Latent Fingerprint Visualization and Subsequent DNA Extraction Using Electron Beam Evaporation of Metallic Ultra-Thin Films

Author(s): Haiping Wang , Dongbo Mi* , Wanxu Wang , Hongliang Zhang* , Dongsheng Tong , Shengjiang Wang , Feng Gao .

Journal Name: Current Nanoscience

Volume 15 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Proper detection and subsequent extraction of biological evidence are crucial for crime scene reconstruction. Vacuum metal deposition is currently an effective technique used in latent fingerprint development. However, the established procedures commonly undergo a direct plasma bombardment, a high ablation fluence and/or a high temperature process in vacuum metal deposition system.

Method: In this work, electron beam evaporation (EBE) was used to investigate the development of latent fingerprints and subsequent DNA extraction of biological evidence. Gold or copper is preferentially nucleated on the background surfaces rather than the fingerprint residues due to the difference of the nature of the surface, which indicates that the gold / copper and copper agglomerates are binding to the fingerprint valleys not the ridges of the fingerprint, revealing bright patterns with excellent ridge detail clarity on black surfaces.

Result: It is demonstrated that the co-extraction of the latent fingerprints and DNA is attributed to electron beam evaporated one-step process with relatively low energy bombarding energetic species and neutral particles, less possibility of contamination and without toxic and fluorine-based gases.

Conclusion: Our results demonstrate that EBE is a promising technique for the latent fingerprints and DNA co-extraction.

Keywords: Latent fingerprints, electron beam evaporation, metallic ultra-thin films, fingerprint development, DNA extraction, vacuum metal deposition.

[1]
Seah, L.K.; Dinish, U.S.; Phang, W.F.; Chao, Z.X.; Murukeshan, V.M. Fluorescence optimisation and lifetime studies of fingerprints treated with magnetic powders. Forensic Sci. Int., 2005, 152(2-3), 249-257.
[2]
Haan, P.V-D. Physics and fingerprints. Contemp. Phys., 2006, 47(4), 209-230.
[3]
Sodhi, G.S.; Kaur, J. Powder method for detecting latent fingerprints: A review. Forensic Sci. Int., 2001, 120(3), 172-176.
[4]
Chen, Y-f. Forensic applications of nanotechnology. J. Chin. Chem. Soc., 2011, 58(6), 828-835.
[5]
Gao, F.; Han, J.; Zhang, J.; Li, Q.; Sun, X.; Zheng, J.; Bao, L.; Li, X.; Liu, Z. The synthesis of newly modified CdTe quantum dots and their application for improvement of latent fingerprint detection. Nanotechnology, 2011, 22(7), 075705.
[6]
Theaker, B.J.; Hudson, K.E.; Rowell, F.J. Doped hydrophobic silica nano- and micro-particles as novel agents for developing latent fingerprints. Forensic Sci. Int., 2008, 174(1), 26-34.
[7]
Polimeni, G.; Foti, B.F.; Saravo, L.; De Fulvio, G. A novel approach to identify the presence of fingerprints on wet surfaces. Forensic Sci. Int., 2004, 146, S45-S46.
[8]
Thomas, G.L. Physics of fingerprints and their detection. J. Phys. E., 1978, 11(8), 722-731.
[9]
Wargacki, S.P.; Lewis, L.A.; Dadmun, M.D. Enhancing the quality of aged latent fingerprints developed by superglue fuming: Loss and replenishment of initiator. Forensic Sci. Int., 2008, 53(5), 1138-1144.
[10]
Xu, L.; Li, Y.; He, Y.; Su, B. Non-destructive enhancement of latent fingerprints on stainless steel surfaces by electrochemi-luminescence. Analyst, 2013, 138(8), 2357-2362.
[11]
Williams, G.; Dafydd, H.A.L.; Watts, A.; McMurray, N. Latent fingermark visualisation using reduced-pressure sublimation of copper phthalocyanine. Forensic Sci. Int., 2011, 204(1-3), E28-E31.
[12]
Zhang, M.; Qin, G.; Zuo, Y.; Zhang, T.; Zhang, Y.; Su, L.; Qiu, H.; Zhang, X. SECM imaging of latent fingerprints developed by deposition of Al-doped ZnO thin film. Electrochim. Acta, 2012, 78, 412-416.
[13]
Ramos, A.S.; Vieira, M.T. An efficient strategy to detect latent fingermarks on metallic surfaces. Forensic Sci. Int., 2012, 217(1-3), 196-203.
[14]
Kent, T.; Thomas, G.L.; Reynoldson, T.E.; East, H.W. Vacuum coating technique for development of latent fingerprints on polythene. Forensic Sci. Int., 1976, 16(2), 93-101.
[15]
Yu, I.H.; Jou, S.; Chen, C-M.; Wang, K-C.; Pang, L-J.; Liao, J.S. Development of latent fingerprint by ZnO deposition. Forensic Sci. Int., 2011, 207(1-3), 14-18.
[16]
Jones, N.; Stoilovic, M.; Lennard, C.; Roux, C. Vacuum metal deposition: Factors affecting normal and reverse development of latent fingerprints on polyethylene substrates. Forensic Sci. Int., 2001, 115(1-2), 73-88.
[17]
Jones, B.J.; Downham, R.; Sears, V.G. Nanoscale analysis of the interaction between cyanoacrylate and vacuum metal deposition in the development of latent fingermarks on low-density polyethylene. Forensic Sci. Int., 2012, 57(1), 196-200.
[18]
Fraser, J.; Sturrock, K.; Deacon, P.; Bleay, S.; Bremner, D.H. Visualisation of fingermarks and grab impressions on fabrics. Part 1: Gold/zinc vacuum metal deposition. Forensic Sci. Int., 2011, 208(1-3), 74-78.
[19]
Kent, K.; Stoilovic, M. Development of latent fingerprints using preferential DC sputter-deposition. Forensic Sci. Int., 1995, 72(1), 35-42.
[20]
Jones, N.; Mansour, D.; Stoilovic, M.; Lennard, C.; Roux, C. The influence of polymer type, print donor and age on the quality of fingerprints developed on plastic substrates using vacuum metal deposition. Forensic Sci. Int., 2001, 124(2-3), 167-177.
[21]
Jaber, N.; Lesniewski, A.; Gabizon, H.; Shenawi, S.; Mandler, D.; Almog, J. Visualization of latent fingermarks by nanotechnology: Reversed development on papera remedy to the variation in sweat composition. Angew. Chem. Int. Ed., 2012, 51(49), 12224-12227.
[22]
Maiti, N.; Biswas, A.; Tokas, R.B.; Bhattacharyya, D.; Jha, S.N.; Deshpande, U.P.; Barve, U.D.; Bhatia, M.S.; Das, A.K. Effects of oxygen flow rate on microstructure and optical properties of aluminum oxide films deposited by electron beam evaporation technique. Vacuum, 2010, 85(2), 214-220.
[23]
Davis, L.W.L.; Kelly, P.F.; King, R.S.P.; Bleay, S.M. Visualisation of latent fingermarks on polymer banknotes using copper vacuum metal deposition: A preliminary study. Forensic Sci. Int., 2016, 266, E86-E92.
[24]
Jones, N.; Stoilovic, M.; Lennard, C.; Roux, C. Vacuum metal deposition: Developing latent fingerprints on polyethylene substrates after the deposition of excess gold. Forensic Sci. Int., 2001, 123(1), 5-12.
[25]
Mohamed, A.A. Gold is going forensic. Gold Bull., 2011, 44(2), 71-77.
[26]
Tvedebrink, T.; Morling, N. Identical twins in forensic genetics - Epidemiology and risk based estimation of weight of evidence. Sci. Justice, 2015, 55(6), 408-414.
[27]
Lincoln, P.J. Criticisms and concerns regarding DNA profiling. Forensic Sci. Int., 1997, 88(1), 23-31.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 3
Year: 2019
Page: [248 - 253]
Pages: 6
DOI: 10.2174/1573413714666180628155824
Price: $58

Article Metrics

PDF: 20
HTML: 1