Behavior Models of Voltage Differencing Inverting Buffered Amplifier and Applications in Circuit Analysis

Author(s): YongAn LI* .

Journal Name: Recent Advances in Electrical & Electronic Engineering

Volume 12 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The symbolic nodal analysis acts as a pivotal part of the very large scale integration (VLSI) design.

Methods: In this work, based on the terminal relations for the pathological elements and the voltage differencing inverting buffered amplifier (VDIBA), twelve alternative pathological models for the VDIBA are presented. Moreover, the proposed models are applied to the VDIBA-based second-order filter and oscillator so as to simplify the circuit analysis.

Results: The result shows that the behavioral models for the VDIBA are systematic, effective and powerful in the symbolic nodal circuit analysis.

Keywords: Symbolic nodal analysis, pathological model, voltage differencing inverting buffered amplifier circuit analysis, VDIBA, buffeied amplifier, circuit analysis, VDIBA, buffered amplifier.

[1]
G. Shi, S.X.D. Tan, and E.T. Cuautle, Advanced symbolic analysis for VLSI systems: Methods and applications., New York, USA Springer, 2014.
[2]
M. Fakhfakh, and M. Pierzchala, "Pathological elements in analog circuit design. part of the lecture notes in electrical engineering book series", (LNEE, volume 479), Cham, Switzerland: Springer International Publishing. 2018
[3]
I.A. Awad, and A.M. Soliman, "On the voltage mirrors and the current mirrors", Analog Integr. Circuits Signal Process., vol. 32, pp. 79-81, 2002.
[4]
J. Bajer, D. Biolek, V. Biolkova, and Z. Kolka, "Voltage-mode balanced-outputs quadrature oscillator using FB-VDBAs, In:", 22th Int. Conf. on Microelectronics. Cairo, Italy, 2010, pp. 491-494.
[5]
A.M. Soliman, "Two integrator loop filters: Generation using NAM expansion and review", J. Electr. Comput. Eng., vol. 2010, pp. 1-8, 2010.
[6]
D. Biolek, R. Senani, V. Biolkova, and Z. Kolka, "Active elements for analog signal processing: Classification, review, and new proposals", Radioengineering, vol. 17, pp. 15-32, 2008.
[7]
A.M. Soliman, "Synthesis of oscillators using limit variables and NAM expansion", Active Passive Electron. Components. vol. 2011, pp. 1–13, January 2011.
[8]
A.C. Davies, "The significance of nullators norators and nullors in active network theory", Radio Electron. Eng., vol. 34, pp. 259-267, 1967.
[9]
A.C. Davies, "Matrix analysis of networks containing nullators and norators", Electron. Lett., vol. 2, pp. 48-49, 1966.
[10]
N. Herencsar, S. Minaei, J. Koton, E. Yuce, and K. Vrba, "New resistorless and electronically tunable realization of dualoutput VM all-pass filter using VDIBA", Analog Integr. Circuits Signal Process., vol. 74, pp. 141-154, 2013.
[11]
N. Herencsar, O.C.R. Sotner, J. Koton, and K. Vrba, "New resistorless and voltage-mode universal filter using single VDIBA", Analog Integr. Circuits Signal Process., vol. 76, pp. 141-154, 2013.
[12]
W.C. Huang, H.Y. Wang, P.S. Cheng, and Y.C. Lin, "Nullor equivalents of active devices for symbolic circuit analysis", Circuits Syst. Signal Process., vol. 31, pp. 865-875, 2012.
[13]
W.C. Huang, H.Y. Wang, N.H. Chiang, T.F. Lee, and C.Y. Liu, "Constructing pathological non-ideal active device models using mirror cells", Int. J. Electron. Lett., vol. 4, pp. 1-15, 2014.
[14]
F. Kacar, A. Yesil, and A. Noori, "New CMOS realization of voltage differencing buffered amplifier and its biquad filter applications", Radioengineering, vol. 21, pp. 333-339, 2012.
[15]
Y.A. Li, Y.H. Xi, Z.T. Fan, Y.Y. Zhang, and J.X. Wu, "Systematic synthesis of second generation current-controlled conveyor-based Tow-Thomas filters with orthogonal tune of pole frequency and quality factor", Revue roumaine des sciences techniques Série Électrotechnique et Énergétique. vol. 62, pp. 76-81, 2017.
[16]
Y.A. Li, "Further research on systematic synthesis for CCCCTA quadrature oscillators", Recent Adv. Electr. Electron. Eng., vol. 10, pp. 209-215, 2017.
[17]
Y.A. Li, "NAM expansion method for systematic synthesis of OTA-based floating gyrators", AEU Int. J. Electron. Commun., vol. 67, pp. 289-294, 2013.
[18]
Y.A. Li, "Systematic synthesis for electronic-control LC Oscillators using CCCIIs", Revue roumaine des sciences techniques Série Électrotechnique et Énergétique. vol. 63, pp. 71– 76, April 2018.
[19]
K.L. Pushkar, D.R. Bhaskar, and D. Prasad, "Voltage-mode new universal biquad filter configuration using a single VDIBA", Circuits Syst. Signal Process., vol. 33, pp. 275-285, 2014.
[20]
R.A. Saad, and A.M. Soliman, "Generation, modeling, and analysis of CCII-based gyrators using the generalized symbolic framework for linear active circuits", Int. J. Circuit Theory Appl., vol. 36, pp. 289-309, 2008.
[21]
R.A. Saad, and A.M. Soliman, "A new approach for using the pathological mirror element in the ideal representation of active devices", Int. J. Circuit Theory Appl., vol. 38, pp. 148-178, 2010.
[22]
R.A. Saad, and A.M. Soliman, "Use of mirror elements in the active device synthesis by admittance matrix expansion", IEEE Trans. Circuits and Syst. I., vol. 55, pp. 2726-2735, 2008.
[23]
A.M. Soliman, "Generation of generalized impedance converter circuits using NAM expansion", Circuits Syst. Signal Process., vol. 30, pp. 1091-1114, 2011.
[24]
A.M. Soliman, "A note on the generation of generalized impedance converter circuits using NAM expansion", Circuits Syst. Signal Process., vol. 31, pp. 1147-1157, 2012.
[25]
C. Sanchez-Lopez, F.V. Fernandez, E. Tlelo-Cuautle, and S.X.D. Tan, "Pathological element-based active device models and their application to symbolic analysis", IEEE Trans. Circuits and Syst. I., vol. 58, pp. 1282-1395, 2011.
[26]
W. Mekhum, and W. Jaikla, "Three input single output voltage-mode multifunction filter with independent control of pole frequency and quality factor", Recent Adv. Electr. Electron. Eng., vol. 11, pp. 494-500, 2013.
[27]
H. Xiao, "Recent integrated active inductor patents", Recent Adv. Electr. Electron. Eng., vol. 2, pp. 182-186, 2009.
[28]
F. Yucel, and E. Yuce, "A new, single CCII-based, voltage-mode, first-order, all-pass filter and its quadrature oscillator application", Scientia Iranica. Transaction D, Computer Science & Engineering, Electrical. vol. 22, pp. 1068-1076, 2015.
[29]
R. Trinchero, I.S. Stievano, and F.G. Canavero, "Steady-state response of periodically switched linear circuits via augmented time-invariant nodal analysis", J. Electr. Comput. Eng.. vol. 2014, pp. 1-11, September 2014.
[30]
H.Y. Wang, W.C. Huang, and N.H. Chiang, "Symbolic nodal analysis of circuits using pathological elements", IEEE Trans. Circuits and Syst. II., vol. 57, pp. 874-877, 2010.
[31]
H.Y. Wang, C.T. Lee, and C.Y. Huang, "Characteristic Investigation of new pathological elements", Analog Integr. Cir. Sig. Process., vol. 44, pp. 95-102, 2005.
[32]
C. Sanchez-Lopez, "Pathological equivalents of fully-differential active devices for symbolic nodal analysis", IEEE Trans. Circuits Syst. I., vol. 60, pp. 603-615, 2013.
[33]
R. Pandey, "N, Pandey, and S.K. Paul, “Voltage mode OTRA MOS-C single input multi output biquadratic universal filter", Recent Adv. Electr. Electron. Eng., vol. 10, pp. 337-344, 2012.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 12
ISSUE: 4
Year: 2019
Page: [298 - 303]
Pages: 6
DOI: 10.2174/2352096511666180629151111
Price: $58

Article Metrics

PDF: 12
HTML: 4