuclein metabolism and oxidative damage. J. Neurosci., 2002, 22(16), 7006-7015.
[9]
Schmidt, N.; Ferger, B. Neurochemical findings in the MPTP model of Parkinson’ s disease. J. Neural Transm. , 2002, 108(11), 1263-1282.
[10]
Ohta, S.; Ohsawa, I. Dysfunction of mitochondria and oxidative stress in the pathogenesis of Alzheimer’s disease: On defects in the cytochrome C oxidase complex and aldehyde detoxification. J. Alzheimers Dis., 2006, 9(2), 155-166.
[11]
Colle, D.; Hartwig, J.M.; Soares, F.A.; Farina, M. Probucol modulates oxidative stress and excitotoxicity in Huntington’s disease models in vitro. Brain Res. Bull., 2012, 87(4-5), 397-405.
[12]
Rossignol, J.; Boyer, C.; Lévèque, X.; Fink, K.D.; Thinard, R.; Blanchard, F.; Dunbar, G.L.; Lescaudron, L. Mesenchymal stem cell transplantation and DMEM administration in a 3NP rat model of Huntington’s disease: Morphological and behavioral outcomes. Behav. Brain Res., 2011, 217(2), 369-378.
[13]
Chaturvedi, R.K.; Beal, M.F. Mitochondria targeted therapeutic approaches in Parkinson’s and Huntington’s diseases. Mol. Cell. Neurosci., 2013, 55, 101-114.
[14]
Johri, A.; Chandra, A.; Beal, M.F. PGC-1α, mitochondrial dysfunction, and Huntington’s disease. Free Radic. Biol. Med., 2013, 62, 37-46.
[15]
Nakayama, K.; Okamoto, F.; Harada, Y.; Antimycin, A. Isolation from a new Streptomyces and activity against rice plant blast fungi. J. Antibiot., 1956, 9(2), 63-66.
[16]
Labs, M.; Ruhle, T.; Leister, D. The antimycin A-sensitive pathway of cyclic electron flow: From 1963 to 2015. Photosynth. Res., 2016, 129(3), 231-238.
[17]
Ransac, S.; Mazat, J-P. How does antimycin inhibit the bc1 complex? A part-time twin. Biochim. Biophys. Acta, 2010, 1797(12), 1849-1857.
[18]
Maguire, J.J.; Kagan, V.E.; Packer, L. Electron transport between cytochrome C and alpha tocopherol. Biochem. Biophys. Res. Commun., 1992, 118(1), 190-197.
[19]
Campo, M.L.; Kinnally, K.W.; Tedeschi, H. The effect of antimycin A on mouse liver inner mitochondrial membrane channel activity. J. Biol. Chem., 1992, 26(12), 8123-8127.
[20]
Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell, 2005, 120(4), 483-495.
[21]
Kovalevich, J.; Langford, D. Consideration for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol. Biol., 2013, 1078, 9-21.
[22]
Lin, M.; Chandramani-Shivalingappa, P.; Jin, H.; Ghosh, A.; Anantharam, V.; Ali, S.; Kanthasamy, A.G. Methamphetamine-induced neurotoxicity linked to ubiquitin-proteasome system dysfunction and autophagy-related changes that can be modulated by protein kinase C delta in dopaminergic neuronal cells. Neurosci., 2012, 210, 308-332.
[23]
Cook, C.; Petrucelli, L. A critical evaluation of the ubiquitin-proteasome system in Parkinson’s disease. Biochim. Biophys. Acta, 2009, 1792(7), 664-675.
[24]
Esmaeili-Mahani, S.; Vazifekhah, S.; Pasban-Aliabadi, H.; Abbasnejad, M.; Sheibani, V. Protective effect of orexin-A on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells. Neurochem. Int., 2013, 63(8), 719-725.
[25]
Xie, H.; Hu, L.; Li, G. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin. Med. J. , 2010, 123(8), 1086-1092.
[26]
Krishna, A.; Biryukov, M.; Trefois, C.; Antony, P.M.A.; Hussong, R.; Lin, J.; Heinaniemi, M.; Glusman, G.; Köglsberger, S.; Boyd, O.; van den Berg, B.H.J.; Linke, D.; Huang, D.; Wang, K.; Hood, L.; Tholey, A.; Schneider, R.; Galas, D.J.; Ballimg, R.; May, P. Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson’s disease. BMC Genomics, 2014, 15, 1154.
[27]
Hunya, A.; Földi, I.; Szegedi, V.; Soós, K.; Zarándi, M.; Szabó, A.; Zadori, D.; Penke, B.; Datki, Z.L. Differences between normal and alpha-synuclein overexpressing SH-SY5Y neuroblastoma cells after Aβ(A1-42) and NAC treatment. Brain Res. Bull., 2008, 75(5), 648-654.
[28]
Jämsä, A.; Hasslund, K.; Cowburn, R.F.; Bäckström, A.; Vasänge, M. The retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cell line as a model for Alzheimer’s disease-like tau phosphorylation. Biochem. Biophys. Res. Commun., 2004, 319(3), 993-1000.
[29]
Guo, X.; Wu, X.; Ren, L.; Liu, G.; Li, L. Epigenetic mechanisms of amyloid-β production in anisomycin-treated SH-SY5Y cells. Neuroscience, 2011, 194, 272-281.
[30]
Chun, W.; Lesort, M.; Lee, M.; Johnson, G.V.W. Mutant huntingtin aggregates do not sensitize cells to apoptotic stressors. FEBS Lett., 2002, 515(1-3), 61-65.
[31]
Kotrcova, E.; Jarkovska, K.; Valekova, I.; Zizkova, M.; Motlik, J.; Gadher, S.J.; Kovarova, H. Challenges of Huntington ’s disease and quest for therapeutic biomarkers. Proteomics Clin. Appl., 2015, 9(1-2), 147-158.
[32]
Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods, 2010, 6(5), 359-362.
[33]
Haçariz, O.; Sayers, G.; Baykal, A.T. A proteomic approach to investigate the distribution and abundance of surface and internal fasciola hepatica proteins during the chronic stage of natural liver fluke infection in cattle. J. Proteome Res., 2012, 11(7), 3592-3604.
[34]
Baykal, A.T.; Baykal, B.; Serhatli, M.; Adiguzel, Z.; Tuncer, M.A.; Kacar, O.; Baysal, K.; Acilan, C. Proteomics evidence for the plasticity of cultured vascular smooth muscle cells. Turk. J. Biol., 2013, 37, 414-425.
[35]
Keller, A.; Nesvizhskii, A.I.; Kolker, E.; Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem., 2002, 74(20), 5383-5392.
[36]
Nesvizhskii, A.I.; Keller, A.; Kolker, E.; Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem., 2003, 75(17), 4646-4658.
[37]
D’Aguanno, S.; D’Alessandro, A.; Pieroni, L.; Roveri, A.; Zaccarin, M.; Marzano, V.; De Carnio, M.; Bernardini, S.; Federici, G.; Urbani, A. New insights into neuroblastoma cisplatin resistance: A comparative proteomic and meta-mining investigation. J. Proteome Res., 2011, 10(2), 416-428.
[38]
Vissers, J.P.C.; Langridge, J.I.; Aerts, J.M.F.G. Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol. Cell. Proteomics, 2007, 6(5), 755-766.
[39]
Cheng, F.Y.; Blackburn, K.; Lin, Y.M.; Goshe, M.B.; Williamson, J.D. Absolute protein quantification by LC/MS E for global analysis of salicylic acid-induced plant protein secretion responses. J. Proteome Res., 2009, 8(1), 82-93.
[40]
Bostanci, N.; Heywood, W.; Mills, K.; Parkar, M.; Nibali, L.; Donos, N. Application of label-free absolute quantitative proteomics in human gingival crevicular fluid by LC/MS E (gingival exudatome). J. Proteome Res., 2010, 9(5), 2191-2199.
[41]
Niture, S.K.; Kaspar, J.W.; Shen, J.; Jaiswal, A.K. Nrf2 signaling and cell survival. Toxicol. Appl. Pharmacol., 2010, 244(1), 37-42.
[42]
Arrasate, M.; Finkbeiner, S. Protein aggregates in Huntington’s disease. Exp. Neurol., 2012, 238(1), 1-11.
[43]
Saigoh, K.; Wang, Y.; Suh, J.; Yamanishi, T.; Sakai, Y.; Kiyosawa, H.; Harada, T.; Wakana, S.; Kikuchi, T.; Wada, K. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet., 1999, 23(1), 47-51.
[44]
Bennett, E.J.; Shaler, T.A.; Woodman, B.; Ryu, K-Y.; Zaitseva, T.S.; Becker, C.H.; Bates, G.P.; Schulman, H.; Kopito, R.R. Global changes to the ubiquitin system in Huntington’s disease. Nature, 2007, 448(7154), 704-708.
[45]
Ortega, Z.; Lucas, J.J. Ubiquitin-proteasome system involvement in Huntington’s disease. Front. Mol. Neurosci., 2014, 7(77), 1-11.
[46]
Ciechanover, A.; Brundin, P. The ubiquitin proteasome system in neurodegenerative diseases: Sometimes the chicken, sometimes the egg. Neuron, 2003, 40(2), 427-446.
[47]
Hipp, M.S.; Patel, C.N.; Bersuker, K.; Riley, B.E.; Kaiser, S.E.; Shaler, T.A.; Brandeis, M.; Kopito, R.R. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease. J. Cell Biol., 2012, 196(5), 573-587.
[48]
Jana, N.R.; Zemskov, E.A.; Wang, G.; Nukina, N. Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome C release. Hum. Mol. Genet., 2001, 10(10), 1049-1059.
[49]
Kabashi, E.; Agar, J.N.; Taylor, D.M.; Minotti, S.; Durham, H.D. Focal dysfunction of the proteasome: A pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J. Neurochem., 2004, 89(6), 1325-1335.
[50]
Bett, J.S.; Goellner, G.M.; Woodman, B.; Pratt, G.; Rechsteiner, M.; Bates, G.P. Proteasome impairment does not contribute to pathogenesis in R6/2 Huntington ’s disease mice: Exclusion of proteasome activator REG γ as a therapeutic target. Hum. Mol. Genet., 2006, 15(1), 33-44.
[51]
Gillardon, F.; Kloss, A.; Berg, M.; Neumann, M.; Mechtler, K. The 20S proteasome isolated from Alzheimer’s disease brain shows post-translational modifications but unchanged proteolytic activity. J. Neurochem., 2007, 101(6), 1483-1490.
[52]
Diaz-Hernandez, M.; Hernadez, F.; Martin-Aparico, E.; Gomez-Ramos, P.; Moran, M.A.; Castano, J.G.; Ferrer, I.; Avila, J.; Lucas, J.J. Neuronal induction of the immunoproteasome in Huntington’ s disease. J. Neurosci., 2013, 23(37), 11653-11661.
[53]
Stępkowski, T.M.; Kruszewski, M.K. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Free Radic. Biol. Med., 2011, 50(9), 1186-1195.
[54]
Karapetian, R.N.; Evstafieva, A.G.; Abaeva, I.S.; Chichkova, N.V.; Filonov, G.S.; Rubtsov, Y.P.; Sukhacheva, E.A.; Melnikov, S.V.; Schneider, U.; Wanker, E.E.; Vartapetian, A.B. Nuclear oncoprotein prothymosin α is a partner of Keap1: Implications for expression of oxidative stress-protecting genes. Mol. Cell. Biol., 2005, 25(3), 1089-1099.
[55]
Niture, S.K.; Jaiswal, A.K. Prothymosin-alpha mediates nuclear import of the INrf2/Cul3 Rbx1 complex to degrade nuclear Nrf2. J. Biol. Chem., 2009, 284(20), 13856-13868.
[56]
Ramsey, C.P.; Glass, C.A.; Montgomery, M.B.; Lindl, K.A.; Ritson, G.P.; Chia, L.A.; Hamilton, R.L.; Chu, C.T.; Jordan-sciutto, K.L. Expression of Nrf2 in neurdegenerative diseases. J. Neuropathol. Exp. Neurol., 2007, 66(1), 75-85.
[57]
Kanninen, K.; Malm, T.M.; Jyrkkänen, H.K.; Goldsteins, G.; Keksa-Goldsteine, V.; Tanila, H.; Yamamato, M.; Yla-Herttuala, S.; Levonen, A.L.; Koistinaho, J. Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol. Cell. Neurosci., 2008, 39(3), 302-313.
[58]
Zhang, M.; An, C.; Gao, Y.; Leak, R.K.; Chen, J.; Zhang, F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol., 2013, 100, 30-47.
[59]
Calkins, M.J.; Jakel, R.J.; Johnson, D.A.; Chan, K.; Kan, Y.W.; Johnson, J.A. Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription. Proc. Natl. Acad. Sci. USA, 2005, 102(1), 244-249.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 2
Year: 2019
Page: [136 - 147]
Pages: 12
DOI: 10.2174/1570164615666180713110139
Price: $58

Article Metrics

PDF: 12
HTML: 1