Interaction of Stigmasterol with Trypanosomal Uridylyl Transferase, Farnesyl Diphosphate Synthase and Sterol 14α-demethylase: An In Silico Prediction of Mechanism of Action

Author(s): Mohammed Auwal Ibrahim*, Murtala Bindawa Isah, Nasir Tajuddeen, Saadatu Auwal Hamza, Aminu Mohammed.

Journal Name: Letters in Drug Design & Discovery

Volume 16 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Trypanosomiasis is one of the neglected tropical diseases and continues to cause serious morbidity, mortality and economic loss. Current anti-trypanosomal drugs are antiquated and suffer from a number of serious setbacks, thereby necessitating the search for new drugs. Stigmasterol has previously demonstrated in vitro and in vivo anti-trypanosomal activity.

Methods: Herein, stigmasterol was docked into three validated anti-trypanosomal drug targets; uridylyl transferase, farnesyl diphosphate synthase and sterol 14α-demethylase, in order to elucidate the possible biochemical targets for the observed anti-trypanosomal activity.

Results: The binding free energy between stigmasterol and the enzymes was in the order; sterol 14α-demethylase (-8.9 kcal/mol) < uridylyl transferase (-7.9 kcal/mol) < farnesyl diphosphate synthase (-5.7 kcal/mol). At the lowest energy docked pose, stigmasterol interacts with the active site of the three trypanosomal enzymes via non-covalent interactions (apart from hydrogen bond) while highly hydrophobic stigmasterol carbon atoms (21 and 27) were crucial in the interaction with varying residues of the three anti-trypanosomal targets.

Conclusion: Therefore, results from this study might suggest that stigmasterol mediated the antitrypanosomal activity through interaction with the three anti-trypanosomal targets but with more preference towards sterol 14α-demethylase.

Keywords: Trypanosome, molecular docking, stigmasterol, uridylyl transferase, sterol 14α-demethylase, farnesyl diphosphate synthase.

[1]
Bhutta, Z.A.; Sommerfeld, J.; Lassi, Z.S.; Salam, R.A.; Das, J.K. Global burden, distribution and interventions for the infectious diseases of poverty. Infect. Dis. Poverty, 2014, 3, 21.
[2]
Hotez, P.J.; Alvarado, M.; Basáñez, M.G.; Bolliger, I.; Bourne, R.; Boussinesq, M.; Brooker, S.J.; Brown, A.S.; Buckle, G.; Budke, C.M.; Carabin, H.; Coffeng, L.E.; Fèvre, E.M.; Fürst, T.; Halasa, Y.A.; Jasrasaria, R.; Johns, N.E.; Keiser, J.; King, C.H.; Lozano, R.; Murdoch, M.E.; O’Hanlon, S.; Pion, S.D.S.; Pullan, R.L.; Ramaiah, K.D.; Roberts, T.; Shepard, D.S.; Smith, J.L.; Stolk, W.A.; Undurraga, E.A.; Utzinger, J.; Wang, M.; Murray, C.J.L.; Naghavi, M. The global burden of disease study 2010: Interpretation and implications for the neglected tropical diseases. PLoS Negl. Trop. Dis., 2014, 8e2865
[3]
Aksoy, S.; Weiss, B.L.; Attardo, G.M. Trypanosome transmission dynamics in tsetse. Curr. Opin. Insect Sci., 2014, 3, 43-49.
[4]
Torreele, E.; Bourdin, T.B.; Tweats, D.; Kaiser, M.; Brun, R.; Mazue, G.; Bray, M.A.; Pecoul, B. Fexinidazole-a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness. PLoS Negl. Trop. Dis., 2010, 4e923
[5]
Jacobs, R.T.; Nare, B.; Wring, S.A.; Orr, M.D.; Chen, D.; Sligar, J.M.; Jenks, M.X.; Noe, R.A.; Bowling, T.S.; Mercer, L.T.; Rewerts, C.; Gaukel, E.; Owens, J.; Parham, R.; Randolph, R.; Beaudet, B.; Bacchi, C.J.; Yarlett, N.; Plattner, J.J.; Freund, Y.; Ding, C.; Akama, T.; Zhang, Y.K.; Brun, R.; Kaiser, M.; Scandale, I.; Don, R. Scyx-7158, an orally-active benzoxaborole for the treatment of stage 2 Human African Trypanosomiasis. PLoS Negl. Trop. Dis., 2011, 5e1151
[6]
Harrill, A.H.; DeSmet, K.D.; Wolf, K.K.; Bridges, A.S.; Eaddy, J.S.; Kurtz, C.L.; Hall, J.E.; Paine, M.F.; Tidwell, R.R.; Watkins, P.B. A mouse diversity panel approach reveals the potential for clinical kidney injury due to db289 not predicted by classical rodent models. Toxicol. Sci., 2012, 130, 416-426.
[7]
Ibrahim, M.A.; Musa, A.M.; Aliyu, A.B.; Mayaki, H.S.; Gideon, A.; Islam, M.S. Phenolics rich fraction of Khaya senegalensis stem bark: Antitrypanosomal activity and amelioration of some parasite-induced pathological changes. Pharm. Biol., 2013, 51(7), 906-913.
[8]
Ibrahim, M.A.; Aliyu, A.B.; Abdullahi, H.; Solomon, T.; Toko, E.; Garba, A.; Bashir, M.; Habila, N. Lactones rich fraction from Vernonia blumeoides: Antitrypanosomal activity and amelioration of the parasite-induced anemia and organ damage. J. Nat. Med., 2013b, 67(4), 750-757.
[9]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79, 629-661.
[10]
Ntie-Kang, F.; Zofou, D.; Babiaka, S.B.; Meudom, R.; Scharfe, M.; Lifongo, L.L.; Mbah, J.A.; Mbaze, L.M.; Sippl, W.; Efange, S.M.N. AfroDb: A select highly potent and diverse natural product library from African medicinal plants. PLoS One, 2013, 8(10)e78085
[11]
Ibrahim, M.A.; Mohammed, A.; Isah, M.B.; Aliyu, A.B. Anti-trypanosomal activity of African medicinal plants: A review update. J. Ethnopharmacol., 2014, 154, 26-54.
[12]
Aminu, R.; Umar, I.A.; Rahman, M.A.; Ibrahim, M.A. Stigmasterol retards the proliferation and pathological features of Trypanosoma congolense infection in rats and inhibits trypanosomal sialidase in vitro and in silico. Biomed. Pharmacother., 2017, 89, 482-489.
[13]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25, 1605-1612.
[14]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[15]
Demir, O.; Ladaied, M.; Merritt, C.; Stuart, K.; Amaro, R.E. Computer-aided discovery of Trypanosoma brucei RNA-editing terminal uridylyltransferase 2 inhibitors. Chem. Biol. Drug Des., 2014, 84(2), 131-139.
[16]
Ibezim, A.; Debnath, B.; Ntie-Kang, F.; Mbah, C.J.; Nwodo, N.J. Binding of anti-Trypanosoma natural products from African flora against selected drug targets: a docking study. Med. Chem. Res., 2017, 26, 562-579.
[17]
Ogungbe, I.V.; Setzer, W.N. Comparative molecular docking of antitrypanosomal natural products into multiple Trypanosoma brucei drug targets. Molecules, 2009, 14, 1513-1536.
[18]
Linares, G.E.G.; Ravaschino, E.L.; Rodriguez, J.B. Progresses in the field of drug design to combat tropical protozoan parasitic diseases. Curr. Med. Chem., 2006, 13, 335-360.
[19]
Mao, J.; Mukherjee, S.; Zhang, Y.; Cao, R.; Sanders, J.M.; Song, Y.; Zhang, Y.; Meints, G.A.; Gao, Y.G.; Mukkamala, D.; Hudock, M.P.; Oldfield, E. Solid-state NMR, crystallographic, and computational investigation of bisphosphonates and farnesyl diphosphate synthase bisphosphonate complexes. J. Am. Chem. Soc., 2006, 128, 14485-14497.
[20]
Andriani, G.; Amata, E.; Beatty, J.; Clements, Z.; Coffey, B.J.; Courtemanche, G.; Devine, W.; Erath, J.; Juda, C.E.; Wawozak, Z.; Wood, J.T.; Lepesheva, G.I.; Rodriguez, A.; Pollastri, M.P. Antitrpanosomal lead discovery: Identification of a ligand-efficient inhibitor of Trypanosoma cruzi CYP51 and parasite growth. J. Med. Chem., 2013, 56, 2556-2567.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 7
Year: 2019
Page: [799 - 807]
Pages: 9
DOI: 10.2174/1570180815666180711110324
Price: $58

Article Metrics

PDF: 16
HTML: 2