Antibacterial Properties of Graphene Based Nanomaterials: An Emphasis on Molecular Mechanisms, Surface Engineering and Size of Sheets

Author(s): Hazhir Tashan, Kianoush Khosravi-Darani, Fatemeh Yazdian, Meisam Omidi, Mojgan Sheikhpour, Masoumeh Farahani, Abdelwahab Omri*.

Journal Name: Mini-Reviews in Organic Chemistry

Volume 16 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Graphene-based materials with their astonishing properties including exceptional thermal and electrical conductivity, strong mechanical characteristics, as well as antibacterial characteristics have many promising applications in industry and medicine. Graphene-based materials have been utilized in different fields of medicine such as thermal therapy, drug delivery and cancer therapy. In addition, the prevalence of bacterial multidrug resistance has attracted worldwide attention. Therefore, there is a growing tendency to use nanomaterials, especially graphene family to overcome this problem. To date, no specific mechanism for antibacterial activity of graphene-family has been reported. This review briefly discusses the physiochemical properties of graphene nanomaterials with a focus on the different antibacterial mechanisms, surface engineering and nanosheets size to provide a better insight for further research and development.

Keywords: Antibacterial mechanism, graphene, microbial resistance, nanomaterial, surface engineering, carbon nanotubes.

Byarugaba, D.K. Mechanisms of antimicrobial resistance.Antimicrobial resistance in developing countries; Sosa, J.A.; Byarugaba, K.D.; Amábile-Cuevas, F.C.; Hsueh, P-R.; Kariuki, S.; Okeke, N.I., Eds.; Springer: New York, 2010, pp. 15-26.
Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med., 2006, 119(6)(Suppl. 1), S3-S10.
Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; de Aberasturi, D.J.; de Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol., 2012, 30(10), 499-511.
Shahidi, S.; Wiener, J. Antibacterial agents in textile industry; INTECH Open Access Publisher: London, 2012.
Yeo, S.Y.; Lee, H.J.; Jeong, S.H. Preparation of nanocomposite fibers for permanent antibacterial effect. J. Mater. Sci., 2003, 38(10), 2143-2147.
Xue, C.H.; Chen, J.; Yin, W.; Jia, S.T.; Ma, J.Z. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl. Surf. Sci., 2012, 258(7), 2468-2472.
De Azeredo, H.M. Nanocomposites for food packaging applications. Food Res. Int., 2009, 42(9), 1240-1253.
Tankhiwale, R.; Bajpaim, S. Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids Surf. B Biointerfaces, 2012, 90, 16-20.
Tankhiwale, R.; Bajpai, S. Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf. B Biointerfaces, 2009, 69(2), 164-168.
Longano, D.; Ditaranto, N.; Cioffi, N.; Di Niso, F.; Sibillano, T.; Ancona, A.; Conte, A.; Del Nobile, M.; Sabbatini, L.; Torsi, L. Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal. Bioanal. Chem., 2012, 403(4), 1179-1186.
Jain, P.; Pradeep, T. Potential of silver nanoparticle‐coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng., 2005, 90(1), 59-63.
Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res., 2008, 42(18), 4591-4602.
Bao, Q.; Zhang, D.; Qi, P. Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J. Colloid Interface Sci., 2011, 360(2), 463-470.
Moritz, M.; Geszke-Moritz, M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem. Eng. J., 2013, 228, 596-613.
Grace, E.; Annamalai, A.; Ponmari, G.; Vani, C.; Rose, A.; Marahatta, A.B.; Gunasekaran, V. Cytotoxicity and antibacterial characteristics of graphene-oxide nanosheets toward human pathogens. J. Nanosci. Nanotechnol., 2016, 16(3), 2447-2452.
Chen, J.; Peng, H.; Wang, X.; Shao, F.; Yuan, Z.; Han, H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 2014, 6(3), 1879-1889.
Nellore, B.P. SekharáSinha, S.; ReddyáChavva, S.; ChandraáRay, P. Antimicrobial peptide-conjugated graphene oxide membrane for efficient removal and effective killing of multiple drug resistant bacteria. RSC Advances, 2015, 5(24), 18881-18887.
Sawosz, E.; Jaworski, S.; Kutwin, M.; Hotowy, A.; Wierzbicki, M.; Grodzik, M.; Kurantowicz, N.; Strojny, B.; Lipińska, L.; Chwalibog, A. Toxicity of pristine graphene in experiments in a chicken embryo model. Int. J. Nanomedicine, 2014, 9, 3913.
Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature, 1985, 318(6042), 162-163.
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
Microscopy, S.P.; Microscopy, A.F.; Microscopy, S.T. Applications of graphene and graphene-oxide based nanomaterials. MRS Bull., 2016, 41.
Katsnelson, M.I. Graphene: Carbon in two dimensions. Mater. Today, 2007, 10(1), 20-27.
Lu, H.; Li, S.D. Two-dimensional carbon allotropes from graphene to graphyne. J. Phys. Chem. C, 2013, 1(23), 3677-3680.
Perreault, F.; de Faria, A.F.; Nejati, S.; Elimelech, M. Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano, 2015, 9(7), 7226-7236.
Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 2011, 5(9), 6971-6980.
Xie, Y.; Wu, B.; Zhang, X.X.; Yin, J.; Mao, L.; Hu, M. Influences of graphene on microbial community and antibiotic resistance genes in mouse gut as determined by high-throughput sequencing. Chemosphere, 2016, 144, 1306-1312.
Syama, S.; Mohanan, P. Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application. Int. J. Biol. Macromol., 2016, 86, 546-555.
Novoselov, K.S.; Fal, V.; Colombo, L.; Gellert, P.; Schwab, M.; Kim, K. A roadmap for graphene. Nature, 2012, 490(7419), 192-200.
Raom, C.E.; Sood, A.E.; Subrahmanyam, K.E.; Govindaraj, A. Graphene: The new two‐dimensional nanomaterial. Angew. Chem. Int. Ed., 2009, 48(42), 7752-7777.
Durán, N.; Martinez, S.T.; Silveira, C.; Durán, M.; de Moraes, A.; Simoes, M.; Alves, O.; Favaro, W. Graphene oxide: A carrier for pharmaceuticals and a scaffold for cell interactions. Curr. Top. Med. Chem., 2015, 15(4), 309-327.
Spencer, D.S.; Puranik, A.S.; Peppas, N.A. Intelligent nanoparticles for advanced drug delivery in cancer treatment. Curr. Opin. Chem. Eng., 2015, 7, 84-92.
Ma, Y.; Shen, H.; Tu, X.; Zhang, Z. Assessing in vivo toxicity of graphene materials: Current methods and future outlook. Nanomedicine (Lond.), 2014, 9(10), 1565-1580.
Tegou, E.; Magana, M.; Katsogridaki, A.E.; Ioannidis, A.; Raptis, V.; Jordan, S.; Chatzipanagiotou, S.; Chatzandroulis, S.; Ornelas, C.; Tegos, G.P. Terms of endearment: Bacteria meet graphene nanosurfaces. Biomaterials, 2016, 89, 38-55.
Hashemi, M.; Yadegari, A.; Yazdanpanah, G.; Omidi, M.; Jabbehdari, S.; Haghiralsadat, F.; Yazdian, F.; Tayebi, L. Normalization of doxorubicin release from graphene oxide: New approach for optimization of effective parameters on drug loading. Biotechnol. Appl. Biochem., 2016, 64(3), 433-442.
Jabbehdari, S.; Tayebi, L. Functionalized R9-reduced graphene oxide as an efficient nano-carrier for hydrophobic drug delivery. RSC Advances, 2016, 6(78), 74072-74084.
Yang, K.; Feng, L.; Liu, Z. The advancing uses of nano-graphene in drug delivery. Expert Opin. Drug Deliv., 2015, 12(4), 601-612.
Li, J.L.; Tang, B.; Yuan, B.; Sun, L.; Wang, X.G. A review of optical imaging and therapy using nanosized graphene and graphene oxide. Biomaterials, 2013, 34(37), 9519-9534.
Adeli, M.; Bani, F.; Movahedi, S.; Sadeghizadeh, M. Graphene-polyglycerol-curcumin hybrid as a near-infrared (NIR) laser stimuli-responsive system for chemo-photothermal cancer therapy. RSC Advances, 2016, 6(66), 61141-61149.
Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater., 2013, 25(2), 188-193.
Gulbakan, B.; Yasun, E.; Shukoor, M.I.; Zhu, Z.; You, M.; Tan, X.; Sanchez, H.; Powell, D.H.; Dai, H.; Tan, W. A dual platform for selective analyte enrichment and ionization in mass spectrometry using aptamer-conjugated graphene oxide. JACS, 2010, 132(49), 17408-17410.
Movahedi, S.; Adeli, M.; Fard, A.K.; Maleki, M.; Sadeghizadeh, M.; Bani, F. Edge-functionalization of graphene by polyglycerol: A way to change its flat topology. Polymer (Guildf.), 2013, 54(12), 2917-2925.
Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C, 2008, 112(45), 17554-17558.
Shi, S.; Chen, F.; Ehlerding, E.B.; Cai, W. Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjug. Chem., 2014, 25(9), 1609-1619.
Kim, H.; Namgung, R.; Singha, K.; Oh, I.K.; Kim, W.J. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug. Chem., 2011, 22(12), 2558-2567.
Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater., 2010, 22(19), 2206-2210.
Geim, A.K. Graphene: Status and prospects. Science, 2009, 324(5934), 1530-1534.
Krishnamoorthy, K.; Veerapandian, M.; Zhang, L.H.; Yun, K.; Kim, S.J. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J. Phys. Chem. C, 2012, 116(32), 17280-17287.
Nanda, S.S.; Papaefthymiou, G.C.; Yi, D.K. Functionalization of graphene oxide and its biomedical applications. Crit. Rev. Solid State Mater. Sci., 2015, 40(5), 291-315.
Wang, K.; Ruan, J.; Song, H.; Zhang, J.; Wo, Y.; Guo, S.; Cui, D. Biocompatibility of graphene oxide. Nanoscale Res. Lett., 2011, 6(1), 8.
Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol., 2013, 8(8), 594-601.
Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 2010, 4(10), 5731-5736.
Liu, Y.; Luo, Y.; Wu, J.; Wang, Y.; Yang, X.; Yang, R.; Wang, B.; Yang, J.; Zhang, N. Graphene oxide can induce in vitro and in vivo mutagenesis. Sci. Rep., 2013, 3.
Ruiz, O.N.; Fernando, K.S.; Wang, B.; Brown, N.A.; Luo, P.G.; McNamara, N.D.; Vangsness, M.; Sun, Y.P.; Bunker, C.E. Graphene oxide: A nonspecific enhancer of cellular growth. ACS Nano, 2011, 5(10), 8100-8107.
Luan, B.; Huynh, T.; Zhao, L.; Zhou, R. Potential toxicity of graphene to cell functions via disrupting protein-protein interactions. ACS Nano, 2014, 9(1), 663-669.
Krishnamoorthy, K.; Umasuthan, N.; Mohan, R.; Lee, J.; Kim, S.J. Antibacterial activity of graphene oxide nanosheets. Sci. Adv. Mater., 2012, 4(11), 1111-1117.
He, J.; Zhu, X.; Qi, Z.; Wang, C.; Mao, X.; Zhu, C.; He, Z.; Li, M.; Tang, Z. Killing dental pathogens using antibacterial graphene oxide. ACS Appl. Mater. Interfaces, 2015, 7(9), 5605-5611.
More, M.P.; Patil, M.D.; Pandey, A.P.; Patil, P.O.; Deshmukh, P.K. Fabrication and characterization of graphene-based hybrid nanocomposite: Assessment of antibacterial potential and biomedical application. Artif. Cells Nanomed. Biotechnol., 2016, 1-13.
Al-Thani, R.F.; Patan, N.K.; Al-Maadeed, M.A. Graphene oxide as antimicrobial against two gram-positive and two gram-negative bacteria in addition to one fungus. Online J. Biol. Sci., 2014, 14(3), 230.
Gurunathan, S.; Han, J.W.; Dayem, A.A.; Eppakayala, V.; Kim, J.H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomedicine, 2012, 7, 5901-5914.
Liu, S.; Hu, M.; Zeng, T.H.; Wu, R.; Jiang, R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir, 2012, 28(33), 12364-12372.
Barbolina, I.; Woods, C.; Lozano, N.; Kostarelos, K.; Novoselov, K.; Roberts, I. Purity of graphene oxide determines its antibacterial activity. 2D Mater., 2016. 3(2), 025025
Musico, Y.L.F.; Santos, C.M.; Dalida, M.L.P.; Rodrigues, D.F. Surface modification of membrane filters using graphene and graphene oxide-based nanomaterials for bacterial inactivation and removal. ACS Sustain. Chem.& Eng., 2014, 2(7), 1559-1565.
Zhang, Y.; Ali, S.F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A.S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 2010, 4(6), 3181-3186.
Li, J.; Wang, G.; Zhu, H.; Zhang, M.; Zheng, X.; Di, Z.; Liu, X.; Wang, X. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci. Rep., 2014, 4.
Akhavan, O.; Ghaderi, E.; Esfandiar, A. Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J. Phys. Chem. B, 2011, 115(19), 6279-6288.
Mangadlao, J.D.; Santos, C.M.; Felipe, M.J.L.; de Leon, A.C.C.; Rodrigues, D.F.; Advincula, R.C. On the antibacterial mechanism of Graphene Oxide (GO) Langmuir-Blodgett films. Chem. Commun. (Camb.), 2015, 51(14), 2886-2889.
Hui, L.; Piao, J.G.; Auletta, J.; Hu, K.; Zhu, Y.; Meyer, T.; Liu, H.; Yang, L. Availability of the basal planes of graphene oxide determines whether it is antibacterial. ACS Appl. Mater. Interfaces, 2014, 6(15), 13183-13190.
Akhavan, O.; Ghaderi, E.; Akhavan, A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials, 2012, 33(32), 8017-8025.
Pham, V.T.; Truong, V.K.; Quinn, M.D.; Notley, S.M.; Guo, Y.; Baulin, V.A.; Al Kobaisi, M.; Crawford, R.J.; Ivanova, E.P. Graphene induces formation of pores that kill spherical and rod-shaped bacteria. ACS Nano, 2015, 9(8), 8458-8467.
Carpio, I.E.M.; Santos, C.M.; Wei, X.; Rodrigues, D.F. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale, 2012, 4(15), 4746-4756.
Akhavan, O.; Ghaderi, E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon, 2012, 50(5), 1853-1860.
Zou, X.; Zhang, L.; Wang, Z.; Luo, Y. Mechanisms of the antimicrobial activities of graphene materials. JACS, 2016, 138(7), 2064-2077.
Li, Y.; Yuan, H.; von dem Bussche, A.; Creighton, M.; Hurt, R.H.; Kane, A.B.; Gao, H. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. USA, 2013, 110(30), 12295-12300.
Yi, X.; Gao, H. Cell interaction with graphene microsheets: Near-orthogonal cutting versus parallel attachment. Nanoscale, 2015, 7(12), 5457-5467.
Dallavalle, M.; Calvaresi, M.; Bottoni, A.; Melle-Franco, M.; Zerbetto, F. Graphene can wreak havoc with cell membranes. ACS Appl. Mater. Interfaces, 2015, 7(7), 4406-4414.
Zhou, T.; Zhang, B.; Wei, P.; Du, Y.; Zhou, H.; Yu, M.; Yan, L.; Zhang, W.; Nie, G.; Chen, C. Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials, 2014, 35(37), 9833-9843.
Li, Y.; Wu, Q.; Zhao, Y.; Bai, Y.; Chen, P.; Xia, T.; Wang, D. Response of microRNAs to in vitro treatment with graphene oxide. ACS Nano, 2014, 8(3), 2100-2110.
Orecchioni, M.; Jasim, D.A.; Pescatori, M.; Manetti, R.; Fozza, C.; Sgarrella, F.; Bedognetti, D.; Bianco, A.; Kostarelos, K.; Delogu, L.G. Molecular and genomic impact of large and small lateral dimension graphene oxide sheets on human immune cells from healthy donors. Adv. Healthc. Mater., 2016, 5(2), 276-287.
Chatterjee, N.; Yang, J.; Choi, J. Differential genotoxic and epigenotoxic effects of Graphene Family Nanomaterials (GFNs) in human bronchial epithelial cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, 798, 1-10.
Hashemi, E.; Akhavan, O.; Shamsara, M.; Rahighi, R.; Esfandiar, A.; Tayefeh, A.R. Cyto and genotoxicities of graphene oxide and reduced graphene oxide sheets on spermatozoa. RSC Advances, 2014, 4(52), 27213-27223.
Zhao, S.; Wang, Q.; Zhao, Y.; Rui, Q.; Wang, D. Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environ. Toxicol. Pharmacol., 2015, 39(1), 145-156.
He, T.; Liu, H.; Zhou, Y.; Yang, J.; Cheng, X.; Shi, H. Antibacterial effect and proteomic analysis of graphene-based silver nanoparticles on a pathogenic bacterium Pseudomonas aeruginosa. Biometals, 2014, 27(4), 673-682.
Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res., 2008, 68(16), 6652-6660.
Bianco, A.; Kostarelos, K.; Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol., 2005, 9(6), 674-679.
Mottaghitalab, F.; Farokhi, M.; Atyabi, F.; Omidvar, R.; Shokrgozar, M.A.; Sadeghizadeh, M. The effect of fibronectin on structural and biological properties of single walled carbon nanotube. Appl. Surf. Sci., 2015, 339, 85-93.
Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res., 2009, 2(2), 85-120.
Zali, H.; Yazdian, F.; Omidi, M. Three-dimensional free vibration analysis of carbon nanotube reinforced composites annular plates. Orient. J. Chem., 2016, 32(2), 1223-1233.
Omidi, M. DT, H.R.; Milani, A.S.; Seethaler, R.J.; Arasteh, R. Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon, 2010, 48(11), 3218-3228.
Arasteh, R.; Omidi, M.; Rousta, A.; Kazerooni, H. A study on effect of waviness on mechanical properties of multi-walled carbon nanotube/epoxy composites using modified Halpin-Tsai theory. J. Macromol. Sci. B., 2011, 50(12), 2464-2480.
Rashidi, A.; Omidi, M.; Choolaei, M.; Nazarzadeh, M.; Yadegari, A.; Haghierosadat, F.; Oroojalian, F.; Azhdari, M. Electromechanical properties of vertically aligned carbon nanotube. Adv. Mat. Res., 2013, 705, 332-336.
Manshian, B.B.; Jenkins, G.J.; Williams, P.M.; Wright, C.; Barron, A.R.; Brown, A.P.; Hondow, N.; Dunstan, P.R.; Rickman, R.; Brady, K.; Doak, S.H. Single-walled carbon nanotubes: Differential genotoxic potential associated with physico-chemical properties. Nanotoxicology, 2013, 7(2), 144-156.
Chen, P.H.; Hsiao, K.M.; Chou, C.C. Molecular characterization of toxicity mechanism of single-walled carbon nanotubes. Biomaterials, 2013, 34(22), 5661-5669.
Aferchich, K.; Lilly, M.; Yang, L. Effect of single-walled carbon nanotubes on Bacillus anthracis cell growth, sporulation, and spore germination. J. Nanosci. Nanotechnol., 2012, 12(5), 3821-3830.
Dong, X.; Tang, Y.; Wu, M.; Vlahovic, B.; Yang, L. Dual effects of single-walled carbon nanotubes coupled with near-infrared radiation on Bacillus anthracis spores: Inactivates spores and stimulates the germination of surviving spores. J. Biol. Eng., 2013, 7(1), 1-12.
Dosunmu, E.; Chaudhari, A.A.; Singh, S.R.; Dennis, V.A.; Pillai, S.R. Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: A potential mechanism for their antimicrobial effect. Int. J. Nanomedicine, 2015, 10, 5025-5034.
Chaudhari, A.A.; Jasper, S.L.; Dosunmu, E.; Miller, M.E.; Arnold, R.D.; Singh, S.R.; Pillai, S. Novel pegylated silver coated carbon nanotubes kill Salmonella but they are non-toxic to eukaryotic cells. J. Nanobiotechnology, 2015, 13(1), 23.
da Rocha, A.M.; Ferreira, J.R.; Barros, D.M.; Pereira, T.C.B.; Bogo, M.R.; Oliveira, S.; Geraldo, V.; Lacerda, R.G.; Ferlauto, A.S.; Ladeira, L.O. Gene expression and biochemical responses in brain of zebrafish Danio rerio exposed to organic nanomaterials: Carbon nanotubes (SWCNT) and fullerenol (C 60 (OH) 18-22 (OK 4)). Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2013, 165(4), 460-467.
Yang, X.; Wan, Y.; Qiao, X.; Arlet, V.; Li, X. Transcriptional alteration of matrix‐related gene expression in cultured human disc cells by nanoparticles of a bismethanophosphonate fullerene. Cell Biol. Int., 2010, 34(8), 837-844.
Yadegari, A.; Omidi, M.; Choolaei, M.; Haghiralsadat, F.; Yazdian, F. Micro-Newton detection by using graphene-paper force sensor. Procedia Eng., 2014, 87, 967-970.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [159 - 172]
Pages: 14
DOI: 10.2174/1570193X15666180712120309
Price: $58

Article Metrics

PDF: 18