Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Porous Inorganic and Hybrid Systems for Drug Delivery: Future Promise in Combatting Drug Resistance and Translation to Botanical Applications

Author(s): Junling Guo, Bruno D. Mattos, Blaise L. Tardy, Vanessa M. Moody, Gao Xiao, Hirotaka Ejima, Jiwei Cui*, Kang Liang* and Joseph J. Richardson*

Volume 26, Issue 33, 2019

Page: [6107 - 6131] Pages: 25

DOI: 10.2174/0929867325666180706111909

Price: $65

Abstract

Background: Porous micro- and nanoparticles have the capacity to encapsulate a large quantity of therapeutics, making them promising delivery vehicles for a variety of applications. This review aims to highlight the latest development of inorganic and hybrid (inorganic/ organic) particles for drug delivery with an additional emphasis on combatting drug resistant cancer. We go one step further and discuss delivery applications beyond medicinal delivery, as there is generally a translation from medicinal delivery to botanic delivery after a short lag time.

Methods: We undertook a search of relevant peer-reviewed publications. The quality of the relevant papers was appraised using standard tools. The characteristics of the papers are described herein, and the relevant material and therapeutic properties are discussed.

Results: We discuss 4 classes of porous particles in terms of drug delivery and theranostics. We specifically focus on silica, calcium carbonate, metal-phenolic network, and metalorganic framework particles. Other relevant biomedically relevant applications are discussed and we highlight outstanding therapeutic results in the relevant literature.

Conclusion: The findings of this review confirm the importance of studying and utilizing porous particles for therapeutic delivery. Moreover, we show that the properties of porous particles that make them promising for medicinal drug delivery also make them promising candidates for agro-industrial applications.

Keywords: Nanomedicine, drug delivery, porous particles, hybrid, botanic delivery, inorganic.

[1]
Cui, J.; Richardson, J.J.; Björnmalm, M.; Faria, M.; Caruso, F. Nanoengineered templated polymer particles: Navigating the biological realm. Acc. Chem. Res., 2016, 49(6), 1139-1148.
[http://dx.doi.org/10.1021/acs.accounts.6b00088] [PMID: 27203418]
[2]
Volodkin, D.V.; Petrov, A.I.; Prevot, M.; Sukhorukov, G.B. Matrix polyelectrolyte microcapsules: New system for macromolecule encapsulation. Langmuir, 2004, 20(8), 3398-3406.
[http://dx.doi.org/10.1021/la036177z] [PMID: 15875874]
[3]
Maleki Dizaj, S.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K.; Lotfipour, F. Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin. Drug Deliv., 2015, 12(10), 1649-1660.
[http://dx.doi.org/10.1517/17425247.2015.1049530] [PMID: 26005036]
[4]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol., 2010, 7(11), 653-664.
[http://dx.doi.org/10.1038/nrclinonc.2010.139] [PMID: 20838415]
[5]
Kong, F.; Zhang, H.; Zhang, X.; Liu, D.; Chen, D.; Zhang, W.; Zhang, L.; Santos, H.A.; Hai, M. Biodegradable Photothermal and pH Responsive Calcium Carbonate@Phospholipid@Acetalated Dextran Hybrid Platform for Advancing Biomedical Applications. Adv. Funct. Mater., 2016, 26(34), 6158-6169.
[http://dx.doi.org/10.1002/adfm.201602715]
[6]
Venkatraman, S. Has nanomedicine lived up to its promise? Nanotechnology, 2014, 25(37)372501
[http://dx.doi.org/10.1088/0957-4484/25/37/372501] [PMID: 25148691]
[7]
Park, K. Drug delivery of the future: Chasing the invisible gorilla. J. Control. Release, 2016, 240, 2-8.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.048] [PMID: 26519857]
[8]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[9]
Miller, G.; van Schaik, D.; Adelaide, R. Nanotechnology in Food and Agriculture; Radio Adelaide, 2008.
[10]
González-Melendi, P.; Fernández-Pacheco, R.; Coronado, M.J.; Corredor, E.; Testillano, P.S.; Risueño, M.C.; Marquina, C.; Ibarra, M.R.; Rubiales, D.; Pérez-de-Luque, A. Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann. Bot., 2008, 101(1), 187-195.
[http://dx.doi.org/10.1093/aob/mcm283] [PMID: 17998213]
[11]
Davis, M.E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891), 813-821.
[http://dx.doi.org/10.1038/nature00785] [PMID: 12075343]
[12]
Biswas, A.; Bayer, I.S.; Biris, A.S.; Wang, T.; Dervishi, E.; Faupel, F. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv. Colloid Interface Sci., 2012, 170(1-2), 2-27.
[http://dx.doi.org/10.1016/j.cis.2011.11.001] [PMID: 22154364]
[13]
Roth, W.J.; Nachtigall, P.; Morris, R.E.; Wheatley, P.S.; Seymour, V.R.; Ashbrook, S.E.; Chlubná, P.; Grajciar, L.; Položij, M.; Zukal, A.; Shvets, O.; Cejka, J. A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem., 2013, 5(7), 628-633.
[http://dx.doi.org/10.1038/nchem.1662] [PMID: 23787755]
[14]
He, Q.; Shi, J.; Zhao, J.; Chen, Y.; Chen, F. Bottom-up tailoring of nonionic surfactant-templated mesoporous silica nanomaterials by a novel composite liquid crystal templating mechanism. J. Mater. Chem., 2009, 19(36), 6498-6503.
[http://dx.doi.org/10.1039/b907266g]
[15]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science, 1998, 279(5350), 548-552.
[http://dx.doi.org/10.1126/science.279.5350.548] [PMID: 9438845]
[16]
Sukhorukov, G.B.; Volodkin, D.V.; Günther, A.M.; Petrov, A.I.; Shenoy, D.B.; Möhwald, H. Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. J. Mater. Chem., 2004, 14(14), 2073-2081.
[http://dx.doi.org/10.1039/B402617A]
[17]
Ejima, H.; Richardson, J.J.; Caruso, F. Phenolic film engineering for template-mediated microcapsule preparation. Polym. J., 2014, 46(8), 452.
[http://dx.doi.org/10.1038/pj.2014.32]
[18]
Ejima, H.; Richardson, J.J.; Caruso, F. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces. Nano Today, 2017, 12, 136-148.
[http://dx.doi.org/10.1016/j.nantod.2016.12.012]
[19]
Chu, Y.; Hou, J.; Boyer, C.; Richardson, J.J.; Liang, K.; Xu, J. Biomimetic synthesis of coordination network materials: Recent advances in MOFs and MPNs. Applied Materials Today, 2018, 10, 93-105.
[http://dx.doi.org/10.1016/j.apmt.2017.12.009]
[20]
Li, Z.; Barnes, J.C.; Bosoy, A.; Stoddart, J.F.; Zink, J.I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev., 2012, 41(7), 2590-2605.
[http://dx.doi.org/10.1039/c1cs15246g] [PMID: 22216418]
[21]
Möller, K.; Bein, T. Talented mesoporous silica nanoparticles. Chem. Mater., 2017, 29(1), 371-388.
[http://dx.doi.org/10.1021/acs.chemmater.6b03629]
[22]
Wang, Y.; Caruso, F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation. Chem. Mater., 2005, 17(5), 953-961.
[http://dx.doi.org/10.1021/cm0483137]
[23]
Wang, Y.; Yu, A.; Caruso, F. Nanoporous polyelectrolyte spheres prepared by sequentially coating sacrificial mesoporous silica spheres. Angew. Chem. Int. Ed. Engl., 2005, 44(19), 2888-2892.
[http://dx.doi.org/10.1002/anie.200462135] [PMID: 15818632]
[24]
He, Q.; Shi, J. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem., 2011, 21(16), 5845-5855.
[http://dx.doi.org/10.1039/c0jm03851b]
[25]
Wang, Y.; Angelatos, A.S.; Dunstan, D.E.; Caruso, F. Infiltration of macromolecules into nanoporous silica particles. Macromolecules, 2007, 40(21), 7594-7600.
[http://dx.doi.org/10.1021/ma071125s]
[26]
He, Q.; Zhang, Z.; Gao, F.; Li, Y.; Shi, J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small, 2011, 7(2), 271-280.
[http://dx.doi.org/10.1002/smll.201001459] [PMID: 21213393]
[27]
Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater., 2014, 26(1), 435-451.
[http://dx.doi.org/10.1021/cm402592t]
[28]
Ashley, C.E.; Carnes, E.C.; Phillips, G.K.; Padilla, D.; Durfee, P.N.; Brown, P.A.; Hanna, T.N.; Liu, J.; Phillips, B.; Carter, M.B.; Carroll, N.J.; Jiang, X.; Dunphy, D.R.; Willman, C.L.; Petsev, D.N.; Evans, D.G.; Parikh, A.N.; Chackerian, B.; Wharton, W.; Peabody, D.S.; Brinker, C.J. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater., 2011, 10(5), 389-397.
[http://dx.doi.org/10.1038/nmat2992] [PMID: 21499315]
[29]
Giri, S.; Trewyn, B.G.; Stellmaker, M.P.; Lin, V.S.Y. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem. Int. Ed. Engl., 2005, 44(32), 5038-5044.
[http://dx.doi.org/10.1002/anie.200501819] [PMID: 16038000]
[30]
Luo, Z.; Cai, K.; Hu, Y.; Zhao, L.; Liu, P.; Duan, L.; Yang, W. Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery. Angew. Chem. Int. Ed. Engl., 2011, 50(3), 640-643.
[http://dx.doi.org/10.1002/anie.201005061] [PMID: 21226142]
[31]
Chen, C.; Geng, J.; Pu, F.; Yang, X.; Ren, J.; Qu, X. Polyvalent nucleic acid/mesoporous silica nanoparticle conjugates: dual stimuli-responsive vehicles for intracellular drug delivery. Angew. Chem. Int. Ed. Engl., 2011, 50(4), 882-886.
[http://dx.doi.org/10.1002/anie.201005471] [PMID: 21246683]
[32]
Climent, E.; Martínez-Máñez, R.; Sancenón, F.; Marcos, M.D.; Soto, J.; Maquieira, A.; Amorós, P. Controlled delivery using oligonucleotide-capped mesoporous silica nanoparticles. Angew. Chem. Int. Ed. Engl., 2010, 49(40), 7281-7283.
[http://dx.doi.org/10.1002/anie.201001847] [PMID: 20737526]
[33]
Chang, Y.T.; Liao, P.Y.; Sheu, H.S.; Tseng, Y.J.; Cheng, F.Y.; Yeh, C.S. Near-infrared light-responsive intracellular drug and siRNA release using au nanoensembles with oligonucleotide-capped silica shell. Adv. Mater., 2012, 24(25), 3309-3314.
[http://dx.doi.org/10.1002/adma.201200785] [PMID: 22648937]
[34]
Schlossbauer, A.; Warncke, S.; Gramlich, P.M.; Kecht, J.; Manetto, A.; Carell, T.; Bein, T. A programmable DNA-based molecular valve for colloidal mesoporous silica. Angew. Chem. Int. Ed. Engl., 2010, 49(28), 4734-4737.
[http://dx.doi.org/10.1002/anie.201000827] [PMID: 20540129]
[35]
Zhang, P.; Cheng, F.; Zhou, R.; Cao, J.; Li, J.; Burda, C.; Min, Q.; Zhu, J.J. DNA-hybrid-gated multifunctional mesoporous silica nanocarriers for dual-targeted and microRNA-responsive controlled drug delivery. Angew. Chem. Int. Ed. Engl., 2014, 53(9), 2371-2375.
[http://dx.doi.org/10.1002/anie.201308920] [PMID: 24470397]
[36]
Du, L.; Liao, S.; Khatib, H.A.; Stoddart, J.F.; Zink, J.I. Controlled-access hollow mechanized silica nanocontainers. J. Am. Chem. Soc., 2009, 131(42), 15136-15142.
[http://dx.doi.org/10.1021/ja904982j] [PMID: 19799420]
[37]
Zhang, Q.; Liu, F.; Nguyen, K.T.; Ma, X.; Wang, X.; Xing, B.; Zhao, Y. Multifunctional mesoporous silica nanoparticles for cancer‐targeted and controlled drug delivery. Adv. Funct. Mater., 2012, 22(24), 5144-5156.
[http://dx.doi.org/10.1002/adfm.201201316]
[38]
You, Y-Z.; Kalebaila, K.K.; Brock, S.L.; Oupicky, D. Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. Chem. Mater., 2008, 20(10), 3354-3359.
[http://dx.doi.org/10.1021/cm703363w]
[39]
Liu, R.; Zhao, X.; Wu, T.; Feng, P. Tunable redox-responsive hybrid nanogated ensembles. J. Am. Chem. Soc., 2008, 130(44), 14418-14419.
[http://dx.doi.org/10.1021/ja8060886] [PMID: 18841893]
[40]
Chang, B.; Chen, D.; Wang, Y.; Chen, Y.; Jiao, Y.; Sha, X.; Yang, W. Bioresponsive controlled drug release based on mesoporous silica nanoparticles coated with reductively sheddable polymer shell. Chem. Mater., 2013, 25(4), 574-585.
[http://dx.doi.org/10.1021/cm3037197]
[41]
de la Torre, C.; Casanova, I.; Acosta, G.; Coll, C.; Moreno, M.J.; Albericio, F.; Aznar, E.; Mangues, R.; Royo, M.; Sancenón, F. Gated mesoporous silica nanoparticles using a double‐role circular peptide for the controlled and target‐preferential release of doxorubicin in CXCR4‐expresing lymphoma cells. Adv. Funct. Mater., 2015, 25(5), 687-695.
[http://dx.doi.org/10.1002/adfm.201403822]
[42]
Park, C.; Yang, B.J.; Jeong, K.B.; Kim, C.B.; Lee, S.; Ku, B-C. Signal-Induced Release of Guests from a Photolatent Metal-Phenolic Supramolecular Cage and Its Hybrid Assemblies. Angew. Chem. Int. Ed. Engl., 2017, 56(20), 5485-5489.
[http://dx.doi.org/10.1002/anie.201701152] [PMID: 28334479]
[43]
Guo, J.; Ping, Y.; Ejima, H.; Alt, K.; Meissner, M.; Richardson, J.J.; Yan, Y.; Peter, K.; von Elverfeldt, D.; Hagemeyer, C.E.; Caruso, F. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem. Int. Ed. Engl., 2014, 53(22), 5546-5551.
[http://dx.doi.org/10.1002/anie.201311136] [PMID: 24700671]
[44]
Ma, X.; Zhao, Y. Biomedical applications of supramolecular systems based on host–guest interactions. Chem. Rev., 2015, 115(15), 7794-7839.
[http://dx.doi.org/10.1021/cr500392w] [PMID: 25415447]
[45]
Lu, J.; Choi, E.; Tamanoi, F.; Zink, J.I. Light-activated nanoimpeller-controlled drug release in cancer cells. Small, 2008, 4(4), 421-426.
[http://dx.doi.org/10.1002/smll.200700903] [PMID: 18383576]
[46]
Méndez, J.; Monteagudo, A.; Griebenow, K. Stimulus-responsive controlled release system by covalent immobilization of an enzyme into mesoporous silica nanoparticles. Bioconjug. Chem., 2012, 23(4), 698-704.
[http://dx.doi.org/10.1021/bc200301a] [PMID: 22375899]
[47]
Fang, W.; Yang, J.; Gong, J.; Zheng, N. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv. Funct. Mater., 2012, 22(4), 842-848.
[http://dx.doi.org/10.1002/adfm.201101960]
[48]
Gao, C.; Zheng, H.; Xing, L.; Shu, M.; Che, S. Designable coordination bonding in mesopores as a pH-responsive release system. Chem. Mater., 2010, 22(19), 5437-5444.
[http://dx.doi.org/10.1021/cm100667u]
[49]
Cui, J.; De Rose, R.; Alt, K.; Alcantara, S.; Paterson, B.M.; Liang, K.; Hu, M.; Richardson, J.J.; Yan, Y.; Jeffery, C.M.; Price, R.I.; Peter, K.; Hagemeyer, C.E.; Donnelly, P.S.; Kent, S.J.; Caruso, F. Engineering poly(ethylene glycol) particles for improved biodistribution. ACS Nano, 2015, 9(2), 1571-1580.
[http://dx.doi.org/10.1021/nn5061578] [PMID: 25712853]
[50]
Wang, Y.; Caruso, F. Nanoporous protein particles through templating mesoporous silica spheres. Adv. Mater., 2006, 18(6), 795-800.
[http://dx.doi.org/10.1002/adma.200501901]
[51]
Cui, J. Probing bio-nano interactions with templated polymer particles. Chem, 2017, 2(5), 606-607.
[http://dx.doi.org/10.1016/j.chempr.2017.04.010]
[52]
Cui, J.; Björnmalm, M.; Liang, K.; Xu, C.; Best, J.P.; Zhang, X.; Caruso, F. Super-soft hydrogel particles with tunable elasticity in a microfluidic blood capillary model. Adv. Mater., 2014, 26(43), 7295-7299.
[http://dx.doi.org/10.1002/adma.201402753] [PMID: 25209733]
[53]
Cui, J.; De Rose, R.; Best, J.P.; Johnston, A.P.; Alcantara, S.; Liang, K.; Such, G.K.; Kent, S.J.; Caruso, F. Mechanically tunable, self-adjuvanting nanoengineered polypeptide particles. Adv. Mater., 2013, 25(25), 3468-3472.
[http://dx.doi.org/10.1002/adma.201300981] [PMID: 23661596]
[54]
Cui, J.; Yan, Y.; Wang, Y.; Caruso, F. Templated assembly of pH‐labile polymer‐drug particles for intracellular drug delivery. Adv. Funct. Mater., 2012, 22(22), 4718-4723.
[http://dx.doi.org/10.1002/adfm.201201191]
[55]
Waldbusser, G.G.; Hales, B.; Langdon, C.J.; Haley, B.A.; Schrader, P.; Brunner, E.L.; Gray, M.W.; Miller, C.A.; Gimenez, I. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Chang., 2015, 5(3), 273-280.
[http://dx.doi.org/10.1038/nclimate2479]
[56]
Lee, J.A.; Kim, M.K.; Kim, H-M.; Lee, J.K.; Jeong, J.; Kim, Y-R.; Oh, J-M.; Choi, S-J. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices. Int. J. Nanomedicine, 2015, 10, 2273-2293.
[http://dx.doi.org/ 10.2147/IJN.S79403] [PMID: 25848250]
[57]
Richardson, J.J.; Maina, J.W.; Ejima, H.; Hu, M.; Guo, J.; Choy, M.Y.; Gunawan, S.T.; Lybaert, L.; Hagemeyer, C.E.; De Geest, B.G.; Caruso, F. Versatile loading of diverse cargo into functional polymer capsules. Adv. Sci. (Weinh.), 2015, 2(1-2)1400007
[http://dx.doi.org/10.1002/advs.201400007] [PMID: 27980899]
[58]
Som, A.; Raliya, R.; Tian, L.; Akers, W.; Ippolito, J.E.; Singamaneni, S.; Biswas, P.; Achilefu, S. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo. Nanoscale, 2016, 8(25), 12639-12647.
[http://dx.doi.org/10.1039/C5NR06162H] [PMID: 26745389]
[59]
Bo-Linn, G.W.; Davis, G.R.; Buddrus, D.J.; Morawski, S.G.; Santa Ana, C.; Fordtran, J.S. An evaluation of the importance of gastric acid secretion in the absorption of dietary calcium. J. Clin. Invest., 1984, 73(3), 640-647.
[http://dx.doi.org/10.1172/JCI111254] [PMID: 6707197]
[60]
Volodkin, D.V.; Larionova, N.I.; Sukhorukov, G.B. Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules, 2004, 5(5), 1962-1972.
[http://dx.doi.org/10.1021/bm049669e] [PMID: 15360312]
[61]
Mohd Abd Ghafar, S.L.; Hussein, M.Z.; Abu Bakar Zakaria, Z. Synthesis and characterization of cockle shell-based calcium carbonate aragonite polymorph nanoparticles with surface functionalization. Journal of Nanoparticles, 2017, 2017, 12.
[http://dx.doi.org/ 10.1155/2017/8196172]
[62]
Render, D.; Samuel, T.; King, H.; Vig, M.; Jeelani, S.; Babu, R. J.; Rangari, V. Biomaterial-Derived Calcium Carbonate Nanoparticles for Enteric Drug Delivery. Journal of Nanomaterials,2016 , 2016.
[http://dx.doi.org/10.1155/2016/3170248]
[63]
Zhang, L.; Zhu, W.; Lin, Q.; Han, J.; Jiang, L.; Zhang, Y. Hydroxypropyl-β-cyclodextrin functionalized calcium carbonate microparticles as a potential carrier for enhancing oral delivery of water-insoluble drugs. Int. J. Nanomedicine, 2015, 10, 3291-3302.
[http://dx.doi.org/10.2147/IJN.S78814] [PMID: 25995635]
[64]
Richardson, J.J.; Björnmalm, M.; Caruso, F. Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science, 2015, 348(6233)aaa2491
[http://dx.doi.org/10.1126/science.aaa2491] [PMID: 25908826]
[65]
Richardson, J.J.; Cui, J.; Björnmalm, M.; Braunger, J.A.; Ejima, H.; Caruso, F. Innovation in layer-by-layer assembly. Chem. Rev., 2016, 116(23), 14828-14867.
[http://dx.doi.org/10.1021/acs.chemrev.6b00627] [PMID: 27960272]
[66]
Svenskaya, Y.; Parakhonskiy, B.; Haase, A.; Atkin, V.; Lukyanets, E.; Gorin, D.; Antolini, R. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophys. Chem., 2013, 182, 11-15.
[http://dx.doi.org/10.1016/j.bpc.2013.07.006] [PMID: 23932207]
[67]
Wang, C-Q.; Gong, M-Q.; Wu, J-L.; Zhuo, R-X.; Cheng, S-X. Dual-functionalized calcium carbonate based gene delivery system for efficient gene delivery. RSC Advances, 2014, 4(73), 38623-38629.
[http://dx.doi.org/10.1039/C4RA05468G]
[68]
Wyman, T.B.; Nicol, F.; Zelphati, O.; Scaria, P.V.; Plank, C.; Szoka, F.C. Jr Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 1997, 36(10), 3008-3017.
[http://dx.doi.org/10.1021/bi9618474] [PMID: 9062132]
[69]
Richardson, J.J.; Choy, M.Y.; Guo, J.; Liang, K.; Alt, K.; Ping, Y.; Cui, J.; Law, L.S.; Hagemeyer, C.E.; Caruso, F. Polymer capsules for plaque-targeted in vivo delivery. Adv. Mater., 2016, 28(35), 7703-7707.
[http://dx.doi.org/10.1002/adma.201601754] [PMID: 27358022]
[70]
Ejima, H.; Richardson, J.J.; Liang, K.; Best, J.P.; van Koeverden, M.P.; Such, G.K.; Cui, J.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science, 2013, 341(6142), 154-157.
[http://dx.doi.org/10.1126/science.1237265] [PMID: 23846899]
[71]
Guo, J.; Richardson, J.J.; Besford, Q.A.; Christofferson, A.J.; Dai, Y.; Ong, C.W.; Tardy, B.L.; Liang, K.; Choi, G.H.; Cui, J.; Yoo, P.J.; Yarovsky, I.; Caruso, F. Influence of ionic strength on the deposition of metal-phenolic networks. Langmuir, 2017, 33(40), 10616-10622.
[http://dx.doi.org/10.1021/acs.langmuir.7b02692] [PMID: 28953397]
[72]
Wei, Q.; Achazi, K.; Liebe, H.; Schulz, A.; Noeske, P.L.M.; Grunwald, I.; Haag, R. Mussel-inspired dendritic polymers as universal multifunctional coatings. Angew. Chem. Int. Ed. Engl., 2014, 53(43), 11650-11655.
[http://dx.doi.org/10.1002/anie.201407113] [PMID: 25200129]
[73]
Yang, L.; Han, L.; Ren, J.; Wei, H.; Jia, L. Coating process and stability of metal-polyphenol film. Colloids Surf. A Physicochem. Eng. Asp., 2015, 484, 197-205.
[http://dx.doi.org/10.1016/j.colsurfa.2015.07.061]
[74]
Guo, J.; Wang, X.; Henstridge, D.C.; Richardson, J.J.; Cui, J.; Sharma, A.; Febbraio, M.A.; Peter, K.; de Haan, J.B.; Hagemeyer, C.E.; Caruso, F. Nanoporous metal-phenolic particles as ultrasound imaging probes for hydrogen peroxide. Adv. Healthc. Mater., 2015, 4(14), 2170-2175.
[http://dx.doi.org/10.1002/adhm.201500528] [PMID: 26331367]
[75]
Dai, Y.; Guo, J.; Wang, T.Y.; Ju, Y.; Mitchell, A.J.; Bonnard, T.; Cui, J.; Richardson, J.J.; Hagemeyer, C.E.; Alt, K.; Caruso, F. Self-assembled nanoparticles from phenolic derivatives for cancer therapy. Adv. Healthc. Mater., 2017, 6(16)
[http://dx.doi.org/10.1002/adhm.201700467] [PMID: 28509442]
[76]
Liu, F.; He, X.; Chen, H.; Zhang, J.; Zhang, H.; Wang, Z. Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications. Nat. Commun., 2015, 6, 8003.
[http://dx.doi.org/10.1038/ncomms9003] [PMID: 26245151]
[77]
Guo, J.; Tardy, B.L.; Christofferson, A.J.; Dai, Y.; Richardson, J.J.; Zhu, W.; Hu, M.; Ju, Y.; Cui, J.; Dagastine, R.R.; Yarovsky, I.; Caruso, F. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat. Nanotechnol., 2016, 11(12), 1105-1111.
[http://dx.doi.org/10.1038/nnano.2016.172] [PMID: 27723730]
[78]
Park, J.H.; Kim, K.; Lee, J.; Choi, J.Y.; Hong, D.; Yang, S.H.; Caruso, F.; Lee, Y.; Choi, I.S. A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation. Angew. Chem. Int. Ed. Engl., 2014, 53(46), 12420-12425.
[http://dx.doi.org/10.1002/anie.201484661] [PMID: 25139382]
[79]
Park, J.H.; Yang, S.H.; Lee, J.; Ko, E.H.; Hong, D.; Choi, I.S. Nanocoating of single cells: from maintenance of cell viability to manipulation of cellular activities. Adv. Mater., 2014, 26(13), 2001-2010.
[http://dx.doi.org/10.1002/adma.201304568] [PMID: 24452932]
[80]
Murakami, A. Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents. Arch. Biochem. Biophys., 2014, 557, 3-10.
[http://dx.doi.org/10.1016/j.abb.2014.04.018] [PMID: 24814373]
[81]
Watson, R.R.; Preedy, V.R.; Zibadi, S. Polyphenols in human health and disease; Academic Press, 2013.
[82]
Guo, J.; Wang, X.; Liao, X.; Zhanga, W.; Shi, B. Skin collagen fiber-biotemplated synthesis of size-tunable silver nanoparticle-embedded hierarchical intertextures with lightweight and highly efficient microwave absorption properties. J. Phys. Chem. C, 2012, 116(14), 8188-8195.
[http://dx.doi.org/10.1021/jp300048e]
[83]
Guo, J.; Huang, X.; Wu, C.; Liao, X.; Shi, B. The further investigation of tanning mechanisms of typical tannages by ultraviolet-visible and near infrared diffused reflectance spectrophotometry. J. Am. Leather Chem. Assoc., 2011, 106(7), 226-231.
[84]
Liang, H.; Li, J.; He, Y.; Xu, W.; Liu, S.; Li, Y.; Chen, Y.; Li, B. Engineering multifunctional films based on metal-phenolic networks for rational pH-responsive delivery and cell imaging. ACS Biomater. Sci. Eng., 2016, 2(3), 317-325.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00363]
[85]
Ping, Y.; Guo, J.; Ejima, H.; Chen, X.; Richardson, J.J.; Sun, H.; Caruso, F. pH-Responsive capsules engineered from metal-phenolic networks for anticancer drug delivery. Small, 2015, 11(17), 2032-2036.
[http://dx.doi.org/10.1002/smll.201403343] [PMID: 25556334]
[86]
Ju, Y.; Cui, J.; Sun, H.; Müllner, M.; Dai, Y.; Guo, J.; Bertleff-Zieschang, N.; Suma, T.; Richardson, J.J.; Caruso, F. Engineered metal-phenolic capsules show tunable targeted delivery to cancer cells. Biomacromolecules, 2016, 17(6), 2268-2276.
[http://dx.doi.org/10.1021/acs.biomac.6b00537] [PMID: 27249228]
[87]
Zhan, K.; Kim, C.; Sung, K.; Ejima, H.; Yoshie, N. Tunicate-inspired gallol polymers for underwater adhesive: a comparative study of catechol and gallol. Biomacromolecules, 2017, 18(9), 2959-2966.
[http://dx.doi.org/10.1021/acs.biomac.7b00921] [PMID: 28853566]
[88]
Kim, C.; Ejima, H.; Yoshie, N. Non-swellable self-healing polymer with long-term stability under seawater. RSC Advances, 2017, 7(31), 19288-19295.
[http://dx.doi.org/10.1039/C7RA01778B]
[89]
Ju, Y.; Dai, Q.; Cui, J.; Dai, Y.; Suma, T.; Richardson, J.J.; Caruso, F. Improving targeting of metal-phenolic capsules by the presence of protein coronas. ACS Appl. Mater. Interfaces, 2016, 8(35), 22914-22922.
[http://dx.doi.org/10.1021/acsami.6b07613] [PMID: 27560314]
[90]
Huang, H.; Li, P.; Liu, C.; Ma, H.; Huang, H.; Lin, Y.; Wang, C.; Yang, Y. pH-Responsive nanodrug encapsulated by tannic acid complex for controlled drug delivery. RSC Advances, 2017, 7(5), 2829-2835.
[http://dx.doi.org/10.1039/C6RA26936B]
[91]
Liang, H.; Zhou, B.; Li, J.; Xu, W.; Liu, S.; Li, Y.; Chen, Y.; Li, B. Supramolecular design of coordination bonding architecture on zein nanoparticles for pH-responsive anticancer drug delivery. Colloids Surf. B Biointerfaces, 2015, 136, 1224-1233.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.037] [PMID: 26613857]
[92]
Guo, J.; Sun, H.; Alt, K.; Tardy, B.L.; Richardson, J.J.; Suma, T.; Ejima, H.; Cui, J.; Hagemeyer, C.E.; Caruso, F. Boronate-phenolic network capsules with dual response to acidic ph and cis-diols. Adv. Healthc. Mater., 2015, 4(12), 1796-1801.
[http://dx.doi.org/10.1002/adhm.201500332] [PMID: 26088356]
[93]
Zheng, D-W.; Lei, Q.; Zhu, J-Y.; Fan, J-X.; Li, C-X.; Li, C.; Xu, Z.; Cheng, S-X.; Zhang, X-Z. Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy. Nano Lett., 2017, 17(1), 284-291.
[http://dx.doi.org/10.1021/acs.nanolett.6b04060] [PMID: 28027643]
[94]
Dai, Y.; Yang, D.; Ma, P.; Kang, X.; Zhang, X.; Li, C.; Hou, Z.; Cheng, Z.; Lin, J. Doxorubicin conjugated NaYF(4):Yb(3+)/Tm(3+) nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer. Biomaterials, 2012, 33(33), 8704-8713.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.029] [PMID: 22938822]
[95]
Zhou, H-C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev., 2014, 43(16), 5415-5418.
[http://dx.doi.org/10.1039/C4CS90059F] [PMID: 25011480]
[96]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149)1230444
[http://dx.doi.org/10.1126/science.1230444] [PMID: 23990564]
[97]
Shimizu, G.K.; Taylor, J.M.; Kim, S. Chemistry. Proton conduction with metal-organic frameworks. Science, 2013, 341(6144), 354-355.
[http://dx.doi.org/10.1126/science.1239872] [PMID: 23888028]
[98]
Deng, H.; Grunder, S.; Cordova, K.E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A.C.; Liu, Z.; Asahina, S. Large-pore apertures in a series of metal-organic frameworks. Science, 2012, 336(6084), 1018-1023.
[http://dx.doi.org/ 10.1126/science.1220131] [PMID: 22628651]
[99]
Bloch, E.D.; Queen, W.L.; Krishna, R.; Zadrozny, J.M.; Brown, C.M.; Long, J.R. Hydrocarbon separations in a metal-organic framework with open iron (II) coordination sites. Science, 2012, 335(6076), 1606-1610.
[http://dx.doi.org/ 10.1126/science.1217544]
[100]
Liang, K.; Ricco, R.; Doherty, C.M.; Styles, M.J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A.J.; Doonan, C.J.; Falcaro, P. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun., 2015, 6, 7240.
[http://dx.doi.org/10.1038/ncomms8240] [PMID: 26041070]
[101]
Smaldone, R.A.; Forgan, R.S.; Furukawa, H.; Gassensmith, J.J.; Slawin, A.M.; Yaghi, O.M.; Stoddart, J.F. Metal-organic frameworks from edible natural products. Angew. Chem. Int. Ed. Engl., 2010, 49(46), 8630-8634.
[http://dx.doi.org/10.1002/anie.201002343] [PMID: 20715239]
[102]
Wu, M.X.; Yang, Y.W. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater., 2017, 29(23)
[http://dx.doi.org/10.1002/adma.201606134] [PMID: 28370555]
[103]
Richardson, J.J.; Liang, K.; Lisi, F.; Björnmalm, M.; Faria, M.; Guo, J.; Falcaro, P. Controlling the growth of metal‐organic frameworks using different gravitational forces. Eur. J. Inorg. Chem., 2016, 2016(27), 4499-4504.
[http://dx.doi.org/10.1002/ejic.201600338]
[104]
Mustafa, A.K.; Gadalla, M.M.; Snyder, S.H. Signaling by gasotransmitters. Sci. Signal., 2009, 2(68), re2.
[http://dx.doi.org/10.1126/scisignal.268re2] [PMID: 19401594]
[105]
Rosselli, M.; Keller, P.J.; Dubey, R.K. Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum. Reprod. Update, 1998, 4(1), 3-24.
[http://dx.doi.org/10.1093/humupd/4.1.3] [PMID: 9622410]
[106]
Miller, M.R.; Megson, I.L. Recent developments in nitric oxide donor drugs. Br. J. Pharmacol., 2007, 151(3), 305-321.
[http://dx.doi.org/10.1038/sj.bjp.0707224] [PMID: 17401442]
[107]
Carmona, F.J.; Rojas, S.; Romão, C.C.; Navarro, J.A.R.; Barea, E.; Maldonado, C.R. One-pot preparation of a novel CO-releasing material based on a CO-releasing molecule@metal-organic framework system. Chem. Commun. (Camb.), 2017, 53(49), 6581-6584.
[http://dx.doi.org/10.1039/C7CC03605A] [PMID: 28574562]
[108]
Hinks, N.J.; McKinlay, A.C.; Xiao, B.; Wheatley, P.S.; Morris, R.E. Metal organic frameworks as NO delivery materials for biological applications. Microporous Mesoporous Mater., 2010, 129(3), 330-334.
[http://dx.doi.org/10.1016/j.micromeso.2009.04.031]
[109]
Diring, S.; Wang, D.O.; Kim, C.; Kondo, M.; Chen, Y.; Kitagawa, S.; Kamei, K.; Furukawa, S. Localized cell stimulation by nitric oxide using a photoactive porous coordination polymer platform. Nat. Commun., 2013, 4, 2684.
[http://dx.doi.org/10.1038/ncomms3684] [PMID: 24158008]
[110]
Fukuhara, K.; Kurihara, M.; Miyata, N. Photochemical generation of nitric oxide from 6-nitrobenzo[a]pyrene. J. Am. Chem. Soc., 2001, 123(36), 8662-8666.
[http://dx.doi.org/10.1021/ja0109038] [PMID: 11535070]
[111]
Diring, S.; Carné-Sánchez, A.; Zhang, J.; Ikemura, S.; Kim, C.; Inaba, H.; Kitagawa, S.; Furukawa, S. Light responsive metal-organic frameworks as controllable CO-releasing cell culture substrates. Chem. Sci. (Camb.), 2017, 8(3), 2381-2386.
[http://dx.doi.org/10.1039/C6SC04824B] [PMID: 28451343]
[112]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268.
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[113]
Tan, L-L.; Li, H.; Qiu, Y-C.; Chen, D-X.; Wang, X.; Pan, R-Y.; Wang, Y.; Zhang, S.X-A.; Wang, B.; Yang, Y-W. Stimuli-responsive metal-organic frameworks gated by pillar[5]arene supramolecular switches. Chem. Sci. (Camb.), 2015, 6(3), 1640-1644.
[http://dx.doi.org/10.1039/C4SC03749A] [PMID: 30154997]
[114]
Nagata, S.; Kokado, K.; Sada, K. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution. Chem. Commun. (Camb.), 2015, 51(41), 8614-8617.
[http://dx.doi.org/10.1039/C5CC02339D] [PMID: 25896867]
[115]
Khaletskaya, K.; Reboul, J.; Meilikhov, M.; Nakahama, M.; Diring, S.; Tsujimoto, M.; Isoda, S.; Kim, F.; Kamei, K.; Fischer, R.A.; Kitagawa, S.; Furukawa, S. Integration of porous coordination polymers and gold nanorods into core-shell mesoscopic composites toward light-induced molecular release. J. Am. Chem. Soc., 2013, 135(30), 10998-11005.
[http://dx.doi.org/10.1021/ja403108x] [PMID: 23672307]
[116]
Zhu, Y-D.; Chen, S-P.; Zhao, H.; Yang, Y.; Chen, X-Q.; Sun, J.; Fan, H-S.; Zhang, X-D. PPy@MIL-100 Nanoparticles as a pH- and Near-IR-Irradiation-Responsive Drug Carrier for Simultaneous Photothermal Therapy and Chemotherapy of Cancer Cells. ACS Appl. Mater. Interfaces, 2016, 8(50), 34209-34217.
[http://dx.doi.org/10.1021/acsami.6b11378] [PMID: 27998104]
[117]
Zhao, H-X.; Zou, Q.; Sun, S-K.; Yu, C.; Zhang, X.; Li, R-J.; Fu, Y-Y. Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug delivery. Chem. Sci. (Camb.), 2016, 7(8), 5294-5301.
[http://dx.doi.org/10.1039/C6SC01359G] [PMID: 30155180]
[118]
Ray Chowdhuri, A.; Bhattacharya, D.; Sahu, S.K. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans., 2016, 45(7), 2963-2973.
[http://dx.doi.org/10.1039/C5DT03736K] [PMID: 26754449]
[119]
Chowdhuri, A.R.; Singh, T.; Ghosh, S.K.; Sahu, S.K. Carbon dots embedded magnetic nanoparticles@ chitosan@ metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery. ACS Appl. Mater. Interfaces, 2016, 8(26), 16573-16583.
[http://dx.doi.org/10.1021/acsami.6b03988] [PMID: 27305490]
[120]
Selkoe, D.J. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev., 2001, 81(2), 741-766.
[http://dx.doi.org/10.1152/physrev.2001.81.2.741] [PMID: 11274343]
[121]
Naldini, L. Gene therapy returns to centre stage. Nature, 2015, 526(7573), 351-360.
[http://dx.doi.org/10.1038/nature15818] [PMID: 26469046]
[122]
Somia, N.; Verma, I.M. Gene therapy: trials and tribulations. Nat. Rev. Genet., 2000, 1(2), 91-99.
[http://dx.doi.org/10.1038/35038533] [PMID: 11253666]
[123]
He, C.; Lu, K.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc., 2014, 136(14), 5181-5184.
[http://dx.doi.org/10.1021/ja4098862] [PMID: 24669930]
[124]
Liu, W.L.; Yang, N.S.; Chen, Y.T.; Lirio, S.; Wu, C.Y.; Lin, C.H.; Huang, H.Y. Lipase-supported metal-organic framework bioreactor catalyzes warfarin synthesis. Chemistry, 2015, 21(1), 115-119.
[http://dx.doi.org/10.1002/chem.201405252] [PMID: 25384625]
[125]
Cao, Y.; Wu, Z.; Wang, T.; Xiao, Y.; Huo, Q.; Liu, Y. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification. Dalton Trans., 2016, 45(16), 6998-7003.
[http://dx.doi.org/10.1039/C6DT00677A] [PMID: 26988724]
[126]
Zhao, M.; Zhang, X.; Deng, C. Rational synthesis of novel recyclable Fe3O4@MOF nanocomposites for enzymatic digestion. Chem. Commun. (Camb.), 2015, 51(38), 8116-8119.
[http://dx.doi.org/10.1039/C5CC01908G] [PMID: 25869528]
[127]
Liu, W-L.; Lo, S-H.; Singco, B.; Yang, C-C.; Huang, H-Y.; Lin, C-H. Novel trypsin–FITC@ MOF bioreactor efficiently catalyzes protein digestion. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(7), 928-932.
[http://dx.doi.org/10.1039/c3tb00257h]
[128]
Lykourinou, V.; Chen, Y.; Wang, X-S.; Meng, L.; Hoang, T.; Ming, L-J.; Musselman, R.L.; Ma, S. Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. J. Am. Chem. Soc., 2011, 133(27), 10382-10385.
[http://dx.doi.org/10.1021/ja2038003] [PMID: 21682253]
[129]
Feng, D.; Liu, T-F.; Su, J.; Bosch, M.; Wei, Z.; Wan, W.; Yuan, D.; Chen, Y-P.; Wang, X.; Wang, K. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation; Texas A and M University College Station United States, 2015.
[http://dx.doi.org/10.1038/ncomms6979]
[130]
Kim, Y.; Yang, T.; Yun, G.; Ghasemian, M.B.; Koo, J.; Lee, E.; Cho, S.J.; Kim, K. Hydrolytic transformation of microporous metal-organic frameworks to hierarchical micro- and mesoporous MOFs. Angew. Chem. Int. Ed. Engl., 2015, 54(45), 13273-13278.
[http://dx.doi.org/10.1002/anie.201506391] [PMID: 26381062]
[131]
Shieh, F-K.; Wang, S-C.; Yen, C-I.; Wu, C-C.; Dutta, S.; Chou, L-Y.; Morabito, J.V.; Hu, P.; Hsu, M-H.; Wu, K.C-W.; Tsung, C.K. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. J. Am. Chem. Soc., 2015, 137(13), 4276-4279.
[http://dx.doi.org/10.1021/ja513058h] [PMID: 25781479]
[132]
Liang, K.; Wang, R.; Boutter, M.; Doherty, C.M.; Mulet, X.; Richardson, J.J. Biomimetic mineralization of metal-organic frameworks around polysaccharides. Chem. Commun. (Camb.), 2017, 53(7), 1249-1252.
[http://dx.doi.org/10.1039/C6CC09680H] [PMID: 28067353]
[133]
Liang, K.; Richardson, J.J.; Cui, J.; Caruso, F.; Doonan, C.J.; Falcaro, P. Metal–organic framework coatings as cytoprotective exoskeletons for living cells. Adv. Mater., 2016, 28(36), 7910-7914.
[http://dx.doi.org/10.1002/adma.201602335] [PMID: 27414706]
[134]
Liang, K.; Richardson, J.J.; Doonan, C.J.; Mulet, X.; Ju, Y.; Cui, J.; Caruso, F.; Falcaro, P. An Enzyme-coated metal-organic framework shell for synthetically adaptive cell survival. Angew. Chem. Int. Ed. Engl., 2017, 56(29), 8510-8515.
[http://dx.doi.org/10.1002/anie.201704120] [PMID: 28582605]
[135]
Liang, K.; Carbonell, C.; Styles, M.J.; Ricco, R.; Cui, J.; Richardson, J.J.; Maspoch, D.; Caruso, F.; Falcaro, P. Biomimetic replication of microscopic metal-organic framework patterns using printed protein patterns. Adv. Mater., 2015, 27(45), 7293-7298.
[http://dx.doi.org/10.1002/adma.201503167] [PMID: 26478451]
[136]
Richardson, J.J.; Liang, K. Nano‐biohybrids: in vivo synthesis of metal–organic frameworks inside living plants. Small, 2018, 14(3)
[http://dx.doi.org/ 10.1002/smll.201702958] [PMID: 29168918]
[137]
Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C-X.; Mitter, N.; Yu, C.; Middelberg, A.P. Nanoparticle vaccines. Vaccine, 2014, 32(3), 327-337.
[http://dx.doi.org/10.1016/j.vaccine.2013.11.069] [PMID: 24295808]
[138]
Zhang, Y.; Wang, F.; Ju, E.; Liu, Z.; Chen, Z.; Ren, J.; Qu, X. Metal‐organic‐framework‐based vaccine platforms for enhanced systemic immune and memory response. Adv. Funct. Mater., 2016, 26(35), 6454-6461.
[http://dx.doi.org/10.1002/adfm.201600650]
[139]
Alsaiari, S.K.; Patil, S.; Alyami, M.; Alamoudi, K. Aleisa, f.; Merzaban, J.; Li, M.; Khashab, N. M. Endosomal escape and delivery of crispr/cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J. Am. Chem. Soc., 2018, 140(1), 143-146.
[http://dx.doi.org/ 10.1021/jacs.7b11754] [PMID: 29272114]
[140]
Hu, C-M.J.; Zhang, L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol., 2012, 83(8), 1104-1111.
[http://dx.doi.org/10.1016/j.bcp.2012.01.008] [PMID: 22285912]
[141]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[142]
Chen, S.; Zhao, D.; Li, F.; Zhuo, R-X.; Cheng, S-X. Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy. RSC Advances, 2012, 2(5), 1820-1826.
[http://dx.doi.org/10.1039/c1ra00527h]
[143]
Shen, J.; He, Q.; Gao, Y.; Shi, J.; Li, Y. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism. Nanoscale, 2011, 3(10), 4314-4322.
[http://dx.doi.org/10.1039/c1nr10580a] [PMID: 21892492]
[144]
Meng, H.; Liong, M.; Xia, T.; Li, Z.; Ji, Z.; Zink, J.I.; Nel, A.E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 2010, 4(8), 4539-4550.
[http://dx.doi.org/10.1021/nn100690m] [PMID: 20731437]
[145]
Gao, Y.; Chen, Y.; Ji, X.; He, X.; Yin, Q.; Zhang, Z.; Shi, J.; Li, Y. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano, 2011, 5(12), 9788-9798.
[http://dx.doi.org/10.1021/nn2033105] [PMID: 22070571]
[146]
He, Q.; Gao, Y.; Zhang, L.; Zhang, Z.; Gao, F.; Ji, X.; Li, Y.; Shi, J. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials, 2011, 32(30), 7711-7720.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.066] [PMID: 21816467]
[147]
Pan, L.; Liu, J.; He, Q.; Wang, L.; Shi, J. Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials, 2013, 34(11), 2719-2730.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.040] [PMID: 23337327]
[148]
Wu, J-L.; Wang, C-Q.; Zhuo, R-X.; Cheng, S-X. Multi-drug delivery system based on alginate/calcium carbonate hybrid nanoparticles for combination chemotherapy. Colloids Surf. B Biointerfaces, 2014, 123, 498-505.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.047] [PMID: 25315499]
[149]
Gong, M-Q.; Wu, J-L.; Chen, B.; Zhuo, R-X.; Cheng, S-X. Self-assembled polymer/inorganic hybrid nanovesicles for multiple drug delivery to overcome drug resistance in cancer chemotherapy. Langmuir, 2015, 31(18), 5115-5122.
[http://dx.doi.org/10.1021/acs.langmuir.5b00542] [PMID: 25927163]
[150]
Chen, Q.; Xu, M.; Zheng, W.; Xu, T.; Deng, H.; Liu, J. Se/Ru-decorated porous metal-organic framework nanoparticles for the delivery of pooled sirnas to reversing multidrug resistance in taxol-resistant breast cancer cells. ACS Appl. Mater. Interfaces, 2017, 9(8), 6712-6724.
[http://dx.doi.org/10.1021/acsami.6b12792] [PMID: 28191840]
[151]
Lu, K.; He, C.; Lin, W. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc., 2014, 136(48), 16712-16715.
[http://dx.doi.org/10.1021/ja508679h] [PMID: 25407895]
[152]
Wang, P.; Lombi, E.; Zhao, F-J.; Kopittke, P.M. Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci., 2016, 21(8), 699-712.
[http://dx.doi.org/10.1016/j.tplants.2016.04.005] [PMID: 27130471]
[153]
Mattos, B.D.; Tardy, B.L.; Magalhães, W.L.E.; Rojas, O.J. Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems. J. Control. Release, 2017, 262, 139-150.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.025] [PMID: 28739450]
[154]
Michaud, M.A. Slow release fertilizer composition; Google Patents, 1982.
[155]
Scarfato, P.; Avallone, E.; Incarnato, L.; Di Maio, L. Development and evaluation of halloysite nanotube-based carrier for biocide activity in construction materials protection. Appl. Clay Sci., 2016, 132, 336-342.
[http://dx.doi.org/10.1016/j.clay.2016.06.027]
[156]
Tan, D.; Yuan, P.; Annabi-Bergaya, F.; Dong, F.; Liu, D.; He, H. A comparative study of tubular halloysite and platy kaolinite as carriers for the loading and release of the herbicide amitrole. Appl. Clay Sci., 2015, 114, 190-196.
[http://dx.doi.org/10.1016/j.clay.2015.05.024]
[157]
Chen, J.; Wang, W.; Xu, Y.; Zhang, X. Slow-release formulation of a new biological pesticide, pyoluteorin, with mesoporous silica. J. Agric. Food Chem., 2011, 59(1), 307-311.
[http://dx.doi.org/10.1021/jf103640t] [PMID: 21141897]
[158]
Popat, A.; Liu, J.; Hu, Q.; Kennedy, M.; Peters, B.; Lu, G.Q.; Qiao, S.Z. Adsorption and release of biocides with mesoporous silica nanoparticles. Nanoscale, 2012, 4(3), 970-975.
[http://dx.doi.org/10.1039/C2NR11691J] [PMID: 22200056]
[159]
Wanyika, H. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres. J. Nanopart. Res., 2013, 15(8), 1831.
[http://dx.doi.org/10.1007/s11051-013-1831-y]
[160]
Janatova, A.; Bernardos, A.; Smid, J.; Frankova, A.; Lhotka, M.; Kourimská, L.; Pulkrabek, J.; Kloucek, P. Long-term antifungal activity of volatile essential oil components released from mesoporous silica materials. Ind. Crops Prod., 2015, 67, 216-220.
[http://dx.doi.org/10.1016/j.indcrop.2015.01.019]
[161]
Yi, Z.; Hussain, H.I.; Feng, C.; Sun, D.; She, F.; Rookes, J.E.; Cahill, D.M.; Kong, L. Functionalized mesoporous silica nanoparticles with redox-responsive short-chain gatekeepers for agrochemical delivery. ACS Appl. Mater. Interfaces, 2015, 7(18), 9937-9946.
[http://dx.doi.org/10.1021/acsami.5b02131] [PMID: 25902154]
[162]
Wibowo, D.; Zhao, C-X.; Peters, B.C.; Middelberg, A.P. Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J. Agric. Food Chem., 2014, 62(52), 12504-12511.
[http://dx.doi.org/10.1021/jf504455x] [PMID: 25479362]
[163]
Bao, W.; Wang, J.; Wang, Q.; O’Hare, D.; Wan, Y. Layered Double Hydroxide Nanotransporter for Molecule Delivery to Intact Plant Cells. Sci. Rep., 2016, 6, 26738.
[http://dx.doi.org/10.1038/srep26738] [PMID: 27221055]
[164]
Torney, F.; Trewyn, B.G.; Lin, V.S.Y.; Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol., 2007, 2(5), 295-300.
[http://dx.doi.org/10.1038/nnano.2007.108] [PMID: 18654287]
[165]
Hom, C.; Lu, J.; Tamanoi, F. Silica nanoparticles as a delivery system for nucleic acid-based reagents. J. Mater. Chem., 2009, 19(35), 6308-6316.
[http://dx.doi.org/10.1039/b904197d] [PMID: 20740060]
[166]
Galbraith, D.W. Nanobiotechnology: silica breaks through in plants. Nat. Nanotechnol., 2007, 2(5), 272-273.
[http://dx.doi.org/10.1038/nnano.2007.118] [PMID: 18654282]
[167]
Wu, S-H.; Mou, C-Y.; Lin, H-P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev., 2013, 42(9), 3862-3875.
[http://dx.doi.org/10.1039/c3cs35405a] [PMID: 23403864]
[168]
Schwab, F.; Zhai, G.; Kern, M.; Turner, A.; Schnoor, J.L.; Wiesner, M.R. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants--Critical review. Nanotoxicology, 2016, 10(3), 257-278.
[http://dx.doi.org/ 10.3109/17435390.2015.1048326] [PMID: 26067571]
[169]
Hussain, H.I.; Yi, Z.; Rookes, J.E.; Kong, L.X.; Cahill, D.M. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J. Nanopart. Res., 2013, 15(6), 1676.
[http://dx.doi.org/10.1007/s11051-013-1676-4]
[170]
Barthlott, W.; Mail, M.; Bhushan, B.; Koch, K. Plant Surfaces: Structures and Functions for Biomimetic Innovations. Nano-Micro Lett., 2017, 9(2), 23.
[http://dx.doi.org/10.1007/s40820-016-0125-1] [PMID: 30464998]
[171]
Chang, F-P.; Kuang, L-Y.; Huang, C-A.; Jane, W-N.; Hung, Y.; Hsing, Y-C.; Mou, C-Y. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(39), 5279-5287.
[http://dx.doi.org/10.1039/c3tb20529k]
[172]
Mattos, B.D.; Gomes, G.R.; de Matos, M.; Ramos, L.P.; Magalhães, W.L.E. Consecutive production of hydroalcoholic extracts, carbohydrates derivatives and silica nanoparticles from equisetum arvense. Waste Biomass Valoriz., 2017.
[http://dx.doi.org/ 10.1007/s12649-017-9993-y]
[173]
Martin-Ortigosa, S.; Peterson, D.J.; Valenstein, J.S.; Lin, V.S.Y.; Trewyn, B.G.; Lyznik, L.A.; Wang, K. Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiol., 2014, 164(2), 537-547.
[http://dx.doi.org/10.1104/pp.113.233650] [PMID: 24376280]
[174]
Carmona, V.B.; Oliveira, R.M.; Silva, W.T.L.; Mattoso, L.H.C.; Marconcini, J.M. Nanosilica from rice husk: Extraction and characterization. Ind. Crops Prod., 2013, 43, 291-296.
[http://dx.doi.org/10.1016/j.indcrop.2012.06.050]
[175]
Mattos, B.D.; Rojas, O.J.; Magalhães, W.L.E. Biogenic silica nanoparticles loaded with neem bark extract as green, slow-release biocide. J. Clean. Prod., 2017, 142, 4206-4213.
[http://dx.doi.org/10.1016/j.jclepro.2016.11.183]
[176]
Mattos, B.D.; Magalhães, W.L.E. Biogenic nanosilica blended by nanofibrillated cellulose as support for slow-release of tebuconazole. J. Nanopart. Res., 2016, 18(9), 274.
[http://dx.doi.org/10.1007/s11051-016-3586-8]
[177]
Cai, D.; Wang, L.; Zhang, G.; Zhang, X.; Wu, Z. Controlling pesticide loss by natural porous micro/nano composites: straw ash-based biochar and biosilica. ACS Appl. Mater. Interfaces, 2013, 5(18), 9212-9216.
[http://dx.doi.org/10.1021/am402864r] [PMID: 24001024]
[178]
Singh, B.; Sharma, D.K.; Kumar, R.; Gupta, A. Controlled release of the fungicide thiram from starch–alginate–clay based formulation. Appl. Clay Sci., 2009, 45(1), 76-82.
[http://dx.doi.org/10.1016/j.clay.2009.03.001]
[179]
Halajnia, A.; Oustan, S.; Najafi, N.; Khataee, A.R.; Lakzian, A. Adsorption–desorption characteristics of nitrate, phosphate and sulfate on Mg–Al layered double hydroxide. Appl. Clay Sci., 2013, 80, 305-312.
[http://dx.doi.org/10.1016/j.clay.2013.05.002]
[180]
Koilraj, P.; Antonyraj, C.A.; Gupta, V.; Reddy, C.R.K.; Kannan, S. Novel approach for selective phosphate removal using colloidal layered double hydroxide nanosheets and use of residue as fertilizer. Appl. Clay Sci., 2013, 86, 111-118.
[http://dx.doi.org/10.1016/j.clay.2013.07.004]
[181]
Bao, W.; Wan, Y.; Baluška, F. Nanosheets for delivery of biomolecules into plant cells. Trends Plant Sci., 2017, 22(6), 445-447.
[http://dx.doi.org/10.1016/j.tplants.2017.03.014] [PMID: 28416163]
[182]
Shen, L.; Liang, S.; Wu, W.; Liang, R.; Wu, L. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). Dalton Trans., 2013, 42(37), 13649-13657.
[http://dx.doi.org/10.1039/c3dt51479j] [PMID: 23903996]
[183]
Xiao, G.; Chen, W.; Tian, F.; Richardson, J.J.; Tardy, B.L.; Liu, M.; Joshi, N.S.; Guo, J. Thermal transition of bimetallic metal-phenolic networks to biomass-derived hierarchically porous nanofibers. Chem. Asian J., 2018, 13(8), 972-976.
[http://dx.doi.org/10.1002/asia.201800284] [PMID: 29470840]
[184]
Zhang, T.; Lin, W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 2014, 43(16), 5982-5993.
[http://dx.doi.org/10.1039/C4CS00103F] [PMID: 24769551]
[185]
Tardy, B.L.; Richardson, J.J.; Guo, J.; Lehtonen, J.; Ago, M.; Rojas, O.J. Lignin nano-and microparticles as template for nanostructured materials: formation of hollow metal-phenolic capsules. Green Chem., 2018, 20(6), 1335-1344.
[http://dx.doi.org/10.1039/C8GC00064F]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy