Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

The Progress in the Field Auxiliary Donors and their Application in Novel Organic Second-Order Nonlinear Optical Chromophores

Author(s): Wu Gao, Jialei Liu* and Iwan V. Kityk

Volume 16, Issue 3, 2019

Page: [228 - 235] Pages: 8

DOI: 10.2174/1570193X15666180627150155

Price: $65

Abstract

Conversion efficiency between electrical and optical signals is very important for the development of modern information technologies. Due to their advantages in half-wave voltage, bandwidth, cost and integration, as well as organic electro-optic (EO) parameters, these materials are widely studied and used in microwave photonic devices. Second order nonlinear optical (NLO) chromophores, as the core of organic EO materials have an increasing interest in this branch. Auxiliary donors present a new direction for the design and improvement of organic NLO chromophores. In this short review, the advantages, theoretical calculations and experimental results of auxiliary donors are reviewed and discussed in detail.

Keywords: Functional, electronic materials, organic, NLO, chromophore, EO coefficient.

Graphical Abstract
[1]
Schroder, F.; Cole, J.; Waddell, P.; McKechnie, S. Transforming benzophenoxazine laser dyes into chromophores for dye-sensitized solar cells: A molecular engineering approach. Adv. Energy Mater., 2015, 5(9), 1401728.
[2]
Zhou, N.; Prabakaran, K.; Lee, B.; Chang, S.; Harutyunyan, B.; Guo, P.; Butler, M.; Timalsina, A.; Bedzyk, M.; Ratner, M.; Vegiraju, S.; Yau, S.; Wu, C.; Chang, R.; Facchetti, A.; Chen, M.; Marks, T. Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells. J. Am. Chem. Soc., 2015, 137(13), 4414-4423.
[3]
Ashwell, G.; Tyrrell, W.; Whittam, A. Molecular rectification: Self-assembled monolayers in which donor-(pi-bridge)-acceptor moieties are centrally located and symmetrically coupled to both gold electrodes. J. Am. Chem. Soc., 2004, 126(22), 7102-7110.
[4]
Liu, Z.; Fang, Q.; Wang, D.; Xue, G.; Yu, W.; Shao, Z.; Jiang, M. Trivalent boron as acceptor in D-pi-A chromophores: Synthesis, structure and fluorescence following single- and two-photon excitation. Chem. Commun., 2002, 23, 2900-2901.
[5]
Patra, A.; Pan, M.; Friend, C.; Lin, T.; Cartwright, A.; Prasad, P. Electroluminescence properties of systematically derivatized organic chromophores containing electron donor and acceptor groups. Chem. Mater., 2002, 14(10), 4044-4048.
[6]
Broichhagen, J.; Frank, J.; Trauner, D. A roadmap to success in photopharmacology. Acc. Chem. Res., 2015, 48(7), 1947-1960.
[7]
Khan, T.; Broring, M.; Mathur, S.; Ravikanth, M. Boron dipyrrin-porphyrin conjugates. Coord. Chem. Rev., 2013, 257(15-16), 2348-2387.
[8]
Zhou, L.; Zhang, X.; Wang, Q.; Lv, Y.; Mao, G.; Luo, A.; Wu, Y.; Wu, Y.; Zhang, J.; Tan, W. Molecular engineering of a TBET-based two-photon fluorescent probe for ratiometric imaging of living cells and tissues. J. Am. Chem. Soc., 2014, 136(28), 9838-9841.
[9]
Kivala, M.; Diederich, F. Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. Acc. Chem. Res., 2009, 42(2), 235-248.
[10]
Liu, J.; Gao, W.; Kityk, I.; Liu, X.; Zhen, Z. Optimization of polycyclic electron-donors based on julolidinyl structure in push-pull chromophores for second order NLO effects. Dyes Pigm., 2015, 122, 74-84.
[11]
Liu, J.; Yang, Y.; Liu, X.; Zhen, Z. Physical attachment of NLO chromophores to polymers for great improvement of long-term stability. Mater. Lett., 2015, 142, 87-89.
[12]
Kulhanek, J.; Bures, F.; Kuznik, W.; Kityk, I.; Mikysek, T.; Ruzicka, A. Ferrocene-donor and 4,5-dicyanoimidazole-acceptor moieties in charge-transfer chromophores with p linkers tailored for second-order nonlinear optics. Chem. Asian J., 2013, 8(2), 465-475.
[13]
Bures, F.; Cvejn, D.; Melanova, K.; Benes, L.; Svoboda, J.; Zima, V.; Pytela, O.; Mikysek, T.; Ruzickova, Z.; Kityk, I.; Wojciechowski, A.; AlZayed, N. Effect of intercalation and chromophore arrangement on the linear and nonlinear optical properties of model aminopyridine push-pull molecules. J. Mater. Chem. C, 2016, 4(3), 468-478.
[14]
Davies, J.; Elangovan, A.; Sullivan, P.; Olbricht, B.; Bale, D.; Ewy, T.; Isborn, C.; Eichinger, B.; Robinson, B.; Reid, P.; Li, X.; Dalton, L. Rational enhancement of second-order nonlinearity: Bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: Design, synthesis, and electrooptic activity. J. Am. Chem. Soc., 2008, 130(32), 10565-10575.
[15]
Cho, M.; Choi, D.; Sullivan, P.; Akelaitis, A.; Dalton, L. Recent progress in second-order nonlinear optical polymers and dendrimers. Prog. Polym. Sci., 2008, 33(11), 1013-1058.
[16]
Tao, S.; Miyagoe, T.; Maeda, A.; Matsuzaki, H.; Ohtsu, H.; Hasegawa, M.; Takaishi, S.; Yamashita, M.; Okamoto, H. Ultrafast optical switching by using nanocrystals of a halogen-bridged nickel-chain compound dispersed in an optical polymer. Adv. Mater., 2007, 19(18), 2707.
[17]
Liu, J.; Xu, G.; Liu, F.; Kityk, I.; Liu, X.; Zhen, Z. Recent advances in polymer electro-optic modulators. RSC Advances, 2015, 5(21), 15784-15794.
[18]
Ashraf, M.; Teshome, A.; Kay, A.; Gainsford, G.; Bhuiyan, M.; Asselberghs, I.; Clays, K. Synthesis and optical properties of NLO chromophores containing an indoline donor and azo linker. Dyes Pigm., 2012, 95(3), 455-464.
[19]
Wang, L.; Wang, W.; Fang, X.; Zhu, C.; Qiu, Y. Intramolecular photo-induced electron transfer in nonlinear optical chromophores: Fullerene (C-60) derivatives. Org. Electron., 2016, 33, 290-299.
[20]
Rinderspacher, B. Electro-optic and spectroscopic properties of push-pull-chromophores with non-aromatic pi-bridges. Chem. Phys. Lett., 2013, 585, 21-26.
[21]
Liu, J.; Gao, W.; Liu, X.; Zhen, Z. Benefits of the use of auxiliary donors in the design and preparation of NLO chromophores. Mater. Lett., 2015, 143, 333-335.
[22]
Rodriguez-Cordoba, W.; Noria, R.; Guarin, C.; Peon, J. Ultrafast photosensitization of phthalocyanines through their axial ligands. J. Am. Chem. Soc., 2011, 133(13), 4698-4701.
[23]
Wu, Z.; Li, X.; Li, J.; Hua, J.; Agren, H.; Tian, H. Influence of the auxiliary acceptor on the absorption response and photovoltaic performance of dye-sensitized solar cells. Chem. Asian J., 2014, 9(12), 3549-3557.
[24]
Albert, I.; Marks, T.; Ratner, M. Large molecular hyperpolarizabilities. Quantitative analysis of aromaticity and auxiliary donor-acceptor effects. J. Am. Chem. Soc., 1997, 119(28), 6575-6582.
[25]
Benoit, C.; Sofiane, N.L. Second-order nonlinear optical responses of heptahelicene and heptathiahelicene derivatives. Chem. Phys. Lett., 2016, 644, 195-200.
[26]
Baroja, N.; Franco, S.; Garin, J.; Orduna, J.; Villacampa, B.; Borja, P.; Alicante, R. Synthesis, characterization, and optical properties of novel 1,3-dithiole donor-based chromophores. RSC Advances, 2013, 3, 2953-2962.
[27]
Michinobu, T. Click-type reaction of aromatic polyamines for improvement of thermal and optoelectronic properties. J. Am. Chem. Soc., 2008, 130(43), 14074-14075.
[28]
Michinobu, T.; Seo, C.; Noguchi, K.; Mori, T. Effects of click post functionalization on thermal stability and field effect transistor performances of aromatic polyamines. Polym. Chem., 2012, 3(6), 1427-1435.
[29]
Albert, I.; Marks, T.; Ratner, M. Large molecular hyperpolarizabilities in “push-pull” porphyrins. Molecular planarity and auxiliary donor-acceptor effects. Chem. Mater., 1998, 10, 753-762.
[30]
Raposo, M.; Fonseca, A.; Castro, M.; Belsley, M.; Cardoso, M.; Carvalho, L.; Coelho, P. Synthesis and characterization of novel diazenes bearing pyrrole, thiophene and thiazole heterocycles as efficient photochromic and nonlinear optical (NLO) materials. Dyes Pigm., 2011, 91, 62-73.
[31]
Castro, M.; Schellenberg, P.; Belsley, M.; Fonseca, A.; Fernandes, S.; Raposo, M. Design, synthesis and evaluation of redox, second order nonlinear optical properties and theoretical DFT studies of novel bithiophene azo dyes functionalized with thiadiazole acceptor groups. Dyes Pigm., 2012, 95, 392-399.
[32]
Batista, R.; Costa, S.; Belsley, M.; Raposo, M. Synthesis and second-order nonlinear optical properties of new chromophores containing benzimidazole, thiophene, and pyrrole heterocycles. Tetrahedron, 2007, 63, 9842-9849.
[33]
Castro, M.; Belsley, M.; Raposo, M. Pushepull second harmonic generation chromophores bearing pyrrole and thiazole heterocycles functionalized with several acceptor moieties: Syntheses and characterization. Dyes Pigm., 2016, 128, 89-95.
[34]
Batista, R.; Costa, S.; Belsley, M.; Raposo, M. Synthesis and optical properties of novel, thermally stable phenanthrolines bearing an arylthienyl-imidazo conjugation pathway. Dyes Pigm., 2009, 80, 329-336.
[35]
Mahmood, A.; Abdullah, M.; Khan, S. Enhancement of nonlinear optical (NLO) properties of indigo through modification of auxiliary donor, donor and acceptor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015, 139, 425-430.
[36]
Abbotto, A.; Beverina, L.; Manfredi, N.; Pagani, G.; Archetti, G.; Kuball, H.; Wittenburg, C.; Heck, J.; Holtmann, J. Second-order nonlinear optical activity of dipolar chromophores based on pyrrole-hydrazono donor moieties. Chem. Eur. J., 2009, 15, 6175-6185.
[37]
Ma, X.; Liang, R.; Yang, F.; Zhao, Z.; Zhang, A.; Song, N.; Zhou, Q.; Zhang, J. Synthesis and properties of novel second-order NLO chromophores containing pyrrole as an auxiliary electron donor. J. Mater. Chem., 2008, 18, 1756-1764.
[38]
Ma, X.; Ma, F.; Zhao, Z.; Song, N.; Zhang, J. Toward highly efficient NLO chromophores: Synthesis and properties of heterocycle-based electronically gradient dipolar NLO chromophores. J. Mater. Chem., 2010, 20, 2369-2380.
[39]
Memon, M.; Bai, W.; Sun, J.; Imran, M.; Phulpoto, S.; Yan, S.; Huang, Y.; Geng, J. Conjunction of conducting polymer nanostructures with macroporous structured graphene thin films for high-performance flexible supercapacitors. ACS Appl. Mater. Interfaces, 2016, 8(18), 11711-11719.
[40]
Baik, C.; Hudson, Z.; Amarne, H.; Wang, S. Enhancing the photochemical stability of N,C-chelate boryl compounds: C-C bond formation versus C = C bond cis,trans-isomerization. J. Am. Chem. Soc., 2009, 131(40), 14549-14559.
[41]
Barroso, R.; Cabal, M.; Badia-Laino, R.; Valdes, C. Structurally diverse pi-extended conjugated polycarbo- and heterocycles through Pd-catalyzed autotandem cascades. Chem.-Eur. J., 2015, 21(46), 16463-16473.
[42]
Wu, J.; Wang, W.; Wang, L.; Liu, J.; Chen, K.; Bo, S. Introduction of fluorine to change the dielectric environment of nonlinear optical chromophores for improved electro-optic activities. Mater. Lett., 2016, 164, 636-639.
[43]
Wu, J.Y.; Bo, S.H.; Wang, W.; Deng, G.W.; Zhen, Z.; Liu, X.H.; Chiang, K.S. Facile bromine-termination of nonlinear optical chromophore: Remarkable optimization in photophysical properties, surface morphology and electro-optic activity. RSC Advances, 2015, 5(123), 102108-102114.
[44]
Wu, J.Y.; Xiao, H.Y.; Qiu, L.; Zhen, Z.; Liu, X.H.; Bo, S.H. Comparison of nonlinear optical chromophores containing different conjugated electron-bridges: The relationship between molecular structure-properties and macroscopic electro-optic activities of materials. RSC Advances, 2014, 4(91), 49737-49744.
[45]
Wu, J.; Peng, C.; Xiao, H.; Bo, S.; Qiu, L.; Zhen, Z.; Liu, X. Donor modification of nonlinear optical chromophores: Synthesis, characterization, and fine-tuning of chromophores’ mobility and steric hindrance to achieve ultra large electro-optic coefficients in guest-host electro-optic materials. Dyes Pigm., 2014, 104, 15-23.
[46]
Wu, J.; Bo, S.; Liu, J.; Zhou, T.; Xiao, H.; Qiu, L.; Zhen, Z.; Liu, X. Synthesis of novel nonlinear optical chromophore to achieve ultrahigh electro-optic activity. Chem. Commun., 2012, 48(77), 9637.
[47]
Rybtchinski, B.; Sinks, L.; Wasielewski, M. Photoinduced electron transfer in self-assembled dimers of 3-fold symmetric donor - Acceptor molecules based on perylene-3,4: 9,10-bis(dicarboximide). J. Phys. Chem. A, 2004, 108(37), 7497-7505.
[48]
Su, M.; Huang, J.; Zhang, L.; Zhang, Q.; Zhan, C.; Zhou, X.; Yang, L.; Song, Y.; Jiang, K. Small molecular thienoquinoidal dyes as electron donors for solution processable organic photovoltaic cells. RSC Advances, 2015, 5(94), 76666-76669.
[49]
Yang, Y.; Bo, S.; Wang, H.; Liu, F.; Liu, J.; Qiu, L.; Zhen, Z.; Liu, X. Novel chromophores with excellent electro-optic activity based on double-donor chromophores by optimizing thiophene bridges. Dyes Pigm., 2015, 122, 139-146.
[50]
Yang, Y.; Xiao, H.; Wang, H.; Liu, F.; Bo, S.; Liu, J.; Qiu, L.; Zhena, Z.; Liu, X. Synthesis and optical nonlinear properties of novel Y-shaped chromophores with excellent electro-optic activity. J. Mater. Chem. C, 2015, 3(43), 11423-11431.
[51]
Yang, Y.; Liu, J.; Zhang, M.; Liu, F.; Wang, H.; Bo, S.; Zhen, Z.; Qiu, L.; Liu, X. The important role of the location of the alkoxy group on the thiophene ring in designing efficient organic nonlinear optical materials based on double-donor chromophores. J. Mater. Chem. C, 2015, 3(16), 3913-3921.
[52]
Yang, Y.; Xu, H.; Liu, F.; Wang, H.; Deng, G.; Si, P.; Huang, H.; Bo, S.; Liu, J.; Qiu, L.; Zhen, Z.; Liu, X. Synthesis and optical nonlinear property of Y-type chromophores based on double-donor structures with excellent electro-optic activity. J. Mater. Chem. C, 2014, 2(26), 5124-5132.
[53]
Dokladalova, L.; Bures, F.; Kuznik, W.; Kityk, I.; Wojciechowski, A.; Mikysek, T.; Almonasy, N.; Ramaiyan, M.; Padelkova, Z.; Kulhanek, J.; Ludwig, M. Dicyanobenzene and dicyanopyrazine derived X-shaped charge-transfer chromophores: Comparative and structure-property relationship study. Org. Biomol. Chem., 2014, 12(29), 5517-5527.
[54]
Janjua, M. Quantum mechanical design of efficient second-order nonlinear optical materials based on heteroaromatic imido-substituted hexamolybdates: First theoretical framework of POM-based heterocyclic aromatic rings. Inorg. Chem., 2012, 51(21), 11306-11314.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy