Recent Drug-Repurposing-Driven Advances in the Discovery of Novel Antibiotics

Author(s): Ananda Kumar Konreddy, Grandhe Usha Rani, Kyeong Lee*, Yongseok Choi*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 28 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Drug repurposing is a safe and successful pathway to speed up the novel drug discovery and development processes compared with de novo drug discovery approaches. Drug repurposing uses FDA-approved drugs and drugs that failed in clinical trials, which have detailed information on potential toxicity, formulation, and pharmacology. Technical advancements in the informatics, genomics, and biological sciences account for the major success of drug repurposing in identifying secondary indications of existing drugs. Drug repurposing is playing a vital role in filling the gap in the discovery of potential antibiotics. Bacterial infections emerged as an ever-increasing global public health threat by dint of multidrug resistance to existing drugs. This raises the urgent need of development of new antibiotics that can effectively fight multidrug-resistant bacterial infections (MDRBIs). The present review describes the key role of drug repurposing in the development of antibiotics during 2016–2017 and of the details of recently FDA-approved antibiotics, pipeline antibiotics, and antibacterial properties of various FDA-approved drugs of anti-cancer, anti-fungal, anti-hyperlipidemia, antiinflammatory, anti-malarial, anti-parasitic, anti-viral, genetic disorder, immune modulator, etc. Further, in view of combination therapies with the existing antibiotics, their potential for new implications for MDRBIs is discussed. The current review may provide essential data for the development of quick, safe, effective, and novel antibiotics for current needs and suggest acuity in its effective implications for inhibiting MDRBIs by repurposing existing drugs.

Keywords: Drug repurposing, antibiotics, drug discovery, anti-bacterial activity, bacterial infections, FDAapproved drugs.

[1]
Rupnik, M.; Wilcox, M.H.; Gerding, D.N. Clostridium difficile infection: New developments in epidemiology and pathogenesis. Nat. Rev. Microbiol., 2009, 7(7), 526-536.
[http://dx.doi.org/10.1038/nrmicro2164] [PMID: 19528959]
[2]
Tao, L.; Zhang, J.; Meraner, P.; Tovaglieri, A.; Wu, X.; Gerhard, R.; Zhang, X.; Stallcup, W.B.; Miao, J.; He, X. Frizzled are colonic epithelial receptors for Clostridium difficile toxin B. Nature, 2016, 538(7625), 350.
[http://dx.doi.org/10.1038/nature19799] [PMID: 27680706]
[3]
Aryee, A.; Price, N. Antimicrobial stewardship - can we afford to do without it? Br. J. Clin. Pharmacol., 2015, 79(2), 173-181.
[http://dx.doi.org/10.1111/bcp.12417] [PMID: 24803175]
[4]
Rangel-Vega, A.; Bernstein, L.R.; Mandujano-Tinoco, E.A.; García-Contreras, S.J.; García-Contreras, R. Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections. Front. Microbiol., 2015, 6, 282.
[http://dx.doi.org/10.3389/fmicb.2015.00282] [PMID: 25914685]
[5]
Yssel, A.E.J.; Vanderleyden, J.; Steenackers, H.P. Repurposing of nucleoside- and nucleobase-derivative drugs as antibiotics and biofilm inhibitors. J. Antimicrob. Chemother., 2017, 72(8), 2156-2170.
[http://dx.doi.org/10.1093/jac/dkx151] [PMID: 28575223]
[6]
Gualerzi, C.O.; Brandi, L.; Fabbretti, A.; Pon, C.L. Antibiotics: Targets, Mechanisms and Resistance; John Wiley & Sons, 2013.
[http://dx.doi.org/10.1002/9783527659685]
[7]
Walsh, C.T.; Wencewicz, T.A. Prospects for new antibiotics: a molecule-centered perspective. J. Antibiot. (Tokyo), 2014, 67(1), 7-22.
[http://dx.doi.org/10.1038/ja.2013.49] [PMID: 23756684]
[8]
Sukumaran, V.; Senanayake, S. Bacterial skin and soft tissue infections. Aust. Prescr., 2016, 39(5), 159-163.
[http://dx.doi.org/10.18773/austprescr.2016.058] [PMID: 27789926]
[9]
Foxman, B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Dis. Mon., 2003, 49(2), 53-70.
[http://dx.doi.org/10.1067/mda.2003.7] [PMID: 12601337]
[10]
Hannan, T.J.; Hunstad, D.A. A murine model for Escherichia coli urinary tract infection. Methods Mol. Biol., 2016, 1333, 159-175.
[http://dx.doi.org/10.1007/978-1-4939-2854-5_14]
[11]
Rangel, J.M.; Sparling, P.H.; Crowe, C.; Griffin, P.M.; Swerdlow, D.L. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002. Emerg. Infect. Dis., 2005, 11(4), 603-609.
[http://dx.doi.org/10.3201/eid1104.040739] [PMID: 15829201]
[12]
Tribe, I.G.; Cowell, D.; Cameron, P.; Cameron, S. An outbreak of Salmonella typhimurium phage type 135 infection linked to the consumption of raw shell eggs in an aged care facility. Commun. Dis. Intell. Q. Rep., 2002, 26(1), 38-39.
[PMID: 11950200]
[13]
Doyle, M.P.; Erickson, M.C. Reducing the carriage of foodborne pathogens in livestock and poultry. Poult. Sci., 2006, 85(6), 960-973.
[http://dx.doi.org/10.1093/ps/85.6.960] [PMID: 16776463]
[14]
Zarei, O.; Rezania, S.; Mousavi, A. Mycoplasma genitalium and cancer: A brief review. Asian Pac. J. Cancer Prev., 2013, 14(6), 3425-3428.
[http://dx.doi.org/10.7314/APJCP.2013.14.6.3425] [PMID: 23886122]
[15]
McGowin, C.L.; Anderson-Smits, C. Mycoplasma genitalium: an emerging cause of sexually transmitted disease in women. PLoS Pathog., 2011, 7(5)e1001324
[http://dx.doi.org/10.1371/journal.ppat.1001324] [PMID: 21637847]
[16]
Taylor-Robinson, D. Infections due to species of Mycoplasma and Ureaplasma: An update. Clin. Infect. Dis., 1996, 23(4), 671-682.
[http://dx.doi.org/10.1093/clinids/23.4.671] [PMID: 8909826]
[17]
Caini, S.; Gandini, S.; Dudas, M.; Bremer, V.; Severi, E.; Gherasim, A. Sexually transmitted infections and prostate cancer risk: A systematic review and meta-analysis. Cancer Epidemiol., 2014, 38(4), 329-338.
[http://dx.doi.org/10.1016/j.canep.2014.06.002] [PMID: 24986642]
[18]
Woodford, N.; Livermore, D.M. Infections caused by Gram-positive bacteria: A review of the global challenge. J. Infect., 2009, 59(Suppl. 1), S4-S16.
[http://dx.doi.org/10.1016/S0163-4453(09)60003-7] [PMID: 19766888]
[19]
Neu, H. C. Infections due to gram-negative bacteria: an overview. Rev. Infect. Dis.,, 1985, 7(Supplement_4), S778-S782.
[http://dx.doi.org/10.1093/clinids/7.Supplement_4.S778]
[20]
Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. World Health Organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J. Med. Society, 2018, 32(1), 76.
[21]
Ashburn, T.T.; Thor, K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[22]
Lipman, A.G. Drug repurposing and repositioning: workshop summary; Taylor & Francis, 2015.
[23]
Younis, W.; AbdelKhalek, A.; Mayhoub, A.S.; Seleem, M.N. In vitro screening of an FDA-approved library against ESKAPE pathogens. Curr. Pharm. Des., 2017, 23(14), 2147-2157.
[http://dx.doi.org/10.2174/1381612823666170209154745] [PMID: 28190396]
[24]
Greig, S.L. Obiltoxaximab: first global approval. Drugs, 2016, 76(7), 823-830.
[http://dx.doi.org/10.1007/s40265-016-0577-0] [PMID: 27085536]
[25]
Markham, A. Bezlotoxumab: first global approval. Drugs, 2016, 76(18), 1793-1798.
[http://dx.doi.org/10.1007/s40265-016-0673-1] [PMID: 27905086]
[26]
Markham, A. Delafloxacin: first global approval. Drugs, 2017, 77(13), 1481-1486.
[http://dx.doi.org/10.1007/s40265-017-0790-5] [PMID: 28748399]
[27]
Aschenbrenner, D.S. New antibiotic for complicated urinary tract infections. Am. J. Nurs., 2017, 117(12), 22-23.
[http://dx.doi.org/10.1097/01.NAJ.0000527483.55997.0a] [PMID: 29189240]
[28]
Solosec, F. A. S. Oral granules for the treatment of bacterial vaginosis in adult women [news release] Newark, NJ; Symbiomix website., 2017.
[30]
[31]
Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.; Walkty, A.; Denisuik, A.; Golden, A. Imipenem–relebactam and meropenem–vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs, 2018, 78(1), 65-98.
[http://dx.doi.org/10.1001/S40265-017-0851-9] [PMID: 29230684]
[32]
Castanheira, M.; Rhomberg, P.R.; Flamm, R.K.; Jones, R.N. Effect of the β-lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing enterobacteriaceae. Antimicrob. Agents Chemother., 2016, 60(9), 5454-5458.
[http://dx.doi.org/10.1128/AAC.00711-16] [PMID: 27381386]
[34]
Benharroch, D.; Osyntsov, L. Infectious diseases are analogous with cancer. Hypothesis and implications. J. Cancer, 2012, 3, 117-121.
[http://dx.doi.org/10.7150/jca.3977] [PMID: 22408684]
[35]
Soo, V.W.; Kwan, B.W.; Quezada, H.; Castillo-Juárez, I.; Pérez-Eretza, B.; García-Contreras, S.J.; Martínez-Vázquez, M.; Wood, T.K.; García-Contreras, R.T.; García-Contreras, R. Repurposing of anticancer drugs for the treatment of bacterial infections. Curr. Top. Med. Chem., 2017, 17(10), 1157-1176.
[http://dx.doi.org/10.2174/1568026616666160930131737] [PMID: 27697046]
[36]
Castillo-Juárez, I.; Maeda, T.; Mandujano-Tinoco, E.A.; Tomás, M.; Pérez-Eretza, B.; García-Contreras, S.J.; Wood, T.K.; García-Contreras, R. Role of quorum sensing in bacterial infections. World J. Clin. Cases, 2015, 3(7), 575-598.
[http://dx.doi.org/10.12998/wjcc.v3.i7.575] [PMID: 26244150]
[37]
Hickson, J.; Diane Yamada, S.; Berger, J.; Alverdy, J.; O’Keefe, J.; Bassler, B.; Rinker-Schaeffer, C. Societal interactions in ovarian cancer metastasis: a quorum-sensing hypothesis. Clin. Exp. Metastasis, 2009, 26(1), 67-76.
[http://dx.doi.org/10.1007/s10585-008-9177-z] [PMID: 18516689]
[38]
Kwan, B.W.; Chowdhury, N.; Wood, T.K. Combatting bacterial infections by killing persister cells with mitomycin C. Environ. Microbiol., 2015, 17(11), 4406-4414.
[http://dx.doi.org/10.1111/1462-2920.12873] [PMID: 25858802]
[39]
Feng, J.; Shi, W.; Zhang, S.; Zhang, Y. Identification of new compounds with high activity against stationary phase Borrelia burgdorferi from the NCI compound collection. Emerg. Microbes Infect., 2015, 4(6)e31
[http://dx.doi.org/10.1038/emi.2015.31] [PMID: 26954881]
[40]
Quinto, I.; Radman, M. Carcinogenic potency in rodents versus genotoxic potency in E. coli: A correlation analysis for bifunctional alkylating agents. Mutat. Res., 1987, 181(2), 235-242.
[http://dx.doi.org/10.1016/0027-5107(87)90101-1] [PMID: 3317026]
[41]
Walz, J.M.; Avelar, R.L.; Longtine, K.J.; Carter, K.L.; Mermel, L.A.; Heard, S.O. 5-FU Catheter Study Group. Anti-infective external coating of central venous catheters: a randomized, noninferiority trial comparing 5-fluorouracil with chlorhexidine/silver sulfadiazine in preventing catheter colonization. Crit. Care Med., 2010, 38(11), 2095-2102.
[http://dx.doi.org/10.1097/CCM.0b013e3181f265ba] [PMID: 20711070]
[42]
Sandrini, M.P.; Shannon, O.; Clausen, A.R.; Björck, L.; Piškur, J. Deoxyribonucleoside kinases activate nucleoside antibiotics in severely pathogenic bacteria. Antimicrob. Agents Chemother., 2007, 51(8), 2726-2732.
[http://dx.doi.org/10.1128/AAC.00081-07] [PMID: 17526755]
[43]
Ho Sui, S.J.; Lo, R.; Fernandes, A.R.; Caulfield, M.D.; Lerman, J.A.; Xie, L.; Bourne, P.E.; Baillie, D.L.; Brinkman, F.S. Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence. Int. J. Antimicrob. Agents, 2012, 40(3), 246-251.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.05.009] [PMID: 22819149]
[44]
De Cremer, K.; Delattin, N.; De Brucker, K.; Peeters, A.; Kucharíková, S.; Gerits, E.; Verstraeten, N.; Michiels, J.; Van Dijck, P.; Cammue, B.P.; Thevissen, K. Oral administration of the broad-spectrum antibiofilm compound toremifene inhibits Candida albicans and Staphylococcus aureus biofilm formation in vivo. Antimicrob. Agents Chemother., 2014, 58(12), 7606-7610.
[http://dx.doi.org/10.1128/AAC.03869-14] [PMID: 25288093]
[45]
Corriden, R.; Hollands, A.; Olson, J.; Derieux, J.; Lopez, J.; Chang, J.T.; Gonzalez, D.J.; Nizet, V. Tamoxifen augments the innate immune function of neutrophils through modulation of intracellular ceramide. Nat. Commun., 2015, 6, 8369.
[http://dx.doi.org/10.1038/ncomms9369] [PMID: 26458291]
[46]
Gajadeera, C.; Willby, M.J.; Green, K.D.; Shaul, P.; Fridman, M.; Garneau-Tsodikova, S.; Posey, J.E.; Tsodikov, O.V. Antimycobacterial activity of DNA intercalator inhibitors of Mycobacterium tuberculosis primase DnaG. J. Antibiot. (Tokyo), 2015, 68(3), 153-157.
[http://dx.doi.org/10.1038/ja.2014.131] [PMID: 25248725]
[47]
Chopra, S.; Matsuyama, K.; Hutson, C.; Madrid, P. Identification of antimicrobial activity among FDA-approved drugs for combating Mycobacterium abscessus and Mycobacterium chelonae. J. Antimicrob. Chemother., 2011, 66(7), 1533-1536.
[http://dx.doi.org/10.1093/jac/dkr154] [PMID: 21486854]
[48]
Ene, C.I.; Nerva, J.D.; Morton, R.P.; Barkley, A.S.; Barber, J.K.; Ko, A.L.; Silbergeld, D.L. Safety and efficacy of carmustine (BCNU) wafers for metastatic brain tumors. Surg. Neurol. Int., 2016, 7(Suppl. 11), S295-S299.
[http://dx.doi.org/10.4103/2152-7806.181987] [PMID: 27217968]
[49]
van den Bent, M.J.; Brandes, A.A.; Taphoorn, M.J.; Kros, J.M.; Kouwenhoven, M.C.; Delattre, J-Y.; Bernsen, H.J.; Frenay, M.; Tijssen, C.C.; Grisold, W.; Sipos, L.; Enting, R.H.; French, P.J.; Dinjens, W.N.; Vecht, C.J.; Allgeier, A.; Lacombe, D.; Gorlia, T.; Hoang-Xuan, K. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: Long-term follow-up of EORTC brain tumor group study 26951. J. Clin. Oncol., 2013, 31(3), 344-350.
[http://dx.doi.org/10.1200/JCO.2012.43.2229] [PMID: 23071237]
[50]
White, H.L.; White, J.R. Lethal action and metabolic effects of streptonigrin on Escherichia coli. Mol. Pharmacol., 1968, 4(6), 549-565.
[PMID: 4881840]
[51]
Chua, M-S.; Bernstein, L.R.; Li, R.; So, S.K. Gallium maltolate is a promising chemotherapeutic agent for the treatment of hepatocellular carcinoma. Anticancer Res., 2006, 26(3A), 1739-1743.
[PMID: 16827101]
[52]
Fattovich, G.; Stroffolini, T.; Zagni, I.; Donato, F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology, 2004, 127(5)(Suppl. 1), S35-S50.
[http://dx.doi.org/10.1053/j.gastro.2004.09.014] [PMID: 15508101]
[53]
Runci, F.; Bonchi, C.; Frangipani, E.; Visaggio, D.; Visca, P. Acinetobacter baumannii biofilm formation in human serum and disruption by gallium. Antimicrob. Agents Chemother., 2016, 61(1), e01563-e16.
[PMID: 27799219]
[54]
Bradner, W.T.; Mitomycin, C. A clinical update. Cancer Treat. Rev., 2001, 27(1), 35-50.
[http://dx.doi.org/10.1053/ctrv.2000.0202] [PMID: 11237776]
[55]
Byfield, J.E.; Calabro-Jones, P.M. Carrier-dependent and carrier-independent transport of anti-cancer alkylating agents. Nature, 1981, 294(5838), 281-283.
[http://dx.doi.org/10.1038/294281a0] [PMID: 6975441]
[56]
Szybalski, W.; Iyer, V.N. Crosslinking of DNA by enzymatically or chemically activated mitomycins and porfiromycins, bifunctionally “alkylating” antibiotics. Fed. Proc., 1964, 23, 946-957.
[PMID: 14209827]
[57]
Tomasz, M.; Mitomycin, C. Mitomycin C: small, fast and deadly (but very selective). Chem. Biol., 1995, 2(9), 575-579.
[http://dx.doi.org/10.1016/1074-5521(95)90120-5] [PMID: 9383461]
[58]
Kennedy, K.A.; McGurl, J.D.; Leondaridis, L.; Alabaster, O. pH dependence of mitomycin C-induced cross-linking activity in EMT6 tumor cells. Cancer Res., 1985, 45(8), 3541-3547.
[PMID: 3926302]
[59]
Reich, E.; Shatkin, A.J.; Tatum, E.L. Bacteriocidal action of mitomycin C. Biochim. Biophys. Acta, 1961, 53(1), 132-149.
[http://dx.doi.org/10.1016/0006-3002(61)90800-9] [PMID: 14491129]
[60]
Sharma, B.; Brown, A.V.; Matluck, N.E.; Hu, L.T.; Lewis, K. Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persister cells. Antimicrob. Agents Chemother., 2015, 59(8), 4616-4624.
[http://dx.doi.org/10.1128/AAC.00864-15] [PMID: 26014929]
[61]
Cruz-Muñiz, M.Y.; López-Jacome, L.E.; Hernández-Durán, M.; Franco-Cendejas, R.; Licona-Limón, P.; Ramos-Balderas, J.L.; Martinéz-Vázquez, M.; Belmont-Díaz, J.A.; Wood, T.K.; García-Contreras, R. Repurposing the anticancer drug mitomycin C for the treatment of persistent Acinetobacter baumannii infections. Int. J. Antimicrob. Agents, 2017, 49(1), 88-92.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.08.022] [PMID: 27939675]
[62]
Jordan, V.C. Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br. J. Pharmacol., 2006, 147(S1)(Suppl. 1), S269-S276.
[http://dx.doi.org/10.1038/sj.bjp.0706399] [PMID: 16402113]
[63]
Flores, R.; Insel, P. A.; Nizet, V.; Corriden, R. Enhancement of neutrophil antimicrobial activity by the breast cancer drug tamoxifen. The FASEB Journal,, 2016, 30(1 Supplement), 969.14-969.14.
[64]
Miller, W.R.; Ingle, J.N. Endocrine Therapy in Breast Cancer; CRC Press. , 2002. 1st Ed.; pp. 400.
[http://dx.doi.org/10.1201/b14067]
[65]
Chabner, B.A.; Longo, D.L. Cancer Chemotherapy and Biotherapy: Principles and Practice; Lippincott Williams & Wilkins, 2011.
[66]
Price, N.; Sartor, O.; Hutson, T.; Mariani, S. Role of 5a-reductase inhibitors and selective estrogen receptor modulators as potential chemopreventive agents for prostate cancer. Clin. Prostate Cancer, 2005, 3(4), 211-214.
[http://dx.doi.org/10.1016/S1540-0352(11)70089-0] [PMID: 15882476]
[67]
Gerits, E.; Defraine, V.; Vandamme, K.; De Cremer, K.; De Brucker, K.; Thevissen, K.; Cammue, B.P.; Beullens, S.; Fauvart, M.; Verstraeten, N.; Michiels, J. Repurposing Toremifene for treatment of oral bacterial infections. Antimicrob. Agents Chemother., 2017, 61(3), e01846-e16.
[http://dx.doi.org/10.1128/AAC.01846-16] [PMID: 27993858]
[68]
Burnett, B.P.; Mitchell, C.M. Antimicrobial activity of iodoquinol 1%-hydrocortisone acetate 2% gel against ciclopirox and clotrimazole. Cutis, 2008, 82(4), 273-280.
[PMID: 19055171]
[69]
Sawyer, P.R.; Brogden, R.N.; Pinder, R.M.; Speight, T.M.; Avery, G. Clotrimazole: A review of its antifungal activity and therapeutic efficacy. Drugs, 1975, 9(6), 424-447.
[http://dx.doi.org/10.2165/00003495-197509060-00003] [PMID: 1097234]
[70]
Frosini, S-M.; Bond, R. Activity in vitro of clotrimazole against canine methicillin-resistant and susceptible Staphylococcus pseudintermedius. Antibiotics (Basel), 2017, 6(4), 29.
[http://dx.doi.org/10.3390/antibiotics6040029] [PMID: 29165345]
[71]
Sawyer, P.R.; Brogden, R.N.; Pinder, R.M.; Speight, T.M.; Avery, G.S. Miconazole: a review of its antifungal activity and therapeutic efficacy. Drugs, 1975, 9(6), 406-423.
[http://dx.doi.org/10.2165/00003495-197509060-00002] [PMID: 1149649]
[72]
Nenoff, P.; Koch, D.; Krüger, C.; Drechsel, C.; Mayser, P. New insights on the antibacterial efficacy of miconazole in vitro. Mycoses, 2017, 60(8), 552-557.
[http://dx.doi.org/10.1111/myc.12620] [PMID: 28370366]
[73]
Sahoo, A.K.; Mahajan, R. Management of tinea corporis, tinea cruris, and tinea pedis: A comprehensive review. Indian Dermatol. Online J., 2016, 7(2), 77-86.
[http://dx.doi.org/10.4103/2229-5178.178099] [PMID: 27057486]
[74]
Chen, F.; Di, H.; Wang, Y.; Cao, Q.; Xu, B.; Zhang, X.; Yang, N.; Liu, G.; Yang, C-G.; Xu, Y.; Jiang, H.; Lian, F.; Zhang, N.; Li, J.; Lan, L. Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence. Nat. Chem. Biol., 2016, 12(3), 174-179.
[http://dx.doi.org/10.1038/nchembio.2003] [PMID: 26780405]
[75]
Ko, H.H.T.; Lareu, R.R.; Dix, B.R.; Hughes, J.D. Statins: antimicrobial resistance breakers or makers? PeerJ, 2017, 5e3952
[http://dx.doi.org/10.7717/peerj.3952] [PMID: 29085751]
[76]
Lee, C-C.; Lee, M-G.; Hsu, T-C.; Porta, L.; Chang, S-S.; Yo, C-H.; Tsai, K-C.; Lee, M. A population-based cohort study on the drug-specific effect of statins on sepsis outcome. Chest, 2017, 153(4), 805-815.
[PMID: 28962887]
[77]
Thangamani, S.; Mohammad, H.; Abushahba, M.F.; Hamed, M.I.; Sobreira, T.J.; Hedrick, V.E.; Paul, L.N.; Seleem, M.N. Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. Sci. Rep., 2015, 5, 16407.
[http://dx.doi.org/10.1038/srep16407] [PMID: 26553420]
[78]
Hennessy, E.; Adams, C.; Reen, F.J.; O’Gara, F. Is there potential for repurposing statins as novel antimicrobials? Antimicrob. Agents Chemother., 2016, 60(9), 5111-5121.
[http://dx.doi.org/10.1128/AAC.00192-16] [PMID: 27324773]
[79]
Taylor, F.C.; Huffman, M.; Ebrahim, S. Statin therapy for primary prevention of cardiovascular disease. JAMA, 2013, 310(22), 2451-2452.
[http://dx.doi.org/10.1001/jama.2013.281348] [PMID: 24276813]
[80]
Caffrey, A.R.; Timbrook, T.T.; Noh, E.; Sakoulas, G.; Opal, S.M.; Nizet, V.; LaPlante, K.L. Evidence to support continuation of statin therapy in patients with Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother., 2017, 61(3), e02228-e16.
[http://dx.doi.org/10.1128/AAC.02228-16] [PMID: 28069650]
[81]
Shrestha, P.; Poudel, D.R.; Pathak, R.; Ghimire, S.; Dhital, R.; Aryal, M.R.; Mahmood, M.; Karmacharya, P. Effect of statins on the mortality of bacteremic patients: a systematic review and meta-analysis of clinical trials. N. Am. J. Med. Sci., 2016, 8(6), 250-251.
[http://dx.doi.org/10.4103/1947-2714.185034] [PMID: 27500129]
[82]
Annadurai, S.; Basu, S.; Ray, S.; Dastidar, S.G.; Chakrabarty, A.N. Antibacterial activity of the antiinflammatory agent diclofenac sodium. Indian J. Exp. Biol., 1998, 36(1), 86-90.
[PMID: 9536657]
[83]
Kristiansen, J.E. The antimicrobial activity of non-antibiotics. Report from a congress on the antimicrobial effect of drugs other than antibiotics on bacteria, viruses, protozoa, and other organisms. APMIS Suppl., 1992, 30, 7-14.
[PMID: 1295545]
[84]
Nakka, M.; Nallapati, S.; Reddy, L.; Mukkanti, K.; Pal, S. Synthesis, characterization and anti-bacterial screening of Piroxicam based sulfonates. J. Chem. Pharm. Res., 2011, 3, 581-588.
[85]
Ahmed, E.F.; El-Baky, R.M.A.; Ahmed, A.B.F.; Waly, N.G.; Gad, G.F.M. Antibacterial activity of some non-steroidal anti-inflammatory drugs against bacteria causing urinary tract infection. Am. J. Infect. Dis. Microbiol., 2017, 5(1), 66-73.
[86]
Chan, E.W.L.; Yee, Z.Y.; Raja, I.; Yap, J.K.Y. Synergistic effect of non-steroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus. J. Glob. Antimicrob. Resist., 2017, 10, 70-74.
[http://dx.doi.org/10.1016/j.jgar.2017.03.012] [PMID: 28673701]
[87]
Hendrix, A.S.; Spoonmore, T.J.; Wilde, A.D.; Putnam, N.E.; Hammer, N.D.; Snyder, D.J.; Guelcher, S.A.; Skaar, E.P.; Cassat, J.E. Repurposing the nonsteroidal anti-inflammatory drug diflunisal as an osteoprotective, antivirulence therapy for Staphylococcus aureus osteomyelitis. Antimicrob. Agents Chemother., 2016, 60(9), 5322-5330.
[http://dx.doi.org/10.1128/AAC.00834-16] [PMID: 27324764]
[88]
Pandey, P.; Verma, V.; Gautam, G.; Kumari, N.; Dhar, S.K.; Gourinath, S. Targeting the β-clamp in Helicobacter pylori with FDA-approved drugs reveals micromolar inhibition by diflunisal. FEBS Lett., 2017, 591(15), 2311-2322.
[http://dx.doi.org/10.1002/1873-3468.12734] [PMID: 28656718]
[89]
Kil, J.; Pierce, C.; Tran, H.; Gu, R.; Lynch, E.D. Ebselen treatment reduces noise induced hearing loss via the mimicry and induction of glutathione peroxidase. Hear. Res., 2007, 226(1-2), 44-51.
[http://dx.doi.org/10.1016/j.heares.2006.08.006] [PMID: 17030476]
[90]
Ngo, H.X.; Shrestha, S.K.; Green, K.D.; Garneau-Tsodikova, S. Development of ebsulfur analogues as potent antibacterials against methicillin-resistant Staphylococcus aureus. Bioorg. Med. Chem., 2016, 24(24), 6298-6306.
[http://dx.doi.org/10.1016/j.bmc.2016.03.060] [PMID: 27073054]
[91]
Gustafsson, T.N.; Osman, H.; Werngren, J.; Hoffner, S.; Engman, L.; Holmgren, A. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis. Biochim. Biophys. Acta, 2016, 1860(6), 1265-1271.
[http://dx.doi.org/10.1016/j.bbagen.2016.03.013] [PMID: 26971857]
[92]
Zou, L.; Lu, J.; Wang, J.; Ren, X.; Zhang, L.; Gao, Y.; Rottenberg, M.E.; Holmgren, A. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections. EMBO Mol. Med., 2017, 9(8), 1165-1178.
[http://dx.doi.org/10.15252/emmm.201707661] [PMID: 28606995]
[93]
White, N.J. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob. Agents Chemother., 1997, 41(7), 1413-1422.
[http://dx.doi.org/10.1128/AAC.41.7.1413] [PMID: 9210658]
[94]
Su, X-Z.; Miller, L.H. The discovery of artemisinin and the nobel prize in physiology or medicine. Sci. China Life Sci., 2015, 58(11), 1175-1179.
[http://dx.doi.org/10.1007/s11427-015-4948-7] [PMID: 26481135]
[95]
Agrawal, A.; Sharma, A.; Shukla, N.P. Antimicrobial activity of artemisinin-an antimalarial drug. Int. J. Pure App. Biosci., 2016, 4(5), 52-54.
[http://dx.doi.org/10.18782/2320-7051.2365]
[96]
Kim, W-S.; Choi, W.J.; Lee, S.; Kim, W.J.; Lee, D.C.; Sohn, U.D.; Shin, H-S.; Kim, W. Anti-inflammatory, antioxidant and antimicrobial effects of artemisinin extracts from Artemisia annua L. Korean J. Physiol. Pharmacol., 2015, 19(1), 21-27.
[http://dx.doi.org/10.4196/kjpp.2015.19.1.21] [PMID: 25605993]
[97]
Rosenthal, P.J. Artesunate for the treatment of severe falciparum malaria. N. Engl. J. Med., 2008, 358(17), 1829-1836.
[http://dx.doi.org/10.1056/NEJMct0709050] [PMID: 18434652]
[98]
Choi, W.H. Novel pharmacological activity of artesunate and artemisinin: Their potential as anti-tubercular agents. J. Clin. Med., 2017, 6(3), 30.
[http://dx.doi.org/10.3390/jcm6030030] [PMID: 28287416]
[99]
Debnath, A.; Parsonage, D.; Andrade, R.M.; He, C.; Cobo, E.R.; Hirata, K.; Chen, S.; García-Rivera, G.; Orozco, E.; Martínez, M.B.; Gunatilleke, S.S.; Barrios, A.M.; Arkin, M.R.; Poole, L.B.; McKerrow, J.H.; Reed, S.L. A high-throughput drug screen for Entamoeba histolytica identifies a new lead and target. Nat. Med., 2012, 18(6), 956-960.
[http://dx.doi.org/10.1038/nm.2758] [PMID: 22610278]
[100]
Harbut, M.B.; Vilchèze, C.; Luo, X.; Hensler, M.E.; Guo, H.; Yang, B.; Chatterjee, A.K.; Nizet, V.; Jacobs, W.R., Jr; Schultz, P.G.; Wang, F. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc. Natl. Acad. Sci. USA, 2015, 112(14), 4453-4458.
[http://dx.doi.org/10.1073/pnas.1504022112] [PMID: 25831516]
[101]
Thangamani, S.; Mohammad, H.; Abushahba, M.F.; Sobreira, T.J.; Hedrick, V.E.; Paul, L.N.; Seleem, M.N. Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens. Sci. Rep., 2016, 6, 22571.
[http://dx.doi.org/10.1038/srep22571] [PMID: 26936660]
[102]
Thangamani, S.; Mohammad, H.; Abushahba, M.F.; Sobreira, T.J.; Seleem, M.N. Repurposing auranofin for the treatment of cutaneous staphylococcal infections. Int. J. Antimicrob. Agents, 2016, 47(3), 195-201.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.12.016] [PMID: 26895605]
[103]
Pearson, R.D.; Hewlett, E.L. Niclosamide therapy for tapeworm infections. Ann. Intern. Med., 1985, 102(4), 550-551.
[http://dx.doi.org/10.7326/0003-4819-102-4-550] [PMID: 3977200]
[104]
Wu, C-J.; Jan, J-T.; Chen, C-M.; Hsieh, H-P.; Hwang, D-R.; Liu, H-W.; Liu, C-Y.; Huang, H-W.; Chen, S-C.; Hong, C-F.; Lin, R.K.; Chao, Y.S.; Hsu, J.T. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob. Agents Chemother., 2004, 48(7), 2693-2696.
[http://dx.doi.org/10.1128/AAC.48.7.2693-2696.2004] [PMID: 15215127]
[105]
Gwisai, T.; Hollingsworth, N.R.; Cowles, S.; Tharmalingam, N.; Mylonakis, E.; Fuchs, B.B.; Shukla, A. Repurposing niclosamide as a versatile antimicrobial surface coating against device-associated, hospital-acquired bacterial infections. Biomed. Mater., 2017, 12(4)045010
[http://dx.doi.org/10.1088/1748-605X/aa7105] [PMID: 28471351]
[106]
Rajamuthiah, R.; Fuchs, B.B.; Conery, A.L.; Kim, W.; Jayamani, E.; Kwon, B.; Ausubel, F.M.; Mylonakis, E. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus. PLoS One, 2015, 10(4)e0124595
[http://dx.doi.org/10.1371/journal.pone.0124595] [PMID: 25897961]
[107]
Di Santo, N.; Ehrisman, J. Research perspective: potential role of nitazoxanide in ovarian cancer treatment. Old drug, new purpose? Cancers (Basel), 2013, 5(3), 1163-1176.
[http://dx.doi.org/10.3390/cancers5031163] [PMID: 24202339]
[108]
White, C.A. Jr Nitazoxanide: a new broad spectrum antiparasitic agent. Expert Rev. Anti Infect. Ther., 2004, 2(1), 43-49.
[http://dx.doi.org/10.1586/14787210.2.1.43] [PMID: 15482170]
[109]
Rossignol, J-F. Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral Res., 2014, 110, 94-103.
[http://dx.doi.org/10.1016/j.antiviral.2014.07.014] [PMID: 25108173]
[110]
Gau, J-S.; Lin, W-P.; Kuo, L-C.; Hu, M-K. Nitazoxanide analogues as antimicrobial agents against nosocomial pathogens. Med. Chem., 2016, 12(6), 544-552.
[http://dx.doi.org/10.2174/1573406412666160129105719] [PMID: 26825066]
[111]
Bailey, M.A.; Na, H.; Duthie, M.S.; Gillis, T.P.; Lahiri, R.; Parish, T. Nitazoxanide is active against Mycobacterium leprae. PLoS One, 2017, 12(8)e0184107
[http://dx.doi.org/10.1371/journal.pone.0184107] [PMID: 28850614]
[112]
Lam, N.P.; Hepatitis, C. Hepatitis C: natural history, diagnosis, and management. Am. J. Health Syst. Pharm., 1999, 56(10), 961-973.
[http://dx.doi.org/10.1093/ajhp/56.10.961] [PMID: 10365720]
[113]
Mandal, R.S.; Ta, A.; Sinha, R.; Theeya, N.; Ghosh, A.; Tasneem, M.; Bhunia, A.; Koley, H.; Das, S. Ribavirin suppresses bacterial virulence by targeting LysR-type transcriptional regulators. Sci. Rep., 2016, 6, 39454.
[http://dx.doi.org/10.1038/srep39454] [PMID: 27991578]
[114]
Podzamczer, D.; Ferrer, E.; Consiglio, E.; Gatell, J.M.; Perez, P.; Perez, J.L.; Luna, E.; González, A.; Pedrol, E.; Lozano, L.; Ocaña, I.; Llibre, J.M.; Casiró, A.; Aranda, M.; Barrufet, P.; Martínez-Lacasa, J.; Miró, J.M.; Badía, X.; Casado, A.; Lupo, S.; Cahn, P.; Maños, M.; Estela, J. A randomized clinical trial comparing nelfinavir or nevirapine associated to zidovudine/lamivudine in HIV-infected naive patients (the Combine Study). Antivir. Ther. (Lond.), 2002, 7(2), 81-90.
[PMID: 12212928]
[115]
Sneader, W. Drug Discovery: A History; John Wiley & Sons, 2005.
[http://dx.doi.org/10.1002/0470015535]
[116]
Ng, S.M.S.; Sioson, J.S.P.; Yap, J.M.; Ng, F.M.; Ching, H.S.V.; Teo, J.W.P.; Jureen, R.; Hill, J.; Chia, C.S.B. Repurposing Zidovudine in combination with Tigecycline for treating carbapenem-resistant Enterobacteriaceae infections. Eur. J. Clin. Microbiol. Infect. Dis., 2018, 37(1), 141-148.
[http://dx.doi.org/10.1007/s10096-017-3114-5] [PMID: 29019016]
[117]
Tripathy, K.; Nanda, T.; Sudharani, O.V. The influence of environmental and genetic factors on various disorders and diseases. J. Genet. Syndr. Gene Ther., 2011, S11(001)
[http://dx.doi.org/10.4172/2157-7412.S11-001]
[118]
Berdoukas, V.; Farmaki, K.; Carson, S.; Wood, J.; Coates, T. Treating thalassemia major-related iron overload: The role of deferiprone. J. Blood Med., 2012, 3, 119-129.
[http://dx.doi.org/10.2147/JBM.S27400] [PMID: 23112580]
[119]
Taylor, J.M.; Dozy, A.; Kan, Y.W.; Varmus, H.E.; Lie-Injo, L.E.; Ganesan, J.; Todd, D. Genetic lesion in homozygous α thalassaemia (hydrops fetalis). Nature, 1974, 251(5474), 392-393.
[http://dx.doi.org/10.1038/251392a0] [PMID: 4424635]
[120]
Richter, K.; Ramezanpour, M.; Thomas, N.; Prestidge, C.A.; Wormald, P.J.; Vreugde, S. Mind “De GaPP”: in vitro efficacy of deferiprone and gallium-protoporphyrin against Staphylococcus aureus biofilms. Int. Forum Allergy Rhinol., 2016, 6(7), 737-743.
[http://dx.doi.org/10.1002/alr.21735] [PMID: 26919404]
[121]
Richter, K.; Thomas, N.; Zhang, G.; Prestidge, C.A.; Coenye, T.; Wormald, P-J.; Vreugde, S. Deferiprone and gallium-protoporphyrin have the capacity to potentiate the activity of antibiotics in Staphylococcus aureus small colony variants. Front. Cell. Infect. Microbiol., 2017, 7, 280.
[http://dx.doi.org/10.3389/fcimb.2017.00280] [PMID: 28690982]
[122]
McPhail, G.L.; Clancy, J.P. Ivacaftor: the first therapy acting on the primary cause of cystic fibrosis. Drugs Today (Barc), 2013, 49(4), 253-260.
[http://dx.doi.org/10.1358/dot.2013.49.4.1940984] [PMID: 23616952]
[123]
Jones, A.M.; Helm, J.M. Emerging treatments in cystic fibrosis. Drugs, 2009, 69(14), 1903-1910.
[http://dx.doi.org/10.2165/11318500-000000000-00000] [PMID: 19747007]
[124]
Thakare, R.; Singh, A.K.; Das, S.; Vasudevan, N.; Jachak, G.R.; Reddy, D.S.; Dasgupta, A.; Chopra, S. Repurposing Ivacaftor for treatment of Staphylococcus aureus infections. Int. J. Antimicrob. Agents, 2017, 50(3), 389-392.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.03.020] [PMID: 28694231]
[125]
Reznikov, L.R.; Abou Alaiwa, M.H.; Dohrn, C.L.; Gansemer, N.D.; Diekema, D.J.; Stoltz, D.A.; Welsh, M.J. Antibacterial properties of the CFTR potentiator ivacaftor. J. Cyst. Fibros., 2014, 13(5), 515-519.
[http://dx.doi.org/10.1016/j.jcf.2014.02.004] [PMID: 24618508]
[126]
Schneider, E.K.; Azad, M.A.; Han, M-L.; Tony Zhou, Q.; Wang, J.; Huang, J.X.; Cooper, M.A.; Doi, Y.; Baker, M.A.; Bergen, P.J.; Muller, M.T.; Li, J.; Velkov, T. An “unlikely” pair: the antimicrobial synergy of polymyxin B in combination with the cystic fibrosis transmembrane conductance regulator drugs Kalydeco and Orkambi. ACS Infect. Dis., 2016, 2(7), 478-488.
[http://dx.doi.org/10.1021/acsinfecdis.6b00035] [PMID: 27626100]
[127]
Kelloway, J.S. Zafirlukast: the first leukotriene-receptor antagonist approved for the treatment of asthma. Ann. Pharmacother., 1997, 31(9), 1012-1021.
[http://dx.doi.org/10.1177/106002809703100912] [PMID: 9296243]
[128]
Martinez, F.D. Genes, environments, development and asthma: A reappraisal. Eur. Respir. J., 2007, 29(1), 179-184.
[http://dx.doi.org/10.1183/09031936.00087906] [PMID: 17197483]
[129]
Dietert, R.R. Maternal and childhood asthma: Risk factors, interactions, and ramifications. Reprod. Toxicol., 2011, 32(2), 198-204.
[http://dx.doi.org/10.1016/j.reprotox.2011.04.007] [PMID: 21575714]
[130]
Tan, D.J.; Walters, E.H.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Matheson, M.C.; Dharmage, S.C. Age-of-asthma onset as a determinant of different asthma phenotypes in adults: A systematic review and meta-analysis of the literature. Expert Rev. Respir. Med., 2015, 9(1), 109-123.
[http://dx.doi.org/10.1586/17476348.2015.1000311] [PMID: 25584929]
[131]
Gerits, E.; Van der Massen, I.; Vandamme, K.; De Cremer, K.; De Brucker, K.; Thevissen, K.; Cammue, B.P.A.; Beullens, S.; Fauvart, M.; Verstraeten, N.; Michiels, J.; Roberts, M. In vitro activity of the antiasthmatic drug zafirlukast against the oral pathogens Porphyromonas gingivalis and Streptococcus mutans. FEMS Microbiol. Lett., 2017, 364(2)
[http://dx.doi.org/10.1093/femsle/fnx005] [PMID: 28087617]
[132]
Bjarnsholt, T.; Jensen, P.Ø.; Fiandaca, M.J.; Pedersen, J.; Hansen, C.R.; Andersen, C.B.; Pressler, T.; Givskov, M.; Høiby, N. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr. Pulmonol., 2009, 44(6), 547-558.
[http://dx.doi.org/10.1002/ppul.21011] [PMID: 19418571]
[133]
Housden, N.; Harrison, S.; Roberts, S.; Beckingham, J.; Graille, M.; Stura, E.; Gore, M. Immunoglobulin-binding Domains: Protein L from Peptostreptococcus magnus; Portland Press Limited, 2003.
[134]
Glatiramer acetate. (2017), N. I. W. The Free Encyclopedia. Retrieved on January 3, 2018, from https://en.wikipedia. org/w/index.php?title=Glatiramer_acetate&oldid=811186166
[135]
Christiansen, S.H.; Murphy, R.A.; Juul-Madsen, K.; Fredborg, M.; Hvam, M.L.; Axelgaard, E.; Skovdal, S.M.; Meyer, R.L.; Sørensen, U.B.S.; Möller, A.; Nyengaard, J.R.; Nørskov-Lauritsen, N.; Wang, M.; Gadjeva, M.; Howard, K.A.; Davies, J.C.; Petersen, E.; Vorup-Jensen, T. The immunomodulatory drug glatiramer acetate is also an effective antimicrobial agent that kills Gram-negative bacteria. Sci. Rep., 2017, 7(1), 15653.
[http://dx.doi.org/10.1038/s41598-017-15969-3] [PMID: 29142299]
[136]
Wei, H-M.; Lin, L-C.; Wang, C-F.; Lee, Y-J.; Chen, Y-T.; Liao, Y-D. Antimicrobial properties of an immunomodulator-15 kDa human granulysin. PLoS One, 2016, 11(6)e0156321
[http://dx.doi.org/10.1371/journal.pone.0156321] [PMID: 27276051]
[137]
Ryden, R.; Moore, B.J. The in vitro activity of apramycin, a new aminocyclitol antibiotic. J. Antimicrob. Chemother., 1977, 3(6), 609-613.
[http://dx.doi.org/10.1093/jac/3.6.609] [PMID: 340441]
[138]
Smith, K.P.; Kirby, J.E. Evaluation of apramycin activity against carbapenem-resistant and -susceptible strains of Enterobacteriaceae. Diagn. Microbiol. Infect. Dis., 2016, 86(4), 439-441.
[http://dx.doi.org/10.1016/j.diagmicrobio.2016.09.002] [PMID: 27745736]
[139]
Kang, A.D.; Smith, K.P.; Eliopoulos, G.M.; Berg, A.H.; McCoy, C.; Kirby, J.E. Invitro Apramycin Activity against multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Diagn. Microbiol. Infect. Dis., 2017, 88(2), 188-191.
[http://dx.doi.org/10.1016/j.diagmicrobio.2017.03.006] [PMID: 28341099]
[140]
Abera, B.; Kibret, M. Azithromycin, fluoroquinolone and chloramphenicol resistance of non-chlamydia conjunctival bacteria in rural community of Ethiopia. Indian J. Ophthalmol., 2014, 62(2), 236-239.
[http://dx.doi.org/10.4103/0301-4738.99974] [PMID: 23571246]
[141]
Dinos, G.P.; Athanassopoulos, C.M.; Missiri, D.A.; Giannopoulou, P.C.; Vlachogiannis, I.A.; Papadopoulos, G.E.; Papaioannou, D.; Kalpaxis, D.L. Chloramphenicol derivatives as antibacterial and anticancer agents: Historic problems and current solutions. Antibiotics (Basel), 2016, 5(2), 20.
[http://dx.doi.org/10.3390/antibiotics5020020] [PMID: 27271676]
[142]
Dai, T.; Qu, R.; Liu, J.; Zhou, P.; Wang, Q. Efficacy of doxycycline in the treatment of syphilis. Antimicrob. Agents Chemother., 2016, 61(1), e01092-e16.
[PMID: 27795370]
[143]
Ramírez-Agudelo, R.; Scheuermann, K.; Gala-García, A.; Monteiro, A.P.F.; Pinzón-García, A.D.; Cortés, M.E.; Sinisterra, R.D. Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity. Mater. Sci. Eng. C, 2018, 83, 25-34.
[http://dx.doi.org/10.1016/j.msec.2017.08.012] [PMID: 29208285]
[144]
Patel, S.S.; Balfour, J.A.; Bryson, H.M. Fosfomycin tromethamine. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy as a single-dose oral treatment for acute uncomplicated lower urinary tract infections. Drugs, 1997, 53(4), 637-656.
[http://dx.doi.org/10.2165/00003495-199753040-00007] [PMID: 9098664]
[145]
Trapnell, B.C.; McColley, S.A.; Kissner, D.G.; Rolfe, M.W.; Rosen, J.M.; McKevitt, M.; Moorehead, L.; Montgomery, A.B.; Geller, D.E. Phase 2 FTI Study Group. Fosfomycin/tobramycin for inhalation in patients with cystic fibrosis with pseudomonas airway infection. Am. J. Respir. Crit. Care Med., 2012, 185(2), 171-178.
[http://dx.doi.org/10.1164/rccm.201105-0924OC] [PMID: 22095545]
[146]
Linsenmeyer, K.; Strymish, J.; Weir, S.; Berg, G.; Brecher, S.; Gupta, K. Activity of fosfomycin against extended-spectrum-β-lactamase-producing uropathogens in patients in the community and hospitalized patients. Antimicrob. Agents Chemother., 2015, 60(2), 1134-1136.
[http://dx.doi.org/10.1128/AAC.02614-15] [PMID: 26596940]
[147]
Bryan, P.; Kayla, R.; Katie, E.; Regina, C.; Donna, C.; Travis, S. Mechanisms of fosfomycin resistance in carbapenem-resistant Enterobacter spp. Int. J. Antimicrob. Agents, 2017, 50(5), 690-692.
[148]
Brade, K.D.; Rybak, J.M.; Rybak, M.J. Oritavancin: a new lipoglycopeptide antibiotic in the treatment of Gram-positive infections. Infect. Dis. Ther., 2016, 5(1), 1-15.
[http://dx.doi.org/10.1007/s40121-016-0103-4] [PMID: 26831328]
[149]
Tatarkiewicz, J.; Staniszewska, A.; Bujalska-Zadrożny, M. New agents approved for treatment of acute staphylococcal skin infections. Arch. Med. Sci., 2016, 12(6), 1327-1336.
[http://dx.doi.org/10.5114/aoms.2016.59838] [PMID: 27904526]
[150]
Strauss, J.S.; Krowchuk, D.P.; Leyden, J.J.; Lucky, A.W.; Shalita, A.R.; Siegfried, E.C.; Thiboutot, D.M.; Van Voorhees, A.S.; Beutner, K.A.; Sieck, C.K.; Bhushan, R. American Academy of Dermatology/American Academy of Dermatology Association. Guidelines of care for acne vulgaris management. J. Am. Acad. Dermatol., 2007, 56(4), 651-663.
[http://dx.doi.org/10.1016/j.jaad.2006.08.048] [PMID: 17276540]
[151]
Garner, S.E.; Eady, E.A.; Popescu, C.; Newton, J.; Li, W.A. Minocycline for acne vulgaris: Efficacy and safety. Cochrane Database Syst. Rev., 2003, (1)CD002086
[http://dx.doi.org/10.1002/14651858.CD002086] [PMID: 12535427]
[152]
Rogers, R.L.; Perkins, J. Skin and soft tissue infections. Prim. Care, 2006, 33(3), 697-710.
[http://dx.doi.org/10.1016/j.pop.2006.06.005] [PMID: 17088156]
[153]
Bernier, C.; Dréno, B. Minocycline. Ann. Dermatol. Venereol., 2001, 128(5), 627-637.
[PMID: 11427798]
[154]
Fraser, A.; Gafter-Gvili, A.; Paul, M.; Leibovici, L. Prophylactic use of antibiotics for prevention of meningococcal infections: Systematic review and meta-analysis of randomised trials. Eur. J. Clin. Microbiol. Infect. Dis., 2005, 24(3), 172-181.
[http://dx.doi.org/10.1007/s10096-005-1297-7] [PMID: 15782277]
[155]
Bishburg, E.; Bishburg, K. Minocycline--an old drug for a new century: Emphasis on methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii. Int. J. Antimicrob. Agents, 2009, 34(5), 395-401.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.06.021] [PMID: 19665876]
[156]
Veeraraghavan, B.; Shankar, C.; Vijayakumar, S. Can minocycline be a carbapenem sparing antibiotic? Current evidence. Indian J. Med. Microbiol., 2016, 34(4), 513-515.
[http://dx.doi.org/10.4103/0255-0857.195380] [PMID: 27934833]
[157]
Flamm, R.K.; Rhomberg, P.R.; Sader, H.S. In vitro activity of the novel lactone ketolide nafithromycin (WCK 4873) when tested against contemporary clinical bacteria from a global surveillance program. Antimicrob. Agents Chemother., 2017, 61(12), 01230-17.
[http://dx.doi.org/10.1128/AAC.01230-17] [PMID: 28971877]
[158]
Nightingale, S.D.; Cameron, D.W.; Gordin, F.M.; Sullam, P.M.; Cohn, D.L.; Chaisson, R.E.; Eron, L.J.; Sparti, P.D.; Bihari, B.; Kaufman, D.L. Two controlled trials of rifabutin prophylaxis against Mycobacterium avium complex infection in AIDS. N. Engl. J. Med., 1993, 329(12), 828-833.
[http://dx.doi.org/10.1056/NEJM199309163291202] [PMID: 8179648]
[159]
Aziz, D.B.; Low, J.L.; Wu, M-L.; Gengenbacher, M.; Teo, J.W.P.; Dartois, V.; Dick, T. Rifabutin is active against Mycobacterium abscessus complex. Antimicrob. Agents Chemother., 2017, 61(6), e00155-e17.
[http://dx.doi.org/10.1128/AAC.00155-17] [PMID: 28396540]
[160]
Abraham, R.J.; Stevens, A.J.; Young, K.A.; Russell, C.; Qvist, A.; Khazandi, M.; Wong, H.S.; Abraham, S.; Ogunniyi, A.D.; Page, S.W.; O’Handley, R.; McCluskey, A.; Trott, D.J. Robenidine analogues as Gram-positive antibacterial agents. J. Med. Chem., 2016, 59(5), 2126-2138.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01797] [PMID: 26765953]
[161]
Ogunniyi, A.D.; Khazandi, M.; Stevens, A.J.; Sims, S.K.; Page, S.W.; Garg, S.; Venter, H.; Powell, A.; White, K.; Petrovski, K.R.; Laven-Law, G.; Tótoli, E.G.; Salgado, H.R.; Pi, H.; Coombs, G.W.; Shinabarger, D.L.; Turnidge, J.D.; Paton, J.C.; McCluskey, A.; Trott, D.J. Evaluation of robenidine analog NCL195 as a novel broad-spectrum antibacterial agent. PLoS One, 2017, 12(9)e0183457
[http://dx.doi.org/10.1371/journal.pone.0183457] [PMID: 28873428]
[162]
El-Gamal, M.I.; Oh, C-H. Current status of carbapenem antibiotics. Curr. Top. Med. Chem., 2010, 10(18), 1882-1897.
[http://dx.doi.org/10.2174/156802610793176639] [PMID: 20615191]
[163]
Yao, Q.; Wang, J.; Cui, T.; Yang, Z.; Su, M.; Zhao, P.; Yan, H.; Zhan, Y.; Yang, H. Antibacterial properties of tebipenem pivoxil tablet, a new oral carbapenem preparation against a variety of pathogenic bacteria in vitro and in vivo. Molecules, 2016, 21(1), 62.
[http://dx.doi.org/10.3390/molecules21010062] [PMID: 26751436]
[164]
Mukherjee, D.; Wu, M-L.; Teo, J.W.P.; Dick, T. Vancomycin and clarithromycin show synergy against Mycobacterium abscessus in vitro. Antimicrob. Agents Chemother., 2017, 61(12), e01298-e17.
[http://dx.doi.org/10.1128/AAC.01298-17] [PMID: 28923867]
[165]
Sun, W.; Weingarten, R.A.; Xu, M.; Southall, N.; Dai, S.; Shinn, P.; Sanderson, P.E.; Williamson, P.R.; Frank, K.M.; Zheng, W. Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria. Emerg. Microbes Infect., 2016, 5(11)e116
[http://dx.doi.org/10.1038/emi.2016.123] [PMID: 27826141]
[166]
Yu, W.; Shen, P.; Bao, Z.; Zhou, K.; Zheng, B.; Ji, J.; Guo, L.; Huang, C.; Xiao, Y. In vitro antibacterial activity of fosfomycin combined with other antimicrobials against KPC-producing Klebsiella pneumoniae. Int. J. Antimicrob. Agents, 2017, 50(2), 237-241.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.03.011] [PMID: 28648647]
[167]
Yim, J.; Smith, J.R.; Rybak, M.J. Role of combination antimicrobial therapy for vancomycin‐resistant enterococcus faecium infections: Review of the current evidence. Pharmacotherapy, 2017, 37(5), 579-592.
[http://dx.doi.org/10.1002/phar.1922] [PMID: 28273381]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 28
Year: 2019
Page: [5363 - 5388]
Pages: 26
DOI: 10.2174/0929867325666180706101404
Price: $65

Article Metrics

PDF: 45
HTML: 5