Heat and Mass Transfer Characteristics of Nanofluids in a Rotating System: A Convective Boundary Layer Flow

Author(s): M. Parvathi, A. Leelaratnam, M.C. Raju*.

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Introduction: Convective heat and mass transfer in nanofluids is a topic of major contemporary interest in both science and technology. In view of this, an unsteady MHD free convective flow of nanofluids through a porous medium bound by a moving vertical semi-infinite permeable flat plate with a constant heat source and convective boundary condition in a rotating frame of reference is studied theoretically.

Experimental: The novelty is the consideration of constant heat source and convective boundary condition in a rotating frame. The velocity along the plate i.e., slip velocity is assumed to oscillate in time with constant frequency so that the solutions of the boundary layer are of the same oscillatory type. The dimensionless governing equations for this investigation are solved analytically using small perturbation approximation. Two types of nanofluids, namely Cu-water and Al2O3-water are used.

Results: The effects of various parameters on the flow, heat and mass transfer characteristics are discussed through graphs and tables.

Conclusion: An increase in the convective parameter and nanoparticle volume fraction leads to increase the thermal boundary layer thickness but opposite effect occurs for heat generation.

Keywords: Nanofluids, MHD, convective boundary, heat and mass transfer, rotating system, porous medium.

[1]
Robertson, G.L. Food packaging.In:Principles and Practice; CRC press: Boca Raton, Florida, 2013.
[2]
Bravin, B.; Peressini, D.; Sensidoni, A. Development and application of polysaccharide-lipid edible coating to extend shelf-life of dry bakery products. J. Food Eng., 2006, 76, 280.
[3]
Otoni, C.G.; Pontes, S.F.; Medeiros, E.A.; Soares, N.D.F. Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread. J. Agric. Food Chem., 2014, 62, 5214.
[4]
Hadian, M.; Hosseini, S.M.H.; Farahnaky, A.; Mesbahi, G.R.; Yousefi, G.H.; Saboury, A.A. β-lactoglobulin-sodium alginate interaction as affected by polysaccharide depolymerization using high intensity ultrasound. Food Hydroc., 2016, 55, 108.
[5]
Abbasi, S. Challenges towards characterization and applications of a novel hydrocolloid: Persian gum. Curr. Opin. Colloid Interface Sci., 2017, 28, 37-45.
[6]
Hadian, M.; Hosseini, S.M.H.; Farahnaky, A.; Mesbahi, G.R. Antioxidant, antimicrobial, cell viability and enzymatic inhibitory of antioxidant polymers as biological macromolecules. Int. J. Biol. Macromol., 2017, 102, 1297.
[7]
Fadavi, G.; Mohammadifar, M.A.; Zargarran, A.; Mortazavian, A.M.; Komeili, R. Composition and physicochemical properties of Zedo gum exudates from Amygdalus scoparia. Carbohydr. Polym., 2014, 101, 1074.
[8]
Maté, J.I.; Krochta, J.M. Detection of odor-active ethenylalkylpyrazines in roasted coffee. J. Agric. Food Chem., 1996, 44, 3001.
[9]
Sullivan, S.T.; Tang, C.; Kennedy, A.; Talwar, S.; Khan, S.A. Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocoll., 2014, 35, 36.
[10]
Vega‐Lugo, A.C.; Lim, L.T. Effects of poly(ethylene oxide) and pH on the electrospinning of whey protein isolate. J. Polym. Sci. Part, B, Polym. Phys., 2012, 50, 1188.
[11]
Krochta, J.M.; Perez-Gago, M.B. Formation and properties of whey protein films and coatings.In: Protein-Based Films and Coatings, CRC Press; Boca, Raton, Florida; , 2002.
[12]
Mchugh, T.H.; Aujard, J.F.; Krochta, J. Plasticized whey protein edible films: Water vapor permeability properties. J. Food Sci., 1994, 59, 416.
[13]
Ramakrishna, S. An introduction to electrospinning and nanofibers; World Scientific: Singapore, 2005.
[14]
Subbiah, T.; Bhat, G.; Tock, R.; Parameswaran, S.; Ramkumar, S. Electrospinning of nanofibers. J. Appl. Polym. Sci., 2005, 96, 557.
[15]
Elamparithi, A.; Punnoose, A.M.; Paul, S.F.; Kuruvilla, S. Gelatin electrospun nanofibrous matrices for cardiac tissue engineering applications. Int. J. Polym. Mater., 2017, 66, 20.
[16]
Kessick, R.; Fenn, J.; Tepper, G. The use of AC potentials in electrospraying and electrospinning processes. Polymer, 2004, 45, 2981.
[17]
Denis, P.; Dulnik, J.; Sajkiewicz, P. Electrospinning and structure of bicomponent polycaprolactone/gelatin nanofibers obtained using alternative solvent system. Int. J. Polym. Mater., 2015, 64, 354.
[18]
Kim, S.J.; Nam, Y.S.; Park, H.S.; Park, W.H. Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane. Eur. Polym. J., 2007, 43, 3146.
[19]
Neo, Y.P.; Swift, S.; Ray, S.; Gizdavic-Nikolaidis, M.; Jin, J.; Perera, C.O. Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials. Food Chem., 2013, 141, 3192.
[20]
Weiss, J.; Kanjanapongkul, K.; Wongsasulak, S.; Yoovidhya, T. Electrospun fibers: Fabrication, functionalities and potential food industry applications. Nanotechnol. Food Bever. Nutraceut. Indus., 2012, 1, 362.
[21]
Ranjbar-Mohammadi, M.; Bahrami, S.H.; Joghataei, M. Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: In vitro evaluation and antibacterial properties. Mater. Sci. Eng. C, 2013, 33, 4935.
[22]
Aytac, Z.; Dogan, S.Y.; Tekinay, T.; Uyar, T. Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers. Colloids Surf. B Biointerfaces, 2014, 120, 125.
[23]
Wang, X.; Yue, T.; Lee, T.C. Development of Pleurocidin-poly(vinyl alcohol) electrospun antimicrobial nanofibers to retain antimicrobial activity in food system application. Food Control, 2015, 54, 150.
[24]
Ge, L.; Zhao, Y.S.; Mo, T.; Li, J.R.; Li, P. Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation. Food Control, 2012, 26, 188.
[25]
Wen, P.; Zhu, D.H.; Wu, H.; Zong, M.H.; Jing, Y.R.; Han, S.Y. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control, 2016, 59, 366.
[26]
Rieger, K.A.; Schiffman, J.D. Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr. Polym., 2014, 113, 561.
[27]
Khajehie, N.; Golmakani, M.; Eblaghi, M.; Mohammad Hadi, E. Evaluating the effects of microwave-assisted hydrodistillation on antifungal and radical scavenging activities of Oliveria decumbens and Chaerophyllum macropodum essential oils. J. Food Prot., 2017, 80, 783.
[28]
Golmakani, M.T.; Rezaei, K. Comparison of microwave-assisted hydrodistillation withthe traditional hydrodistillation method in the extractionof essential oils from Thymus vulgaris L. Food Chem., 2008, 109, 925.
[29]
Keramat, M.; Golmakani, M.T.; Aminlari, M.; Shekarforoush, S.J Food Process. Preserv., 2016, Available from (Accessed on: 26th July 2016)
[http://dx.doi.org/10.1111/jfpp.12951]
[30]
Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, 2007.
[31]
Siripatrawan, U.; Harte, B.R. Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll., 2010, 24, 770.
[32]
Woerdeman, D.L.; Shenoy, S.; Breger, D. Role of chain entanglements in the electrospinning of wheat protein-poly(vinyl alcohol) blends. J. Adhes., 2007, 83, 785.
[33]
Hajimehdipoor, H.; Samadi, N.; Mozaffarian, V.; Rahimifard, N.; Shoeibi, S.; Hamedani, M.P. Chemical composition and antimicrobial activity of Oliveria decumbens volatile oil from West of Iran. J. Med. Plants, 2010, 1, 39.
[34]
Amin, G.; Sourmaghi, M.S.; Zahedi, M.; Khanavi, M.; Samadi, N. Essential oil composition and antimicrobial activity of Oliveria decumbens. Fitoterapia, 2005, 76, 704.
[35]
Yanishlieva, N.V.; Marinova, E.M.; Gordon, M.H.; Raneva, V.G. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem., 1999, 64, 59.
[36]
Zeng, J.; Haoqing, H.; Schaper, A.; Wendorff, J.H.; Greiner, A. Poly-L-lactide nanofibers by electrospinning- Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers, 2003, 3, 102.
[37]
Uyar, T.; Besenbacher, F. Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer, 2008, 49, 5336.
[38]
Fallahi, D.; Rafizadeh, M.; Mohammadi, N.; Vahidi, B. Effect of applied voltage on jet electric current and flow rate in electrospinning of polyacrylonitrile solutions. Polym. Int., 2008, 57, 1363.
[39]
Nielsen, S.S. Food Analysis; Springer: New York, 2010.
[40]
Colin-Orozco, J.; Zapata-Torres, M.; Rodriguez-Gattorno, G.; Pedroza-Islas, R. Properties of Poly (ethylene oxide)/ whey protein isolate nanofibers prepared by electrospinning. Food Biophys., 2015, 10, 134.
[41]
Jia, Y.T.; Gong, J.; Gu, X.H.; Kim, H.Y.; Dong, J.; Shen, X.Y. Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr. Polym., 2007, 67, 403.
[42]
Zeng, L.B.; Zhang, Z.R.; Luo, Z.H.; Zhu, J.X. Antioxidant activity and chemical constituents of essential oil and extracts of Rhizoma Homalomenae. Food Chem., 2011, 125, 456.
[43]
Mishra, P.K.; Singh, P.; Prakash, B.; Kedia, A.; Dubey, N.K.; Chanotiya, C. Assessing essential oil components as plant-based preservatives against fungi that deteriorate herbal raw materials. Int. Biodeterior. Biodegr., 2013, 80, 16.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 3
Year: 2019
Page: [381 - 392]
Pages: 12
DOI: 10.2174/2210681208666180626162916
Price: $58

Article Metrics

PDF: 16
HTML: 1
EPUB: 1
PRC: 3