Conjugation of Phthalocyanine Photosensitizer with Poly(amidoamine) Dendrimer: Improved Solubility, Disaggregation and Photoactivity Against HepG2 Cells

Author(s): Zhou Jiang, Jiqing Ye, Jingyi Yang, Jian Wang*, Lee Jia*, Rodney JY Ho.

Journal Name: Current Cancer Drug Targets

Volume 19 , Issue 4 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: To improve solubility and to reduce aggregation, ZnPcC4 was conjugated to a third-generation poly-amidoamine dendrimer with amino end group (G3-PAMAM-NH2), which acts as a novel photodynamic therapy (PDT) drug carrier system.

Methods: The phthalocyanines were synthesized by construction reaction. The nano drug was obtained from the conjugation of ZnPcC4 to G3-PAMAM-NH2, using EDC and NHS as coupling agents. The ZnPcC4@G3-PAMAM-NH2 conjugation was characterized by UV-Vis and MS. The 1O2 quantum yield of ZnPcC4@G3-PAMAM-NH2 in water was measured by the chemiluminescence method. The in vitro PDT responses of the studied photosensitizers were studied in hepatocellular carcinoma cell line HepG2 by MTT assay.

Results: At ZnPcC4/G3-PAMAM-NH2 raw ratio of 100/1, the ZnPcC4 conjugate had improved solubility and reduced aggregation tendency in aqueous solution. At this optimum molar ratio, ZnPcC4- G3-PAMAM-NH2 inhibited HepG2 cells, with a half-maximal inhibitory concentration of 1.67 µg/mL upon infrared light exposure. The controls, including dark conditions, or media as well as G3-PAMAM-NH2 exposure, exhibited no inhibitory response.

Conclusion: The conjugation of phthalocyanine photosensitizer ZnPcC4 to poly-amidoamine dendrimer G3-PAMAM-NH2 improved the PDT outcomes, in which the optimized binding ratio of ZnPcC4 to G3-PAMAM-NH2 was 6:1.

Keywords: Poly(amidoamine) dendrimer, tetra-carboxyl phthalocyaninato zinc, HepG2 cells, photodynamic therapy, reactive oxygen species, hepatocellular carcinoma.

Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 19
ISSUE: 4
Year: 2019
Page: [312 - 320]
Pages: 9
DOI: 10.2174/1568009618666180706164046
Price: $58

Article Metrics

PDF: 11