Linc01638 Promotes Tumorigenesis in HER2+ Breast Cancer

Author(s): Peng Liu, Hailin Tang, Jiali Wu, Xingsheng Qiu, Yanan Kong, Lijuan Zhang, Xinhua Xie*, Xiangsheng Xiao*.

Journal Name: Current Cancer Drug Targets

Volume 19 , Issue 1 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Background: Long non-coding RNAs play crucial roles in various biological activities and diseases. The role of long intergenic non-coding RNA01638 (linc01638) in breast cancer, especially in HER2-positive breast cancer, remains largely unknown.

Objective: To investigate the effect of linc01638 on tumorigenesis in HER2-positive breast cancer.

Methods: We first used qRT-PCR to detect linc01638 expression in HER2-positive breast cancer cells and tissues. Then we analyzed the effects of linc01638 expression in HER2-positive breast cancer cells through cell apoptosis assay, cell proliferation assay, colony formation assay, and cell invasion assay. We conducted mouse xenograft model to further confirm the role of linc01638 in HER2-positive breast cancer. Moreover, we used Western blot and IHC analysis to access the effect of linc01638 on DNMTs, BRCA1 and PTEN expressions in transplanted tumors.

Results: Linc01638 was found to be remarkably overexpressed in HER2-positive breast cancer cells and tissues. Suppression of linc01638 enhanced cell apoptosis, as well as inhibited the growth and invasiveness of HER2-positive breast cancer cells in vitro and tumor progression and metastasis in vivo. Furthermore, inhibition of linc01638 by shRNA attenuated expression of DNMT1, DNMT3a, and DNMT3b, and promoted expression of BRCA1 and PTEN in HER2-positive breast cancer cells and mouse xenograft models.

Conclusion: Linc01638 might be a promising biomarker and therapeutic target for treatment of HER2-positive breast cancer.

Keywords: Long non-coding RNA, Linc01638, DNMTs, HER2-positive breast cancer, tumorigenesis.

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[2]
Figueroa-Magalhaes, M.C.; Jelovac, D.; Connolly, R.; Wolff, A.C. Treatment of HER2-positive breast cancer. Breast, 2014, 23(2), 128-136.
[3]
Prat, A.; Pineda, E.; Adamo, B.; Galván, P.; Fernández, A.; Gaba, L.; Díez, M.; Viladot, M.; Arance, A.; Muñoz, M. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast, 2015, 24(Suppl. 2), S26-S35.
[4]
Abramson, V.G.; Lehmann, B.D.; Ballinger, T.J.; Pietenpol, J.A. Subtyping of triple-negative breast cancer: implications for therapy. Cancer, 2015, 121(1), 8-16.
[5]
Carey, L.A.; Perou, C.M.; Livasy, C.A.; Dressler, L.G.; Cowan, D.; Conway, K.; Karaca, G.; Troester, M.A.; Tse, C.K.; Edmiston, S.; Deming, S.L.; Geradts, J.; Cheang, M.C.; Nielsen, T.O.; Moorman, P.G.; Earp, H.S.; Millikan, R.C. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA, 2006, 295(21), 2492-2502.
[6]
Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 1987, 235(4785), 177-182.
[7]
Slamon, D.J.; Godolphin, W.; Jones, L.A.; Holt, J.A.; Wong, S.G.; Keith, D.E.; Levin, W.J.; Stuart, S.G.; Udove, J.; Ullrich, A. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 1989, 244(4905), 707-712.
[8]
Burstein, H.J. The distinctive nature of HER2-positive breast cancers. N. Engl. J. Med., 2005, 353(16), 1652-1654.
[9]
Ahmed, S.; Sami, A.; Xiang, J. HER2-directed therapy: current treatment options for HER2-positive breast cancer. Breast Cancer, 2015, 22(2), 101-116.
[10]
Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; Baselga, J. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med., 2001, 344(11), 783-792.
[11]
Berry, D.A.; Cronin, K.A.; Plevritis, S.K.; Fryback, D.G.; Clarke, L.; Zelen, M.; Mandelblatt, J.S.; Yakovlev, A.Y.; Habbema, J.D.F.; Feuer, E.J. Effect of screening and adjuvant therapy on mortality from breast cancer. N. Engl. J. Med., 2005, 353(17), 1784-1792.
[12]
Perez, E.A.; Romond, E.H.; Suman, V.J.; Jeong, J.H.; Sledge, G.; Geyer, Jr, C.E.; Martino, S.; Rastogi, P.; Gralow, J.; Swain, S.M.; Winer, E.P. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J. Clin. Oncol., 2014, 32(33), 3744-3752.
[13]
Kumler, I.; Tuxen, M.K.; Nielsen, D.L. A systematic review of dual targeting in HER2-positive breast cancer. Cancer Treat. Rev., 2014, 40(2), 259-270.
[14]
Nahta, R.; Esteva, F.J. Herceptin: mechanisms of action and resistance. Cancer Lett., 2006, 232(2), 123-138.
[15]
Wapinski, O.; Chang, H.Y. Long noncoding RNAs and human disease. Trends Cell Biol., 2011, 21(6), 354-361.
[16]
Feng, Y.; Hu, X.; Zhang, Y.; Zhang, D.; Li, C.; Zhang, L. Methods for the study of long noncoding RNA in cancer cell signaling. Methods Mol. Biol., 2014, 1165, 115-143.
[17]
Hauptman, N.; Glavac, D. Long non-coding RNA in cancer. Int. J. Mol. Sci., 2013, 14(3), 4655-4669.
[18]
Faghihi, M.A.; Modarresi, F.; Khalil, A.M.; Wood, D.E.; Sahagan, B.G.; Morgan, T.E.; Finch, C.E.; Laurent, III, G.S.; Kenny, P.J.; Wahlestedt, C. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med., 2008, 14(7), 723-730.
[19]
McPherson, R.; Pertsemlidis, A.; Kavaslar, N.; Stewart, A.; Roberts, R.; Cox, D.R.; Hinds, D.A.; Pennacchio, L.A.; Tybjaerg-Hansen, A.; Folsom, A.R.; Boerwinkle, E. A common allele on chromosome 9 associated with coronary heart disease. Science, 2007, 316(5830), 1488-1491.
[20]
Sigdel, K.R.; Cheng, A.; Wang, Y.; Duan, L.; Zhang, Y. The emerging functions of long noncoding RNA in immune cells: autoimmune diseases. J. Immunol. Res., 2015, 2015, 848790.
[21]
Yang, X.; Xie, X.; Xiao, Y.F.; Xie, R.; Hu, C.J.; Tang, B.; Li, B.S.; Yang, S.M. The emergence of long non-coding RNAs in the tumorigenesis of hepatocellular carcinoma. Cancer Lett., 2015, 360(2), 119-124.
[22]
Shao, Y.; Ye, M.; Jiang, X.; Sun, W.; Ding, X.; Liu, Z.; Ye, G.; Zhang, X.; Xiao, B.; Guo, J. Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer, 2014, 120(21), 3320-3328.
[23]
Wang, L.; Fu, D.; Qiu, Y.; Xing, X.; Xu, F.; Han, C.; Xu, X.; Wei, Z.; Zhang, Z.; Ge, J.; Cheng, W. Genome-wide screening and identification of long noncoding RNAs and their interaction with protein coding RNAs in bladder urothelial cell carcinoma. Cancer Lett., 2014, 349(1), 77-86.
[24]
Peter, S.; Borkowska, E.; Drayton, R.M.; Rakhit, C.P.; Noon, A.P.; Chen, W.; Catto, J.W. Identification of differentially expressed long noncoding RNAs in bladder cancer. Clin. Cancer Res., 2014, 20(20), 5311-5321.
[25]
Hirata, H.; Hinoda, Y.; Shahryari, V.; Deng, G.; Nakajima, K.; Tabatabai, Z.L.; Ishii, N.; Dahiya, R. Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res., 2015, 75(7), 1322-1331.
[26]
Wu, J.; Shuang, Z.; Zhao, J.; Tang, H.; Liu, P.; Zhang, L.; Xie, X.; Xiao, X. Linc00152 promotes tumorigenesis by regulating DNMTs in triple-negative breast cancer. Biomed. Pharmacother., 2018, 97, 1275-1281.
[27]
Tuo, Y.L.; Li, X.M.; Luo, J. Long noncoding RNA UCA1 modulates breast cancer cell growth and apoptosis through decreasing tumor suppressive miR-143. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(18), 3403-3411.
[28]
Sun, M.; Gadad, S.S.; Kim, D.S.; Kraus, W.L. Discovery, annotation, and functional analysis of long noncoding RNAs controlling cell-cycle gene expression and proliferation in breast cancer cells. Mol. Cell, 2015, 59(4), 698-711.
[29]
Luczak, M.W.; Jagodzinski, P.P. The role of DNA methylation in cancer development. Folia Histochem. Cytobiol., 2006, 44(3), 143-154.
[30]
Robertson, K.D. DNA methylation and human disease. Nat. Rev. Genet., 2005, 6(8), 597-610.
[31]
Jin, B.; Robertson, K.D. DNA methyltransferases, DNA damage repair, and cancer. Adv. Exp. Med. Biol., 2013, 754, 3-29.
[32]
Poomipark, N.; Flatley, J.E.; Hill, M.H.; Mangnall, B.; Azar, E.; Grabowski, P. Methyl Donor Status Influences DNMT Expression and Global DNA Methylation in Cervical Cancer Cells. Asian Pac. J. Cancer Prev., 2016, 17(7), 3213-3222.
[33]
Poomipark, N.; Flatley, J.E.; Hill, M.H.; Mangnall, B.; Azar, E.; Grabowski, P.; Powers, H.J. Epigenetics and miRNA as predictive markers and targets for lung cancer chemotherapy. Cancer Biol. Ther., 2015, 16(7), 1056-1070.
[34]
Sun, H.; Wang, G.; Peng, Y.; Zeng, Y.; Zhu, Q.N.; Li, T.L.; Cai, J.Q.; Zhou, H.H.; Zhu, Y.S. H19 lncRNA mediates 17beta-estradiol-induced cell proliferation in MCF-7 breast cancer cells. Oncol. Rep., 2015, 33(6), 3045-3052.
[35]
Hayes, E.L.; Lewis-Wambi, J.S. Mechanisms of endocrine resistance in breast cancer: an overview of the proposed roles of noncoding RNA. Breast Cancer Res., 2015, 17, 40.
[36]
Pickard, M.R.; Williams, G.T. Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for chemotherapy. Breast Cancer Res. Treat., 2014, 145(2), 359-370.
[37]
Liu, Y.; Sharma, S.; Watabe, K. Roles of lncRNA in breast cancer. Front. Biosci., 2015, 7, 94-108.
[38]
Yang, F.; Lyu, S.; Dong, S.; Liu, Y.; Zhang, X.; Wang, O. Expression profile analysis of long noncoding RNA in HER-2-enriched subtype breast cancer by next-generation sequencing and bioinformatics. OncoTargets Ther., 2016, 9, 761-772.
[39]
Denis, H.; Ndlovu, M.N.; Fuks, F. Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep., 2011, 12(7), 647-656.
[40]
Zhou, W.; Jiang, Z.; Liu, N.; Xu, F.; Wen, P.; Liu, Y.; Zhong, W.; Song, X.; Chang, X.; Zhang, X.; Wei, G. Down-regulation of CXCL12 mRNA expression by promoter hypermethylation and its association with metastatic progression in human breast carcinomas. J. Cancer Res. Clin. Oncol., 2009, 135(1), 91-102.
[41]
Dou, S.; Yao, Y.D.; Yang, X.Z.; Sun, T.M.; Mao, C.Q.; Song, E.W.; Wang, J. Anti-Her2 single-chain antibody mediated DNMTs-siRNA delivery for targeted breast cancer therapy. J. Control. Release, 2012, 161(3), 875-883.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 1
Year: 2019
Page: [74 - 80]
Pages: 7
DOI: 10.2174/1568009618666180709163718

Article Metrics

PDF: 26
HTML: 8