Investigation of Electrochemical Nanostructuring with Ultrashort Pulses by Using Nanoscale Electrode

Author(s): Yong Liu*, Xiujuan Wu, Huanghai Kong.

Journal Name: Current Nanoscience

Volume 15 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Electrochemical machining (ECM) is a non-traditional machining method for the metal material based on the principle of anode electrochemical dissolution which has been used in micro/nano fabrication with advantages as not influenced by materials intensity and hardness, no residual stress and no heat treatment born on the surface of the workpiece. Several researches and applications have shown that the surface quality can be improved effectively during the electrochemical machining by using ultrashort pulse power supply.

Method: This paper presents a potential of electrochemical machining at the nanometer scale. First, a transient charging double layer mathematical model is developed to describe electrochemical nanostructuring of metallic materials with ultrashort (nanosecond) voltage pulses. And then, by using finite element method (FEM), the analysis model of electrochemical interface between poles is established to give a more realistic analysis of the comparison of transient currents at different separations between the tool and workpiece. Second, a nanoscale electrode is an essential tool in electrochemical nanostructuring. In this paper, electrodes with diameters of several ten to hundred nanometers are successfully prepared by the liquid membrane electrochemical etching. Finally, by using the nanometer scale electrodes above and the ultrashort pulse power supply, several nanostructures with physical dimension of several hundred nanometers are fabricated on nickelbased superalloys.

Results: Using the optimal machining parameters, a tool electrode with 230 nm in diameter is obtained from the initial tungsten rod radius of 100 μm. By using 0.05 M H2SO4 solution, the pulse generator with 1μs in period, 100 ns in pulse on-time and 4 V in voltage, a micro/nano groove with the depth of 150 nm and maximum entrance width of 3 μm is obtained.

Conclusion: Nanoscale electrodes with diameters of several ten to hundred nanometers is obtained successfully demonstrating that the liquid membrane electrochemical etching is a very effective method to fabricate nanoscale electrode. Several nanostructures with physical dimension of several hundred nanometers can be fabricated successfully demonstrating that ECM with ultrashort pulses is a highly promising nanostructuring technology.

Keywords: Electrochemical nanostructuring, ultrashort pulses, nanoscale electrode, liquid membrane, electrochemical etching, micro/nano groove.

[1]
Liu, Y.; Zhu, D.; Zeng, Y.B.; Yu, H.B. Development of microelectrodes for electrochemical micromachining. Int. J. Adv. Manuf. Technol., 2011, 55(1-4), 195-203.
[2]
Yamagata, Y.; Higuchi, T. Three-dimensional micro fabrication by precision cutting technique. Jpn. Soc. Precise. Eng., 1995, 61(10), 1361-1364.
[3]
Waida, T.; Okano, K. Micro-grinding of micro-machine component. Jpn. Soc. Prec. Eng., 1995, 61(10), 1365-1368.
[4]
Masuzawa, T.; Fugino, M.; Kobayashi, K. Wire electro-discharge grinding for micro-machining. Crip Ann. Manuf. Technol., 1985, 34(1), 431-434.
[5]
Masuzawa, T. Micro EDM. Jpn. Soc. Prec. Eng., 1991, 57(6), 963-967.
[6]
Lim, H.S.; Wong, Y.S.; Rahman, M.K.; Edwin, L. Research on key techniques of 3D micro-EDM milling. J. Mater. Process. Tech., 2003, 140, 318-325.
[7]
Fotino, M. Nanotips by reverse electrochemical etching. Appl. Phys. Lett., 1992, 60(23), 2935-2937.
[8]
Bryant, P.J.; Kim, H.S.; Zheng, Y.C.; Yang, R. Technique for shaping scanning tunneling microscope tips. Rev. Sci. Instrum., 1987, 58(6), 1115.
[9]
Libioulle, L.; Houbion, Y.; Gilles, J.M. Very sharp probes for scanning tunneling microscopy. Physicalia. Mag., 1994, 16, 215-225.
[10]
Wang, S.H.; Zhu, D.; Zeng, Y.B.; Liu, Y. Micro wire electrode electrochemical cutting with low frequency and small amplitude tool vibration. Int. J. Adv. Manuf. Technol., 2011, 53, 535-544.
[11]
Liu, Y.; Zhu, D.; Zeng, Y.B.; Yu, H.B. Development of micro electrodes for electrochemical micromachining. Int. J. Adv. Manuf. Technol., 2011, 55, 195-203.
[12]
Liu, Y.; Zhu, D.; Zhu, L.S. Micro electrochemical milling of complex structures by using in situ fabricated cylindrical electrode. Int. J. Adv. Manuf. Technol., 2012, 60(9-12), 977-984.
[13]
Deng, S.; Li, M.; Liu, Y.; Sun, L. Experimental study on electrochemical etching of multi-stepped cylindrical microelectrode with high rotary accuracy. Recent Pat. Mech. Eng., 2017, 10(3), 242-251.
[14]
Baykul, M.C. Preparation of sharp gold tips for STM by using electrochemical etching method. Mater. Sci. Eng. B, 2000, 74(1-3), 229-233.
[15]
Cavallini, M.; Biscarini, F. Electrochemically etched nickel tips for spin polarized scanning tunneling microscopy. Rev. Sci. Instrum., 2000, 71(12), 4457-4459.
[16]
Zeng, Y.B.; Wu, X.J.; Qu, N.S.; Zhu, D. Fabrication of nano electrodes based on liquid membrane electrochemical etching. Micro Nanosyst., 2013, 5(4), 261-266.
[17]
Tahmasebipour, G.; Hojjat, Y.; Ahmadi, V.; Abdullah, A. Effect of fabrication process parameters on the apex-radius of STM tungsten nanotip. Scanning, 2009, 31(2), 65-74.
[18]
Schuster, R.; Kirchner, V.; Allongue, P.; Ertl, G. Electrochemical micromachining. Science, 2000, 289(5476), 98-101.
[19]
Kim, B.H.; Na, C.W.; Lee, Y.S.; Choi, D.K.; Chu, C.N. Micro electrochemical machining of 3D micro structure using dilute sulfuric acid. Crip Ann. Manuf. Technol., 2005, 54(1), 191-194.
[20]
Trimmer, A.L.; Hudson, J.L.; Kock, M.; Schuster, R. Single-step electrochemical machining of complex nanostructures with ultrashort voltage pulses. Appl. Phys. Lett., 2003, 82(19), 3327-3329.
[21]
Lee, E.S.; Baek, S.Y.; Cho, C.R. A study of the characteristics for electrochemical micromachining with ultrashort voltage pulses. Int. J. Adv. Manuf. Technol., 2005, 31(7-8), 762-769.
[22]
Wu, X.J.; Qu, N.S.; Zeng, Y.B.; Zhu, D. Modelling of the liquid membrane electrochemical etching of a nano-tip. Int. J. Adv. Manuf. Technol., 2013, 69(1-4), 723-729.
[23]
Tahmasebipour, G.; Hojjat, Y.; Ahmadi, V.; Abdullah, A. Optimization of STM/FIM nanotip aspect ratio based on the Taguchi method. Int. J. Adv. Manuf. Technol., 2009, 44(1-2), 80-90.
[24]
Lim, H.J.; Lim, Y.M.; Kim, S.H. Fabrication of cylindrical micro-pins with various diameters using DC current density control. J. Mater. Process. Tech., 2003, 141(2), 251-255.
[25]
Lim, Y.M.; Kim, S.H. An electrochemical fabrication method for extremely thin cylindrical micropin. Int. J. Mach. Tools Manufact., 2001, 41(15), 2287-2296.
[26]
Kim, B.H.; Ryu, S.H.; Choi, D.K.; Chu, C.N. Micro electrochemical milling. J. Micromech. Microeng., 2005, 15(1), 124-129.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 3
Year: 2019
Page: [279 - 288]
Pages: 10
DOI: 10.2174/1573413714666180704110307
Price: $58

Article Metrics

PDF: 16
HTML: 1